1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
<input_description distribution="Quantum Espresso" package="PWscf" program="pp.x" >
<toc>
</toc>
<intro>
<b>Purpose of pp.x:</b> data analysis and plotting.
The code performs two steps:
(1) reads the output produced by <b>pw.x,</b> extracts and calculates
the desired quantity/quantities (rho, V, ...)
(2) writes the desired quantity to file in a suitable format for
various types of plotting and various plotting programs
The input data of this program is read from standard input
or from file and has the following format:
NAMELIST <b>&INPUTPP</b>
containing the variables for step (1), followed by
NAMELIST <b>&PLOT</b>
containing the variables for step (2)
The two steps can be performed independently. In order to perform
only step (2), leave namelist <b>&INPUTPP</b> blank. In order to perform
only step (1), do not specify namelist <b>&PLOT</b>
Intermediate results from step 1 can be saved to disk (see
variable <ref>filplot</ref> in <b>&INPUTPP)</b> and later read in step 2.
Since the file with intermediate results is formatted, it
can be safely transferred to a different machine. This
also allows plotting of a linear combination (for instance,
charge differences) by saving two intermediate files and
combining them (see variables <ref>weight</ref> and <ref>filepp</ref> in <b>&PLOT)</b>
All output quantities are in ATOMIC (RYDBERG) UNITS unless
otherwise explicitly specified.
All charge densities integrate to the NUMBER of electrons
not to the total charge.
All potentials have the dimension of an energy (e*V, not V).
</intro>
<namelist name="INPUTPP" >
<var name="prefix" type="CHARACTER" >
<info>
prefix of files saved by program pw.x
</info>
</var>
<var name="outdir" type="CHARACTER" >
<info>
directory containing the input data, i.e. the same as in pw.x
</info>
<default>
value of the <tt>ESPRESSO_TMPDIR</tt> environment variable if set;
current directory ('./') otherwise
</default>
</var>
<var name="filplot" type="CHARACTER" >
<info>
file "filplot" contains the quantity selected by plot_num
(can be saved for further processing)
</info>
</var>
<var name="plot_num" type="INTEGER" >
<info>
Selects what to save in filplot:
0 = electron (pseudo-)charge density
1 = total potential V_bare + V_H + V_xc
2 = local ionic potential V_bare
3 = local density of states at specific energy or grid of energies
(number of states per volume, in bohr^3, per energy unit, in Ry)
4 = local density of electronic entropy
5 = STM images
Tersoff and Hamann, <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.31.805">PRB 31, 805 (1985)</a>
6 = spin polarization (rho(up)-rho(down))
7 = contribution of selected wavefunction(s) to the
(pseudo-)charge density. For norm-conserving PPs,
|psi|^2 (psi=selected wavefunction). Noncollinear case:
contribution of the given state to the charge or
to the magnetization along the direction indicated
by spin_component (0 = charge, 1 = x, 2 = y, 3 = z )
8 = electron localization function (ELF)
9 = charge density minus superposition of atomic densities
10 = integrated local density of states (ILDOS)
from <ref>emin</ref> to <ref>emax</ref> (emin, emax in eV)
if <ref>emax</ref> is not specified, <ref>emax</ref>=E_fermi
11 = the V_bare + V_H potential
12 = the sawtooth electric field potential (if present)
13 = the noncollinear magnetization.
17 = all-electron valence charge density
can be performed for PAW calculations only
requires a very dense real-space grid!
18 = The exchange and correlation magnetic field in the noncollinear case
19 = Reduced density gradient
( J. Chem. Theory Comput. 7, 625 (2011), <a href="http://dx.doi.org/10.1021/ct100641a">doi:10.1021/ct100641a</a> )
Set the isosurface between 0.3 and 0.6 to plot the
non-covalent interactions (see also plot_num = 20)
20 = Product of the electron density (charge) and the second
eigenvalue of the electron-density Hessian matrix;
used to colorize the RDG plot (plot_num = 19)
21 = all-electron charge density (valence+core).
For PAW calculations only; requires a very dense real-space grid.
22 = kinetic energy density (for meta-GGA and XDM only)
</info>
</var>
<choose>
<when test="plot_num=0" >
<label>
Options for total charge (plot_num=0):
</label>
<var name="spin_component" type="INTEGER" >
<default> 0
</default>
<info>
0 = total charge (default value),
1 = spin up charge,
2 = spin down charge.
</info>
</var>
</when>
<elsewhen test="plot_num=1" >
<label>
Options for total potential (plot_num=1):
</label>
<var name="spin_component" type="INTEGER" >
<default> 0
</default>
<info>
0 = spin averaged potential (default value),
1 = spin up potential,
2 = spin down potential.
</info>
</var>
</elsewhen>
<elsewhen test="plot_num=3" >
<label>
Options for LDOS (plot_num=3):
LDOS is plotted on grid [emin, emax] with spacing delta_e.
</label>
<var name="emin" type="REAL" >
<default> e_fermi
</default>
<info>
lower boundary of energy grid (in eV).
Defaults to Fermi energy.
</info>
</var>
<var name="emax" type="REAL" >
<status> OPTIONAL
</status>
<info>
upper boundary of energy grid (in eV).
Defaults to Fermi energy.
</info>
</var>
<var name="delta_e" type="REAL" >
<default> 0.1
</default>
<status> OPTIONAL
</status>
<info>
spacing of energy grid (in eV).
</info>
</var>
<var name="degauss_ldos" type="REAL" >
<default> degauss (converted to eV)
</default>
<status> OPTIONAL
</status>
<info>
broadening of energy levels for LDOS (in eV).
Defaults to broadening degauss specified for electronic smearing
in pw.x calculation.
</info>
</var>
</elsewhen>
<elsewhen test="plot_num=5" >
<label>
Options for STM images (plot_num=5):
</label>
<var name="sample_bias" type="REAL" >
<info>
the bias of the sample (Ry) in stm images
</info>
</var>
</elsewhen>
<elsewhen test="plot_num=7" >
<label>
Options for |psi|^2 (plot_num=7):
</label>
<dimension name="kpoint" start="1" end="2" type="INTEGER" >
<info>
Unpolarized and noncollinear case:
k-point(s) to be plotted
LSDA:
k-point(s) and spin polarization to be plotted
(spin-up and spin-down correspond to different k-points!)
To plot a single kpoint ikpt, specify kpoint=ikpt or kpoint(1)=ikpt
To plot a range of kpoints [imin, imax], specify kpoint(1)=imin and kpoint(2)=imax
</info>
</dimension>
<dimension name="kband" start="1" end="2" type="INTEGER" >
<info>
Band(s) to be plotted.
To plot a single band ibnd, specify kband=ibnd or kband(1)=ibnd
To plot a range of bands [imin, imax], specify kband(1)=imin and kband(2)=imax
</info>
</dimension>
<var name="lsign" type="LOGICAL" >
<info>
if true and k point is Gamma, plot |psi|^2 sign(psi)
</info>
</var>
<dimension name="spin_component" start="1" end="2" type="INTEGER" >
<default> 0
</default>
<status> OPTIONAL
</status>
<info>
<b>Noncollinear case only:</b>
plot the contribution of the given state(s) to the charge
or to the magnetization along the direction(s) indicated
by spin_component:
0 = charge (default),
1 = x,
2 = y,
3 = z.
Ignored in unpolarized or LSDA case
To plot a single component ispin, specify spin_component=ispin or spin_component(1)=ispin
To plot a range of components [imin, imax], specify spin_component(1)=imin and spin_component(2)=imax
</info>
</dimension>
</elsewhen>
<elsewhen test="plot_num=10" >
<label>
Options for ILDOS (plot_num=10):
</label>
<var name="emin" type="REAL" >
<info>
lower energy boundary (in eV)
</info>
</var>
<var name="emax" type="REAL" >
<info>
upper energy boundary (in eV),
i.e. compute ILDOS from <ref>emin</ref> to <ref>emax</ref>
</info>
</var>
<var name="spin_component" type="INTEGER" >
<default> 0
</default>
<info>
for LSDA case only: plot the contribution to ILDOS of
0 = spin-up + spin-down (default)
1 = spin-up only
2 = spin-down only
</info>
</var>
</elsewhen>
<elsewhen test="plot_num=13" >
<label>
Options for noncollinear magnetization (plot_num=13):
</label>
<var name="spin_component" type="INTEGER" >
<default> 0
</default>
<info>
0 = absolute value (default value)
1 = x component of the magnetization
2 = y component of the magnetization
3 = z component of the magnetization
</info>
</var>
</elsewhen>
<elsewhen test="plot_num=17" >
<label>
Options for reconstructed charge density (plot_num=17):
</label>
<var name="spin_component" type="INTEGER" >
<default> 0
</default>
<info>
0 = total charge (default value),
1 = spin up charge,
2 = spin down charge.
</info>
</var>
</elsewhen>
<elsewhen test="plot_num=22" >
<label>
Options for kinetic energy density (plot_num=22),
LSDA case only:
</label>
<var name="spin_component" type="INTEGER" >
<default> 0
</default>
<info>
0 = total density (default value),
1 = spin up density,
2 = spin down density.
</info>
</var>
</elsewhen>
</choose>
</namelist>
<namelist name="PLOT" >
<var name="nfile" type="INTEGER" >
<default> 1
</default>
<status> OPTIONAL
</status>
<info>
the number of data files to read
</info>
</var>
<group>
<dimension name="filepp" start="1" end="nfile" type="CHARACTER" >
<default> filepp(1)=filplot
</default>
<info>
nfile = 1 : file containing the quantity to be plotted
nfile > 1 : see <ref>weight</ref>
</info>
</dimension>
<dimension name="weight" start="1" end="nfile" type="REAL" >
<default> weight(1)=1.0
</default>
<info>
weighing factors: assuming that rho(i) is the quantity
read from filepp(i), the quantity that will be plotted is:
weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3) + ...
</info>
</dimension>
<message>
<b>BEWARE:</b> atomic coordinates are read from the first file;
if their number is different for different files,
the first file must have the largest number of atoms
</message>
</group>
<var name="iflag" type="INTEGER" >
<info>
0 = 1D plot of the spherical average
1 = 1D plot
2 = 2D plot
3 = 3D plot
4 = 2D polar plot on a sphere
</info>
</var>
<var name="output_format" type="INTEGER" >
<info>
(ignored on 1D plot)
0 = format suitable for gnuplot (1D)
1 = obsolete format no longer supported
2 = format suitable for plotrho (2D)
3 = format suitable for XCRYSDEN (2D or user-supplied 3D region)
4 = obsolete format no longer supported
5 = format suitable for XCRYSDEN (3D, using entire FFT grid)
6 = format as gaussian cube file (3D)
(can be read by many programs)
7 = format suitable for gnuplot (2D) x, y, f(x,y)
</info>
</var>
<var name="fileout" type="CHARACTER" >
<default> standard output
</default>
<info>
name of the file to which the plot is written
</info>
</var>
<var name="interpolation" type="CHARACTER" >
<default> 'fourier'
</default>
<options>
<info>
Type of interpolation:
</info>
<opt val="'fourier'" >
</opt>
<opt val="'bspline'" > (EXPERIMENTAL)
</opt>
</options>
</var>
<choose>
<when test="iflag = 0 or 1" >
<label> the following variables are REQUIRED:
</label>
<dimension name="e1" start="1" end="3" type="REAL" >
<info>
3D vector which determines the plotting line (in alat units)
</info>
</dimension>
<dimension name="x0" start="1" end="3" type="REAL" >
<info>
3D vector, origin of the line (in alat units)
</info>
</dimension>
<var name="nx" type="INTEGER" >
<info>
number of points in the line:
rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx
</info>
</var>
</when>
<elsewhen test="iflag = 2" >
<label> the following variables are REQUIRED:
</label>
<dimensiongroup start="1" end="3" type="REAL" >
<dimension name="e1" >
</dimension>
<dimension name="e2" >
</dimension>
<info>
3D vectors which determine the plotting plane (in alat units)
BEWARE: <b>e1</b> and <b>e2</b> must be orthogonal
</info>
</dimensiongroup>
<dimension name="x0" start="1" end="3" type="REAL" >
<info>
3D vector, origin of the plane (in alat units)
</info>
</dimension>
<vargroup type="INTEGER" >
<var name="nx" >
</var>
<var name="ny" >
</var>
<info>
Number of points in the plane:
rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1)
+ e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny
</info>
</vargroup>
</elsewhen>
<elsewhen test="iflag = 3" >
<label> the following variables are OPTIONAL:
</label>
<dimensiongroup start="1" end="3" type="REAL" >
<dimension name="e1" >
</dimension>
<dimension name="e2" >
</dimension>
<dimension name="e3" >
</dimension>
<info>
3D vectors which determine the plotting parallelepiped
(if present, must be orthogonal)
<ref>e1</ref>, <ref>e2</ref>, and <ref>e3</ref> are in alat units !
</info>
</dimensiongroup>
<dimension name="x0" start="1" end="3" type="REAL" >
<info>
3D vector, origin of the parallelepiped
<ref>x0</ref> is in alat units !
</info>
</dimension>
<vargroup type="INTEGER" >
<var name="nx" >
</var>
<var name="ny" >
</var>
<var name="nz" >
</var>
<info>
Number of points in the parallelepiped:
rho(i,j,k) = rho( x0 + e1 * (i-1)/nx
+ e2 * (j-1)/ny
+ e3 * (k-1)/nz ),
i = 1, nx ; j = 1, ny ; k = 1, nz
- If <ref>output_format</ref> = 3 (XCRYSDEN), the above variables
are used to determine the grid to plot.
- If <ref>output_format</ref> = 5 (XCRYSDEN), the above variables
are ignored, the entire FFT grid is written in the
XCRYSDEN format - works for any crystal axis (VERY FAST)
- If <ref>e1</ref>, <ref>e2</ref>, <ref>e3</ref>, <ref>x0</ref> are present,
and <ref>e1</ref>, <ref>e2</ref>, <ref>e3</ref> are parallel to xyz
and parallel to crystal axis, a subset of the FFT
grid that approximately covers the parallelepiped
defined by <ref>e1</ref>, <ref>e2</ref>, <ref>e3</ref>, <ref>x0</ref>, is
written - untested, might be obsolete
- Otherwise, the required 3D grid is generated from the
Fourier components (may be VERY slow)
</info>
</vargroup>
</elsewhen>
<elsewhen test="iflag = 4" >
<label> the following variables are REQUIRED:
</label>
<var name="radius" type="REAL" >
<info>
Radius of the sphere (alat units), centered at (0,0,0)
</info>
</var>
<vargroup type="INTEGER" >
<var name="nx" >
</var>
<var name="ny" >
</var>
<info>
Number of points in the polar plane:
phi(i) = 2 pi * (i - 1)/(nx-1), i=1, nx
theta(j) = pi * (j - 1)/(ny-1), j=1, ny
</info>
</vargroup>
</elsewhen>
</choose>
</namelist>
</input_description>
|