File: INPUT_PP.xml

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (557 lines) | stat: -rw-r--r-- 17,958 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
    
<input_description distribution="Quantum Espresso" package="PWscf" program="pp.x" >
   <toc>
   </toc>
   <intro>
<b>Purpose of pp.x:</b> data analysis and plotting.

The code performs two steps:

(1) reads the output produced by <b>pw.x,</b> extracts and calculates
    the desired quantity/quantities (rho, V, ...)

(2) writes the desired quantity to file in a suitable format for
    various types of plotting and various plotting programs

The input data of this program is read from standard input
or from file and has the following format:

NAMELIST <b>&amp;INPUTPP</b>
   containing the variables for step (1), followed by

NAMELIST <b>&amp;PLOT</b>
   containing the variables for step (2)

The two steps can be performed independently. In order to perform
only step (2), leave namelist <b>&amp;INPUTPP</b> blank. In order to perform
only step (1), do not specify namelist <b>&amp;PLOT</b>

Intermediate results from step 1 can be saved to disk (see
variable <ref>filplot</ref> in <b>&amp;INPUTPP)</b> and later read in step 2.
Since the file with intermediate results is formatted, it
can be safely transferred to a different machine. This
also allows plotting of a linear combination (for instance,
charge differences) by saving two intermediate files and
combining them (see variables <ref>weight</ref> and <ref>filepp</ref> in <b>&amp;PLOT)</b>

All output quantities are in ATOMIC (RYDBERG) UNITS unless
otherwise explicitly specified.
All charge densities integrate to the NUMBER of electrons
not to the total charge.
All potentials have the dimension of an energy (e*V, not V).
   </intro>
   <namelist name="INPUTPP" >
      <var name="prefix" type="CHARACTER" >
         <info>
prefix of files saved by program pw.x
         </info>
      </var>
      <var name="outdir" type="CHARACTER" >
         <info>
directory containing the input data, i.e. the same as in pw.x
         </info>
         <default>
value of the <tt>ESPRESSO_TMPDIR</tt> environment variable if set;
current directory (&apos;./&apos;) otherwise
         </default>
      </var>
      <var name="filplot" type="CHARACTER" >
         <info>
file &quot;filplot&quot; contains the quantity selected by plot_num
(can be saved for further processing)
         </info>
      </var>
      <var name="plot_num" type="INTEGER" >
         <info>
Selects what to save in filplot:

   0  = electron (pseudo-)charge density

   1  = total potential V_bare + V_H + V_xc

   2  = local ionic potential V_bare

   3  = local density of states at specific energy or grid of energies
        (number of states per volume, in bohr^3, per energy unit, in Ry)

   4  = local density of electronic entropy

   5  = STM images
        Tersoff and Hamann, <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.31.805">PRB 31, 805 (1985)</a>

   6  = spin polarization (rho(up)-rho(down))

   7  = contribution of selected wavefunction(s) to the
        (pseudo-)charge density. For norm-conserving PPs,
        |psi|^2 (psi=selected wavefunction). Noncollinear case:
        contribution of the given state to the charge or
        to the magnetization along the direction indicated
        by spin_component (0 = charge, 1 = x, 2 = y, 3 = z )

   8  = electron localization function (ELF)

   9  = charge density minus superposition of atomic densities

   10 = integrated local density of states (ILDOS)
        from <ref>emin</ref> to <ref>emax</ref> (emin, emax in eV)
        if <ref>emax</ref> is not specified, <ref>emax</ref>=E_fermi

   11 = the V_bare + V_H potential

   12 = the sawtooth electric field potential (if present)

   13 = the noncollinear magnetization.

   17 = all-electron valence charge density
        can be performed for PAW calculations only
        requires a very dense real-space grid!

   18 = The exchange and correlation magnetic field in the noncollinear case

   19 = Reduced density gradient
        ( J. Chem. Theory Comput. 7, 625 (2011), <a href="http://dx.doi.org/10.1021/ct100641a">doi:10.1021/ct100641a</a> )
        Set the isosurface between 0.3 and 0.6 to plot the
        non-covalent interactions (see also plot_num = 20)

   20 = Product of the electron density (charge) and the second
        eigenvalue of the electron-density Hessian matrix;
        used to colorize the RDG plot (plot_num = 19)

   21 = all-electron charge density (valence+core).
        For PAW calculations only; requires a very dense real-space grid.

   22 = kinetic energy density (for meta-GGA and XDM only)
         </info>
      </var>
      <choose>
         <when test="plot_num=0" >
            <label>
Options for total charge (plot_num=0):
            </label>
            <var name="spin_component" type="INTEGER" >
               <default> 0
               </default>
               <info>
0 = total charge (default value),
1 = spin up charge,
2 = spin down charge.
               </info>
            </var>
         </when>
         <elsewhen test="plot_num=1" >
            <label>
Options for total potential (plot_num=1):
            </label>
            <var name="spin_component" type="INTEGER" >
               <default> 0
               </default>
               <info>
0 = spin averaged potential (default value),
1 = spin up potential,
2 = spin down potential.
               </info>
            </var>
         </elsewhen>
         <elsewhen test="plot_num=3" >
            <label>
Options for LDOS (plot_num=3):
LDOS is plotted on grid [emin, emax] with spacing delta_e.
            </label>
            <var name="emin" type="REAL" >
               <default> e_fermi
               </default>
               <info>
lower boundary of energy grid (in eV).

Defaults to Fermi energy.
               </info>
            </var>
            <var name="emax" type="REAL" >
               <status> OPTIONAL
               </status>
               <info>
upper boundary of energy grid (in eV).

Defaults to Fermi energy.
               </info>
            </var>
            <var name="delta_e" type="REAL" >
               <default> 0.1
               </default>
               <status> OPTIONAL
               </status>
               <info>
spacing of energy grid (in eV).
               </info>
            </var>
            <var name="degauss_ldos" type="REAL" >
               <default> degauss (converted to eV)
               </default>
               <status> OPTIONAL
               </status>
               <info>
broadening of energy levels for LDOS (in eV).

Defaults to broadening degauss specified for electronic smearing
in pw.x calculation.
               </info>
            </var>
         </elsewhen>
         <elsewhen test="plot_num=5" >
            <label>
Options for STM images (plot_num=5):
            </label>
            <var name="sample_bias" type="REAL" >
               <info>
the bias of the sample (Ry) in stm images
               </info>
            </var>
         </elsewhen>
         <elsewhen test="plot_num=7" >
            <label>
Options for |psi|^2 (plot_num=7):
            </label>
            <dimension name="kpoint" start="1" end="2" type="INTEGER" >
               <info>
Unpolarized and noncollinear case:
        k-point(s) to be plotted
LSDA:
        k-point(s) and spin polarization to be plotted
        (spin-up and spin-down correspond to different k-points!)

To plot a single kpoint ikpt, specify kpoint=ikpt or kpoint(1)=ikpt
To plot a range of kpoints [imin, imax], specify kpoint(1)=imin and kpoint(2)=imax
               </info>
            </dimension>
            <dimension name="kband" start="1" end="2" type="INTEGER" >
               <info>
Band(s) to be plotted.

To plot a single band ibnd, specify kband=ibnd or kband(1)=ibnd
To plot a range of bands [imin, imax], specify kband(1)=imin and kband(2)=imax
               </info>
            </dimension>
            <var name="lsign" type="LOGICAL" >
               <info>
if true and k point is Gamma, plot |psi|^2 sign(psi)
               </info>
            </var>
            <dimension name="spin_component" start="1" end="2" type="INTEGER" >
               <default> 0
               </default>
               <status> OPTIONAL
               </status>
               <info>
<b>Noncollinear case only:</b>
plot the contribution of the given state(s) to the charge
or to the magnetization along the direction(s) indicated
by spin_component:
        0 = charge (default),
        1 = x,
        2 = y,
        3 = z.

Ignored in unpolarized or LSDA case

To plot a single component ispin, specify spin_component=ispin or spin_component(1)=ispin
To plot a range of components [imin, imax], specify spin_component(1)=imin and spin_component(2)=imax
               </info>
            </dimension>
         </elsewhen>
         <elsewhen test="plot_num=10" >
            <label>
Options for ILDOS (plot_num=10):
            </label>
            <var name="emin" type="REAL" >
               <info>
lower energy boundary (in eV)
               </info>
            </var>
            <var name="emax" type="REAL" >
               <info>
upper energy boundary (in eV),
i.e. compute ILDOS from <ref>emin</ref> to <ref>emax</ref>
               </info>
            </var>
            <var name="spin_component" type="INTEGER" >
               <default> 0
               </default>
               <info>
for LSDA case only: plot the contribution to ILDOS of
0 = spin-up + spin-down (default)
1 = spin-up   only
2 = spin-down only
               </info>
            </var>
         </elsewhen>
         <elsewhen test="plot_num=13" >
            <label>
Options for noncollinear magnetization (plot_num=13):
            </label>
            <var name="spin_component" type="INTEGER" >
               <default> 0
               </default>
               <info>
0 = absolute value (default value)
1 = x component of the magnetization
2 = y component of the magnetization
3 = z component of the magnetization
               </info>
            </var>
         </elsewhen>
         <elsewhen test="plot_num=17" >
            <label>
Options for reconstructed charge density (plot_num=17):
            </label>
            <var name="spin_component" type="INTEGER" >
               <default> 0
               </default>
               <info>
0 = total charge (default value),
1 = spin up charge,
2 = spin down charge.
               </info>
            </var>
         </elsewhen>
         <elsewhen test="plot_num=22" >
            <label>
Options for kinetic energy density (plot_num=22),
LSDA case only:
            </label>
            <var name="spin_component" type="INTEGER" >
               <default> 0
               </default>
               <info>
0 = total density (default value),
1 = spin up density,
2 = spin down density.
               </info>
            </var>
         </elsewhen>
      </choose>
   </namelist>
   <namelist name="PLOT" >
      <var name="nfile" type="INTEGER" >
         <default> 1
         </default>
         <status> OPTIONAL
         </status>
         <info>
the number of data files to read
         </info>
      </var>
      <group>
         <dimension name="filepp" start="1" end="nfile" type="CHARACTER" >
            <default> filepp(1)=filplot
            </default>
            <info>
nfile = 1 : file containing the quantity to be plotted
nfile &gt; 1 : see <ref>weight</ref>
            </info>
         </dimension>
         <dimension name="weight" start="1" end="nfile" type="REAL" >
            <default> weight(1)=1.0
            </default>
            <info>
weighing factors: assuming that rho(i) is the quantity
read from filepp(i), the quantity that will be plotted is:

weight(1)*rho(1) + weight(2)*rho(2) + weight(3)*rho(3) + ...
            </info>
         </dimension>
         <message>
<b>BEWARE:</b> atomic coordinates are read from the first file;
        if their number is different for different files,
        the first file must have the largest number of atoms
         </message>
      </group>
      <var name="iflag" type="INTEGER" >
         <info>
0 = 1D plot of the spherical average
1 = 1D plot
2 = 2D plot
3 = 3D plot
4 = 2D polar plot on a sphere
         </info>
      </var>
      <var name="output_format" type="INTEGER" >
         <info>
(ignored on 1D plot)

0  = format suitable for gnuplot   (1D)

1  = obsolete format no longer supported

2  = format suitable for plotrho   (2D)

3  = format suitable for XCRYSDEN  (2D or user-supplied 3D region)

4  = obsolete format no longer supported

5  = format suitable for XCRYSDEN  (3D, using entire FFT grid)

6  = format as gaussian cube file  (3D)
     (can be read by many programs)

7  = format suitable for gnuplot   (2D) x, y, f(x,y)
         </info>
      </var>
      <var name="fileout" type="CHARACTER" >
         <default> standard output
         </default>
         <info>
name of the file to which the plot is written
         </info>
      </var>
      <var name="interpolation" type="CHARACTER" >
         <default> &apos;fourier&apos;
         </default>
         <options>
            <info>
Type of interpolation:
            </info>
            <opt val="'fourier'" >
            </opt>
            <opt val="'bspline'" > (EXPERIMENTAL)
            </opt>
         </options>
      </var>
      <choose>
         <when test="iflag = 0 or 1" >
            <label> the following variables are REQUIRED:
            </label>
            <dimension name="e1" start="1" end="3" type="REAL" >
               <info>
3D vector which determines the plotting line (in alat units)
               </info>
            </dimension>
            <dimension name="x0" start="1" end="3" type="REAL" >
               <info>
3D vector, origin of the line (in alat units)
               </info>
            </dimension>
            <var name="nx" type="INTEGER" >
               <info>
number of points in the line:

rho(i) = rho( x0 + e1 * (i-1)/(nx-1) ), i=1, nx
               </info>
            </var>
         </when>
         <elsewhen test="iflag = 2" >
            <label> the following variables are REQUIRED:
            </label>
            <dimensiongroup start="1" end="3" type="REAL" >
               <dimension name="e1" >
               </dimension>
               <dimension name="e2" >
               </dimension>
               <info>
3D vectors which determine the plotting plane (in alat units)

BEWARE: <b>e1</b> and <b>e2</b> must be orthogonal
               </info>
            </dimensiongroup>
            <dimension name="x0" start="1" end="3" type="REAL" >
               <info>
3D vector, origin of the plane (in alat units)
               </info>
            </dimension>
            <vargroup type="INTEGER" >
               <var name="nx" >
               </var>
               <var name="ny" >
               </var>
               <info>
Number of points in the plane:

rho(i,j) = rho( x0 + e1 * (i-1)/(nx-1)
                + e2 * (j-1)/(ny-1) ), i=1,nx ; j=1,ny
               </info>
            </vargroup>
         </elsewhen>
         <elsewhen test="iflag = 3" >
            <label> the following variables are OPTIONAL:
            </label>
            <dimensiongroup start="1" end="3" type="REAL" >
               <dimension name="e1" >
               </dimension>
               <dimension name="e2" >
               </dimension>
               <dimension name="e3" >
               </dimension>
               <info>
3D vectors which determine the plotting parallelepiped
(if present, must be orthogonal)

<ref>e1</ref>, <ref>e2</ref>, and <ref>e3</ref> are in alat units !
               </info>
            </dimensiongroup>
            <dimension name="x0" start="1" end="3" type="REAL" >
               <info>
3D vector, origin of the parallelepiped

<ref>x0</ref> is in alat units !
               </info>
            </dimension>
            <vargroup type="INTEGER" >
               <var name="nx" >
               </var>
               <var name="ny" >
               </var>
               <var name="nz" >
               </var>
               <info>
Number of points in the parallelepiped:

rho(i,j,k) = rho( x0 + e1 * (i-1)/nx
                  + e2 * (j-1)/ny
                  + e3 * (k-1)/nz ),
             i = 1, nx ; j = 1, ny ; k = 1, nz

- If <ref>output_format</ref> = 3 (XCRYSDEN), the above variables
  are used to determine the grid to plot.

- If <ref>output_format</ref> = 5 (XCRYSDEN), the above variables
  are ignored, the entire FFT grid is written in the
  XCRYSDEN format - works for any crystal axis (VERY FAST)

- If <ref>e1</ref>, <ref>e2</ref>, <ref>e3</ref>, <ref>x0</ref> are present,
  and <ref>e1</ref>, <ref>e2</ref>, <ref>e3</ref> are parallel to xyz
  and parallel to crystal axis, a subset of the FFT
  grid that approximately covers the parallelepiped
  defined by <ref>e1</ref>, <ref>e2</ref>, <ref>e3</ref>, <ref>x0</ref>, is
  written - untested, might be obsolete

- Otherwise, the required 3D grid is generated from the
  Fourier components (may be VERY slow)
               </info>
            </vargroup>
         </elsewhen>
         <elsewhen test="iflag = 4" >
            <label> the following variables are REQUIRED:
            </label>
            <var name="radius" type="REAL" >
               <info>
Radius of the sphere (alat units), centered at (0,0,0)
               </info>
            </var>
            <vargroup type="INTEGER" >
               <var name="nx" >
               </var>
               <var name="ny" >
               </var>
               <info>
Number of points in the polar plane:

phi(i)   = 2 pi * (i - 1)/(nx-1), i=1, nx
theta(j) =   pi * (j - 1)/(ny-1), j=1, ny
               </info>
            </vargroup>
         </elsewhen>
      </choose>
   </namelist>
</input_description>