1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
<input_description distribution="Quantum Espresso" package="PWscf" program="projwfc.x" >
<toc>
</toc>
<intro>
<b>Purpose of projwfc.x:</b>
projects wavefunctions onto orthogonalized atomic wavefunctions,
calculates Lowdin charges, spilling parameter, projected DOS
(separated into up and down components for lSDA)
alternatively, computes the local DOS(E), integrated in volumes
given in input
<b>Structure of the input data:</b>
============================
<b>&PROJWFC</b>
...
<b>/</b>
</intro>
<namelist name="PROJWFC" >
<var name="prefix" type="CHARACTER" >
<info>
prefix of input file produced by <b>pw.x</b> (wavefunctions are needed)
</info>
<default> 'pwscf'
</default>
</var>
<var name="outdir" type="CHARACTER" >
<info>
directory containing the input data, i.e. the same as in <b>pw.x</b>
</info>
<default>
value of the ESPRESSO_TMPDIR environment variable if set;
current directory ('./') otherwise
</default>
</var>
<var name="ngauss" type="INTEGER" >
<default> 0
</default>
<info>
Type of gaussian broadening:
0 ... Simple Gaussian (default)
1 ... Methfessel-Paxton of order 1
-1 ... "cold smearing" (Marzari-Vanderbilt-DeVita-Payne)
-99 ... Fermi-Dirac function
</info>
</var>
<var name="degauss" type="REAL" >
<default> 0.0
</default>
<info> gaussian broadening, Ry (not eV!)
</info>
</var>
<vargroup type="REAL" >
<var name="Emin" >
</var>
<var name="Emax" >
</var>
<info> min & max energy (eV) for DOS plot
</info>
<default> (band extrema)
</default>
</vargroup>
<var name="DeltaE" type="REAL" >
<info> energy grid step (eV)
</info>
</var>
<var name="lsym" type="LOGICAL" >
<default> .true.
</default>
<info>
if <b>.true.</b> the projections are symmetrized,
the partial density of states are computed
if <b>.false.</b> the projections are not symmetrized, the partial
DOS can be computed only in the k-resolved case
</info>
</var>
<var name="pawproj" type="LOGICAL" >
<default> .false.
</default>
<info>
if <b>.true.</b> use PAW projectors and all-electron PAW basis
functions to calculate weight factors for the partial
densities of states. Following Bloechl, <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.50.17953">PRB 50, 17953 (1994)</a>,
Eq. (4 & 6), the weight factors thus approximate the real
charge within the augmentation sphere of each atom.
Only for PAW, not implemented in the noncolinear case.
</info>
</var>
<var name="filpdos" type="CHARACTER" >
<info> prefix for output files containing PDOS(E)
</info>
<default> (value of <ref>prefix</ref> variable)
</default>
</var>
<var name="filproj" type="CHARACTER" >
<default> (standard output)
</default>
<info>
file containing the projections
</info>
</var>
<var name="lwrite_overlaps" type="LOGICAL" >
<default> .false.
</default>
<info>
if <b>.true.,</b> the overlap matrix of the atomic orbitals
prior to orthogonalization is written to the atomic_proj
datafile. Does not work together with linear-algebra
diagonalization: run as "mpirun -np N projwfc.x -nd 1 ... "
</info>
</var>
<var name="lbinary_data" type="LOGICAL" >
<default> .false.
</default>
<info>
if <b>.true.,</b> the atomic_proj datafile is written in binary fmt.
Currently disabled.
</info>
</var>
<var name="kresolveddos" type="LOGICAL" >
<default> .false.
</default>
<info>
if <b>.true.</b> the k-resolved DOS is computed: not summed over
all k-points but written as a function of the k-point index.
In this case all k-point weights are set to unity
</info>
</var>
<var name="tdosinboxes" type="LOGICAL" >
<default> .false.
</default>
<info>
if <b>.true.</b> compute the local DOS integrated in volumes
Volumes are defined as boxes with edges parallel to the unit cell,
containing the points of the (charge density) FFT grid included within
<ref>irmin</ref> and <ref>irmax</ref>, in the three dimensions:
from <ref>irmin</ref>(j,n) to <ref>irmax</ref>(j,n) for j=1,2,3 (n=1,<ref>n_proj_boxes</ref>).
</info>
</var>
<var name="n_proj_boxes" type="INTEGER" >
<default> 1
</default>
<info>
number of boxes where the local DOS is computed
</info>
</var>
<var name="irmin(3,n_proj_boxes)" type="INTEGER" >
<default> 1 for each box
</default>
<info>
first point of the given box
BEWARE: <ref>irmin</ref> is a 2D array of the form: <ref>irmin</ref>(3,<ref>n_proj_boxes</ref>)
</info>
</var>
<var name="irmax(3,n_proj_boxes)" type="INTEGER" >
<default> 0 for each box
</default>
<info>
last point of the given box;
( 0 stands for the last point in the FFT grid )
BEWARE: <ref>irmax</ref> is a 2D array of the form: <ref>irmax</ref>(3,<ref>n_proj_boxes</ref>)
</info>
</var>
<var name="plotboxes" type="LOGICAL" >
<default> .false.
</default>
<info>
if <b>.true.,</b> the boxes are written in output as <b>xsf</b> files with
3D datagrids, valued 1.0 inside the box volume and 0 outside
(visualize them as isosurfaces with isovalue 0.5)
</info>
</var>
</namelist>
<section title="Notes" >
<subsection title="Format of output files" >
<text>
Projections are written to standard output, and also to file
<ref>filproj</ref> if given as input.
The total DOS and the sum of projected DOS are written to file
"filpdos".pdos_tot.
* The format for the collinear, spin-unpolarized case and the
non-collinear, spin-orbit case is:
E DOS(E) PDOS(E)
...
* The format for the collinear, spin-polarized case is:
E DOSup(E) DOSdw(E) PDOSup(E) PDOSdw(E)
...
* The format for the non-collinear, non spin-orbit case is:
E DOS(E) PDOSup(E) PDOSdw(E)
...
In the collinear case and the non-collinear, non spin-orbit case
projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l),
where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f
(one file per atomic wavefunction found in the pseudopotential file)
* The format for the collinear, spin-unpolarized case is:
E LDOS(E) PDOS_1(E) ... PDOS_2l+1(E)
...
where LDOS = \sum m=1,2l+1 PDOS_m(E)
and PDOS_m(E) = projected DOS on atomic wfc with component m
* The format for the collinear, spin-polarized case and the
non-collinear, non spin-orbit case is as above with
two components for both LDOS(E) and PDOS_m(E)
In the non-collinear, spin-orbit case (i.e. if there is at least one
fully relativistic pseudopotential) wavefunctions are projected
onto eigenstates of the total angular-momentum.
Projected DOS are written to file "filpdos".pdos_atm#N(X)_wfc#M(l_j),
where N = atom number , X = atom symbol, M = wfc number, l=s,p,d,f
and j is the value of the total angular momentum.
In this case the format is:
E LDOS(E) PDOS_1(E) ... PDOS_2j+1(E)
...
If <ref>kresolveddos</ref>=.true., the k-point index is prepended
to the formats above, e.g. (collinear, spin-unpolarized case)
ik E DOS(E) PDOS(E)
All DOS(E) are in states/eV plotted vs E in eV
</text>
</subsection>
<subsection title="Orbital Order" >
<text>
Order of m-components for each l in the output:
1, cos(phi), sin(phi), cos(2*phi), sin(2*phi), .., cos(l*phi), sin(l*phi)
where phi is the polar angle:x=r cos(theta)cos(phi), y=r cos(theta)sin(phi)
This is determined in file Modules/ylmr2.f90 that calculates spherical harmonics.
for l=1:
1 pz (m=0)
2 px (real combination of m=+/-1 with cosine)
3 py (real combination of m=+/-1 with sine)
for l=2:
1 dz2 (m=0)
2 dzx (real combination of m=+/-1 with cosine)
3 dzy (real combination of m=+/-1 with sine)
4 dx2-y2 (real combination of m=+/-2 with cosine)
5 dxy (real combination of m=+/-2 with sine)
</text>
</subsection>
<subsection title="Defining boxes for the Local DOS(E)" >
<text>
Boxes are specified using the variables <ref>irmin</ref> and <ref>irmax</ref>:
FFT grid points are included from irmin(j,n) to irmax(j,n)
for j=1,2,3 and n=1,...,<ref>n_proj_boxes</ref>
<ref>irmin</ref> and <ref>irmax</ref> range from 1 to nr1 or nr2 or nr3
Values larger than nr1/2/3 or smaller than 1 are folded
to the unit cell.
If <ref>irmax</ref><<ref>irmin</ref> FFT grid points are included from 1 to irmax
and from irmin to nr1/2/3.
</text>
</subsection>
<subsection title="Important notices" >
<text>
The tetrahedron method is used if
- the input data file has been produced by pw.x using the option
occupations='tetrahedra', AND
- a value for degauss is not given as input to namelist &projwfc
* Gaussian broadening is used in all other cases:
- if <ref>degauss</ref> is set to some value in namelist &PROJWFC, that value
(and the optional value for ngauss) is used
- if <ref>degauss</ref> is NOT set to any value in namelist &PROJWFC, the
value of <ref>degauss</ref> and of <ref>ngauss</ref> are read from the input data
file (they will be the same used in the pw.x calculations)
- if <ref>degauss</ref> is NOT set to any value in namelist &PROJWFC, AND
there is no value of <ref>degauss</ref> and of <ref>ngauss</ref> in the input data
file, <ref>degauss</ref>=<ref>DeltaE</ref> (in Ry) and <ref>ngauss</ref>=0 will be used
Obsolete variables, ignored:
io_choice
smoothing
</text>
</subsection>
</section>
</input_description>
|