File: INPUT_molecularpdos.xml

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (203 lines) | stat: -rw-r--r-- 6,337 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="input_xx.xsl"?>
<!-- FILE AUTOMATICALLY CREATED: DO NOT EDIT, CHANGES WILL BE LOST -->
    
<input_description distribution="Quantum Espresso" package="PWscf" program="molecularpdos.x" >
   <toc>
   </toc>
   <intro>
<b>Purpose of molecularpdos.x:</b>
    Takes the projections onto orthogonalized atomic wavefunctions
    as computed by projwfc.x (see outdir/prefix.save/atomic_proj.xml)
    to build an LCAO-like representation of the eigenvalues of a system
    &quot;full&quot; and &quot;part&quot; of it (each should provide its own atomic_proj.xml file).
    Then the eigenvectors of the full system are projected onto the ones
    of the part. For example, to decompose the PDOS of an adsorbed molecule
    into its molecular orbital, as determined by a gas-phase calculation.

Reference:
    An explanation of the keywords and the implementation
    is provided in Scientific Reports | 6:24603 (2016)
    <a href="http://dx.doi.org/10.1038/srep24603">DOI: 10.1038/srep24603</a> (Supp. Info).


<b>Structure of the input data:</b>
============================

   <b>&amp;INPUTMOPDOS</b>
     ...
   <b>/</b>
   </intro>
   <namelist name="INPUTMOPDOS" >
      <vargroup type="CHARACTER" >
         <var name="xmlfile_full" >
         </var>
         <var name="xmlfile_part" >
         </var>
         <info>
xml files with atomic projections (produced by projwfc.x)
for the full system and its molecular part
         </info>
      </vargroup>
      <var name="i_atmwfc_beg_full" type="INTEGER" >
         <default> 1
         </default>
         <info>
first atomic wavefunction of the full system
considered for the projection
         </info>
      </var>
      <var name="i_atmwfc_end_full" type="INTEGER" >
         <default> 0, i.e., all atomic wavefunctions
         </default>
         <info>
last atomic wavefunction of the full system
considered for the projection
         </info>
      </var>
      <var name="i_atmwfc_beg_part" type="INTEGER" >
         <default> 1
         </default>
         <info>
first atomic wavefunction of the molecular part
considered for the projection
         </info>
      </var>
      <var name="i_atmwfc_end_part" type="INTEGER" >
         <default> 0, i.e., all atomic wavefunctions
         </default>
         <info>
first atomic wavefunction of the molecular part
considered for the projection
         </info>
      </var>
      <var name="i_bnd_beg_full" type="INTEGER" >
         <default> 1
         </default>
         <info>
first eigenstate of the full system to be taken
into account for the projection
         </info>
      </var>
      <var name="i_bnd_end_full" type="INTEGER" >
         <default> 0, i.e., all eigenstates
         </default>
         <info>
last eigenstate of the full system to be taken
into account for the projection
         </info>
      </var>
      <var name="i_bnd_beg_part" type="INTEGER" >
         <default> 1
         </default>
         <info>
first eigenstate of the molecular part to be taken
into account for the projection
         </info>
      </var>
      <var name="i_bnd_end_part" type="INTEGER" >
         <default> 0, i.e., all eigenstates
         </default>
         <info>
last eigenstate of the molecular part to be taken
into account for the projection
         </info>
      </var>
      <var name="fileout" type="CHARACTER" >
         <info> prefix for output files containing molecular PDOS(E)
         </info>
         <default> &apos;molecularpdos&apos;
         </default>
      </var>
      <var name="ngauss" type="INTEGER" >
         <default> 0
         </default>
         <info>
Type of gaussian broadening:
    0 ... Simple Gaussian (default)
    1 ... Methfessel-Paxton of order 1
   -1 ... &quot;cold smearing&quot; (Marzari-Vanderbilt-DeVita-Payne)
  -99 ... Fermi-Dirac function
         </info>
      </var>
      <var name="degauss" type="REAL" >
         <default> 0.0
         </default>
         <info> gaussian broadening, Ry (not eV!)
         </info>
      </var>
      <vargroup type="REAL" >
         <var name="Emin" >
         </var>
         <var name="Emax" >
         </var>
         <info> min &amp; max energy (eV) for DOS plot
         </info>
         <default> (band extrema)
         </default>
      </vargroup>
      <var name="DeltaE" type="REAL" >
         <default> 0.01
         </default>
         <info> energy grid step (eV)
         </info>
      </var>
      <var name="kresolveddos" type="LOGICAL" >
         <default> .false.
         </default>
         <info>
if .true. the k-resolved DOS is computed: not summed over
all k-points but written as a function of the k-point index.
In this case all k-point weights are set to unity
         </info>
      </var>
   </namelist>
   <section title="Notes" >
      <subsection title="Format of output files" >
         <text>
Projections are written to standard output.

The molecular projected DOS is written to the file &quot;fileout&quot;.mopdos.

* The format for the spin-unpolarized case is:
      index_of_molecular_orbital E MOPDOS(E)
      ...

* The format for the collinear, spin-polarized case is:
      index_of_molecular_orbital E MOPDOSup(E) MOPDOSdw(E)
      ...

The file &quot;fileout&quot;.mopdos_tot contains the sum
over the molecular orbitals.

* The format for the spin-unpolarized case is:
      E MOPDOS(E)
      ...

* The format for the collinear, spin-polarized case is:
      E MOPDOSup(E) MOPDOSdw(E)
      ...

All DOS(E) are in states/eV plotted vs E in eV
         </text>
      </subsection>
      <subsection title="Important notices" >
         <text>
* The atomic wavefunctions identified by the ranges
  i_atmwfc_beg_full:i_atmwfc_end_full (full system) and
  i_atmwfc_beg_part:i_atmwfc_end_part (molecular part)
  should correspond to the same atomic states. See the
  header of the output of projwfc.x for more information.

* If using k-points, the same unit cell and the same
  k-points should be used in computing the molecular part,
  unless you really know what you are doing.

* The tetrahedron method is presently not implemented.

* Gaussian broadening is used in all cases
  (with ngauss and degauss values from input).
         </text>
      </subsection>
   </section>
</input_description>