1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
MODULE tetra_ip
!this module provides rouitnes for the tetrahedra method
USE kinds, ONLY : dp
contains
!---------------------------------------------------------------------------
subroutine tetrahedra1 (nk1, nk2, nk3, ntetra, tetra)
!-------------------------------------------------------------------------
!
! Tetrahedron method according to P. E. Bloechl et al, PRB49, 16223 (1994)
!
!-------------------------------------------------------------------------
implicit none
integer, intent(in):: nk1, nk2, nk3, ntetra
integer, intent(out) :: tetra(4,ntetra)
integer :: nkr, i,j,k, n, ip1,jp1,kp1, &
n1,n2,n3,n4,n5,n6,n7,n8
integer, parameter :: stderr = 0
! Total number of k-points
nkr = nk1*nk2*nk3
! Construct tetrahedra
do i=1,nk1
do j=1,nk2
do k=1,nk3
! n1-n8 are the indices of k-point 1-8 forming a cube
ip1 = mod(i,nk1)+1
jp1 = mod(j,nk2)+1
kp1 = mod(k,nk3)+1
n1 = ( k-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1
n2 = ( k-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1
n3 = ( k-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1
n4 = ( k-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1
n5 = (kp1-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1
n6 = (kp1-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1
n7 = (kp1-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1
n8 = (kp1-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1
! there are 6 tetrahedra per cube (and nk1*nk2*nk3 cubes)
n = 6 * ( (k-1) + (j-1)*nk3 + (i-1)*nk3*nk2 )
tetra (1,n+1) = n1
tetra (2,n+1) = n2
tetra (3,n+1) = n3
tetra (4,n+1) = n6
tetra (1,n+2) = n2
tetra (2,n+2) = n3
tetra (3,n+2) = n4
tetra (4,n+2) = n6
tetra (1,n+3) = n1
tetra (2,n+3) = n3
tetra (3,n+3) = n5
tetra (4,n+3) = n6
tetra (1,n+4) = n3
tetra (2,n+4) = n4
tetra (3,n+4) = n6
tetra (4,n+4) = n8
tetra (1,n+5) = n3
tetra (2,n+5) = n6
tetra (3,n+5) = n7
tetra (4,n+5) = n8
tetra (1,n+6) = n3
tetra (2,n+6) = n5
tetra (3,n+6) = n6
tetra (4,n+6) = n7
enddo
enddo
enddo
! check
do n=1, ntetra
do i=1,4
if ( tetra(i,n)<1 .or. tetra(i,n)> (nk1*nk2*nk3) ) then
write(stderr,*) 'Something wrong with the construction of tetrahedra'
call exit(1)
endif
enddo
enddo
end subroutine tetrahedra1
!-----------------------------------------------------------------------
subroutine hpsort1 (n, ra, ind)
!---------------------------------------------------------------------
! sort an array ra(1:n) into ascending order using heapsort algorithm.
! n is input, ra is replaced on output by its sorted rearrangement.
! create an index table (ind) by making an exchange in the index array
! whenever an exchange is made on the sorted data array (ra).
! in case of equal values in the data array (ra) the values in the
! index array (ind) are used to order the entries.
! if on input ind(1) = 0 then indices are initialized in the routine,
! if on input ind(1) != 0 then indices are assumed to have been
! initialized before entering the routine and these
! indices are carried around during the sorting process
!
! no work space needed !
! free us from machine-dependent sorting-routines !
!
! adapted from Numerical Recipes pg. 329 (new edition)
!
!---------------------------------------------------------------------
implicit none
!-input/output variables
integer :: n
integer :: ind (*)
real(kind=dp) :: ra (*)
!-local variables
integer :: i, ir, j, l, iind
real(kind=dp) :: rra
! initialize index array
if (ind (1) .eq.0) then
do i = 1, n
ind (i) = i
enddo
endif
! nothing to order
if (n.lt.2) return
! initialize indices for hiring and retirement-promotion phase
l = n / 2 + 1
ir = n
10 continue
! still in hiring phase
if (l.gt.1) then
l = l - 1
rra = ra (l)
iind = ind (l)
! in retirement-promotion phase.
else
! clear a space at the end of the array
rra = ra (ir)
!
iind = ind (ir)
! retire the top of the heap into it
ra (ir) = ra (1)
!
ind (ir) = ind (1)
! decrease the size of the corporation
ir = ir - 1
! done with the last promotion
if (ir.eq.1) then
! the least competent worker at all !
ra (1) = rra
!
ind (1) = iind
return
endif
endif
! wheter in hiring or promotion phase, we
i = l
! set up to place rra in its proper level
j = l + l
!
do while (j.le.ir)
if (j.lt.ir) then
! compare to better underling
if (ra (j) .lt.ra (j + 1) ) then
j = j + 1
elseif (ra (j) .eq.ra (j + 1) ) then
if (ind (j) .lt.ind (j + 1) ) j = j + 1
endif
endif
! demote rra
if (rra.lt.ra (j) ) then
ra (i) = ra (j)
ind (i) = ind (j)
i = j
j = j + j
elseif (rra.eq.ra (j) ) then
! demote rra
if (iind.lt.ind (j) ) then
ra (i) = ra (j)
ind (i) = ind (j)
i = j
j = j + j
else
! set j to terminate do-while loop
j = ir + 1
endif
! this is the right place for rra
else
! set j to terminate do-while loop
j = ir + 1
endif
enddo
ra (i) = rra
ind (i) = iind
goto 10
!
end subroutine hpsort1
!--------------------------------------------------------------------
subroutine weights_delta1 (energy, band, ntetra, tetra, nkpoints, weights)
!--------------------------------------------------------------------
!
! ... calculates weights with the tetrahedron method (P.E.Bloechl)
! assuming the integrand is convoluted with a delta function
! centered about the band
!
!--------------------------------------------------------------------
implicit none
! I/O variables
integer, intent(in) :: nkpoints, ntetra, tetra(4, ntetra)
real(kind=dp), intent(in) :: energy, band(nkpoints)
real(kind=dp), intent(out) :: weights(nkpoints)
! local variables
real(kind=dp) :: e1, e2, e3, e4, fact, etetra (4)
integer :: ik, ibnd, nt, nk, ns, i, kp1, kp2, kp3, kp4, itetra (4)
! Initialize to zero the weights
weights = 0.0d0
do nt = 1, ntetra
!
! etetra are the energies at the vertexes of the nt-th tetrahedron
!
do i = 1, 4
etetra (i) = band (tetra (i, nt))
enddo
itetra (1) = 0
call hpsort1 (4, etetra, itetra)
!
! ...sort in ascending order: e1 < e2 < e3 < e4
!
e1 = etetra (1)
e2 = etetra (2)
e3 = etetra (3)
e4 = etetra (4)
!
! kp1-kp4 are the irreducible k-points corresponding to e1-e4
!
kp1 = tetra (itetra (1), nt)
kp2 = tetra (itetra (2), nt)
kp3 = tetra (itetra (3), nt)
kp4 = tetra (itetra (4), nt)
!
! calculate weights
!
! Remember that if energy.lt.e1 or energy.ge.e4
! there is no contribution in this case
if (energy.lt.e4.and.energy.ge.e3) then
fact = 1.0d0/ntetra * (e4 - energy)**2 / (e4 - e1) / (e4 - e2) &
/ (e4 - e3)
weights (kp1) = weights (kp1) + fact * (e4 - energy) / (e4 - e1)
weights (kp2) = weights (kp2) + fact * (e4 - energy) / (e4 - e2)
weights (kp3) = weights (kp3) + fact * (e4 - energy) / (e4 - e3)
weights (kp4) = weights (kp4) + fact * ( 3.0d0 - (e4 - energy) * &
(1.d0 / (e4 - e1) + 1.d0 / (e4 - e2) + 1.d0 / (e4 - e3) ) )
elseif (energy.lt.e3.and.energy.ge.e2) then
weights (kp1) = weights (kp1) + 1.0d0/ntetra * ( &
(energy - e2)**3 * (1.0d0/ (e3 - e1)**2 / (e3 - e2) / (e4 - e2) + &
1.0d0/ (e3 - e1) / (e4 - e1)**2 / (e4 - e2) + &
1.0d0/ (e3 - e1)**2 / (e4 - e1) / (e4 - e2)) &
-3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1)**2 / (e4 - e1) + &
1.0d0/ (e3 - e1) / (e4 - e1)**2) &
-3.0d0 * (energy - e2) * ((e2 - e1)**2 - (e3 - e2)*(e4 - e2)) &
/ (e3 - e1)**2 / (e4 - e1)**2 &
+(e2 - e1) * ( (e3 - e2)/(e3 - e1) + (e4 - e2)/(e4 - e1)) &
/ (e3 - e1) / (e4 - e1))
weights (kp2) = weights (kp2) + 1.0d0/ntetra * ( &
(energy - e2)**3 * (1.0d0/ (e3 - e1) / (e4 - e1) / (e4 - e2)**2 + &
1.0d0/ (e3 - e1) / (e3 - e2) / (e4 - e2)**2 + &
1.0d0/ (e3 - e1) / (e3 - e2)**2 / (e4 - e2)) &
-3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1) / (e4 - e1) / (e4 - e2) + &
1.0d0/ (e3 - e1) / (e3 - e2) / (e4 - e2)) &
+3.0d0 * (energy - e2) * (1.0d0/ (e3 - e1) / (e4 - e1)) &
+(e2 - e1) / (e3 - e1) / (e4 - e1))
weights (kp3) = weights (kp3) + 1.0d0/ntetra * ( &
-(energy - e2)**3 * (1.0d0/ (e3 - e1)**2 / (e4 - e1) / (e4 - e2) + &
1.0d0/ (e3 - e1) / (e3 - e2)**2 / (e4 - e2) + &
1.0d0/ (e3 - e1)**2 / (e3 - e2) / (e4 - e2)) &
+3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1)**2 / (e4 - e1)) &
+3.0d0 * (energy - e2) * ((e2 - e1)/ (e3 - e1)**2 / (e4 - e1)) &
+(e2 - e1)**2 / (e3 - e1)**2 / (e4 - e1))
weights (kp4) = weights (kp4) + 1.0d0/ntetra * ( &
-(energy - e2)**3 * (1.0d0/ (e3 - e1) / (e3 - e2) / (e4 - e1)**2 + &
1.0d0/ (e3 - e2) / (e4 - e1) / (e4 - e2)**2 + &
1.0d0/ (e3 - e2) / (e4 - e1)**2 / (e4 - e2)) &
+3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1) / (e4 - e1)**2) &
+3.0d0 * (energy - e2) * ((e2 - e1)/ (e3 - e1) / (e4 - e1)**2) &
+(e2 - e1)**2 / (e3 - e1) / (e4 - e1)**2)
elseif (energy.lt.e2.and.energy.ge.e1) then
fact = 1.0d0 / ntetra * (energy - e1) **2 / (e2 - e1) / (e3 - e1) &
/ (e4 - e1)
weights (kp1) = weights (kp1) + fact * (3.d0 - (energy - e1) * &
(1.d0 / (e2 - e1) + 1.d0 / (e3 - e1) + 1.d0 / (e4 - e1) ) )
weights (kp2) = weights (kp2) + fact * (energy - e1) / (e2 - e1)
weights (kp3) = weights (kp3) + fact * (energy - e1) / (e3 - e1)
weights (kp4) = weights (kp4) + fact * (energy - e1) / (e4 - e1)
endif
enddo
end subroutine weights_delta1
END MODULE tetra_ip
|