1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
The calculation of Hubbard parameters using hp.x is based on
density-functional perturbation theory (DFPT):
I. Timrov, N. Marzari and M. Cococcioni,
"Hubbard parameters from density-functional perturbation theory",
Phys. Rev. B 98, 085127 (2018); arXiv:1805.01805
The DFPT approach (as the linear-response cDFT approach) has a limitation:
it is applicable only to open-shell systems. For more details see
K. Yu and E.A. Carter, J. Chem. Phys. 140, 121105 (2014).
Self-consistent calculation of Hubbard parameters can be performed using DFPT
with the same strategy as explained in H. Hsu et al., Phys. Rev. B 79, 125124 (2009).
Example of the application of the HP code:
- C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer,
"Self-consistent site-dependent DFT+U study of stoichiometric and defective SrMnO3",
Phys. Rev. B 99, 094102 (2019); arXiv:1811.10858
- C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer,
"Self-consistent DFT+U+V study of oxygen vacancies in SrTiO3",
Phys. Rev. Research 2, 023313 (2020); arXiv:2004.04142
Tutorial on how to use hp.x:
https://agenda.ethernet.edu.et/event/33/
Check "Day2_DFT+U.tar"
|