File: README

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (25 lines) | stat: -rw-r--r-- 1,168 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
The calculation of Hubbard parameters using hp.x is based on 
density-functional perturbation theory (DFPT):
I. Timrov, N. Marzari and M. Cococcioni, 
"Hubbard parameters from density-functional perturbation theory", 
Phys. Rev. B 98, 085127 (2018); arXiv:1805.01805

The DFPT approach (as the linear-response cDFT approach) has a limitation: 
it is applicable only to open-shell systems. For more details see 
K. Yu and E.A. Carter, J. Chem. Phys. 140, 121105 (2014).

Self-consistent calculation of Hubbard parameters can be performed using DFPT 
with the same strategy as explained in H. Hsu et al., Phys. Rev. B 79, 125124 (2009).

Example of the application of the HP code:
- C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer,
  "Self-consistent site-dependent DFT+U study of stoichiometric and defective SrMnO3",
  Phys. Rev. B 99, 094102 (2019); arXiv:1811.10858
- C. Ricca, I. Timrov, M. Cococcioni, N. Marzari, and U. Aschauer,
  "Self-consistent DFT+U+V study of oxygen vacancies in SrTiO3",
  Phys. Rev. Research 2, 023313 (2020); arXiv:2004.04142


Tutorial on how to use hp.x:
https://agenda.ethernet.edu.et/event/33/
Check "Day2_DFT+U.tar"