1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
|
Program HP v.6.3 starts on 7Sep2018 at 10:18:19
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 8 processors
MPI processes distributed on 1 nodes
R & G space division: proc/nbgrp/npool/nimage = 8
=--------------------------------------------------------------------------=
Calculation of Hubbard parameters from DFPT; please cite this program as
I. Timrov, N. Marzari, and M. Cococcioni, Phys. Rev. B 98, 085127 (2018)
=--------------------------------------------------------------------------=
Reading data from directory:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/NiO2.save/
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PBE ( 1 4 3 4 0 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file Ni.pbe-n-rrkjus_psl.0.1.UPF: wavefunction(s) 3D renormalized
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 87 44 13 14663 5209 863
Max 88 47 14 14688 5219 886
Sum 703 361 109 117447 41709 7021
Check: negative core charge= -0.000022
negative rho (up, down): 6.875E-04 0.000E+00
--- in v_hubbard ---
Hubbard energy 0.0000
-------
bravais-lattice index = 0
lattice parameter (alat) = 5.3370 (a.u.)
unit-cell volume = 1020.0352 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
kinetic-energy cut-off = 45.00 (Ry)
charge density cut-off = 360.00 (Ry)
conv. thresh. for NSCF = 1.0E-11
conv. thresh. for chi = 1.0E-08
Input Hubbard parameters (in eV):
U ( 1) = 1.00000E-08
celldm(1) = 5.33697 celldm(2) = 0.00000 celldm(3) = 7.74819
celldm(4) = 0.00000 celldm(5) = 0.00000 celldm(6) = 0.00000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.0000 0.0000 0.0000 )
a(2) = ( -0.5000 0.8660 0.0000 )
a(3) = ( 0.0000 0.0000 7.7482 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.0000 0.5774 0.0000 )
b(2) = ( 0.0000 1.1547 0.0000 )
b(3) = ( 0.0000 0.0000 0.1291 )
Atoms inside the unit cell (Cartesian axes):
site n. atom mass positions (alat units)
1 Ni 58.6934 tau( 1) = ( 0.00000 0.00000 3.87409 )
2 O 15.9994 tau( 2) = ( 0.50000 0.28868 3.54104 )
3 O 15.9994 tau( 3) = ( 0.00000 0.57735 4.20714 )
Atom which will be perturbed:
1 Ni 58.6934 tau( 1) = ( 0.00000 0.00000 3.87409 )
=====================================================================
PERTURBED ATOM # 1
site n. atom mass positions (alat units)
1 Ni 58.6934 tau( 1) = ( 0.00000 0.00000 3.87409 )
=====================================================================
The perturbed atom has a type which is unique!
The grid of q-points ( 2, 2, 1) ( 2 q-points ) :
N xq(1) xq(2) xq(3) wq
1 0.000000000 0.000000000 0.000000000 0.250000000
2 0.000000000 -0.577350269 0.000000000 0.750000000
=-------------------------------------------------------------=
Calculation for q # 1 = ( 0.0000000 0.0000000 0.0000000 )
=-------------------------------------------------------------=
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 12
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [1,0,0]
cryst. s( 2) = ( 1 0 0 )
( -1 -1 0 )
( 0 0 -1 )
cart. s( 2) = ( 1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 3) = ( 0 1 0 )
( -1 -1 0 )
( 0 0 1 )
cart. s( 3) = ( -0.5000000 -0.8660254 0.0000000 )
( 0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 4 120 deg rotation - cryst. axis [0,0,-1]
cryst. s( 4) = ( -1 -1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s( 4) = ( -0.5000000 0.8660254 0.0000000 )
( -0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 5 180 deg rotation - cryst. axis [0,1,0]
cryst. s( 5) = ( -1 -1 0 )
( 0 1 0 )
( 0 0 -1 )
cart. s( 5) = ( -0.5000000 -0.8660254 0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 6 180 deg rotation - cryst. axis [1,1,0]
cryst. s( 6) = ( 0 1 0 )
( 1 0 0 )
( 0 0 -1 )
cart. s( 6) = ( -0.5000000 0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 7 inversion
cryst. s( 7) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 7) = ( -1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 8 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 8) = ( -1 0 0 )
( 1 1 0 )
( 0 0 1 )
cart. s( 8) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 9 inv. 120 deg rotation - cryst. axis [0,0,1]
cryst. s( 9) = ( 0 -1 0 )
( 1 1 0 )
( 0 0 -1 )
cart. s( 9) = ( 0.5000000 0.8660254 0.0000000 )
( -0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 10 inv. 120 deg rotation - cryst. axis [0,0,-1]
cryst. s(10) = ( 1 1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s(10) = ( 0.5000000 -0.8660254 0.0000000 )
( 0.8660254 0.5000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 11 inv. 180 deg rotation - cryst. axis [0,1,0]
cryst. s(11) = ( 1 1 0 )
( 0 -1 0 )
( 0 0 1 )
cart. s(11) = ( 0.5000000 0.8660254 0.0000000 )
( 0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 12 inv. 180 deg rotation - cryst. axis [1,1,0]
cryst. s(12) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 1 )
cart. s(12) = ( 0.5000000 -0.8660254 0.0000000 )
( -0.8660254 -0.5000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 13 identity
cryst. s(13) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s(13) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 259.7362 ( 14688 G-vectors) FFT grid: ( 36, 36,250)
G cutoff = 129.8681 ( 5209 G-vectors) smooth grid: ( 24, 24,180)
Number of k (and k+q if q/=0) points = 4
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 0.2886751 0.0000000), wk = 0.7500000
k ( 3) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.3750000
k ( 4) = ( 0.2500000 0.4330127 0.0000000), wk = 0.7500000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 0.2500000 0.0000000), wk = 0.7500000
k ( 3) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.3750000
k ( 4) = ( 0.2500000 0.2500000 0.0000000), wk = 0.7500000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 0.94s CPU 0.96s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 1 iter # 1
chi: 1 -0.3260381632
Average number of iter. to solve lin. system: 28.2
Total CPU time : 1.8 s
atom # 1 q point # 1 iter # 2
chi: 1 0.3169122664 residue: 0.6429504297
Average number of iter. to solve lin. system: 12.8
Total CPU time : 2.4 s
atom # 1 q point # 1 iter # 3
chi: 1 -0.0943826070 residue: 0.4112948734
Average number of iter. to solve lin. system: 11.8
Total CPU time : 3.2 s
atom # 1 q point # 1 iter # 4
chi: 1 -0.0903511493 residue: 0.0040314576
Average number of iter. to solve lin. system: 11.2
Total CPU time : 3.9 s
atom # 1 q point # 1 iter # 5
chi: 1 -0.0866078034 residue: 0.0037433459
Average number of iter. to solve lin. system: 12.0
Total CPU time : 4.5 s
atom # 1 q point # 1 iter # 6
chi: 1 -0.0862223031 residue: 0.0003855003
Average number of iter. to solve lin. system: 12.8
Total CPU time : 5.1 s
atom # 1 q point # 1 iter # 7
chi: 1 -0.0862189383 residue: 0.0000033648
Average number of iter. to solve lin. system: 12.8
Total CPU time : 5.8 s
atom # 1 q point # 1 iter # 8
chi: 1 -0.0862234779 residue: 0.0000045396
Average number of iter. to solve lin. system: 12.8
Total CPU time : 6.4 s
atom # 1 q point # 1 iter # 9
chi: 1 -0.0862411535 residue: 0.0000176756
Average number of iter. to solve lin. system: 12.2
Total CPU time : 6.9 s
atom # 1 q point # 1 iter # 10
chi: 1 -0.0862383739 residue: 0.0000027795
Average number of iter. to solve lin. system: 11.8
Total CPU time : 7.5 s
atom # 1 q point # 1 iter # 11
chi: 1 -0.0862407246 residue: 0.0000023507
Average number of iter. to solve lin. system: 12.8
Total CPU time : 8.1 s
atom # 1 q point # 1 iter # 12
chi: 1 -0.0862388858 residue: 0.0000018388
Average number of iter. to solve lin. system: 12.2
Total CPU time : 8.6 s
atom # 1 q point # 1 iter # 13
chi: 1 -0.0862392185 residue: 0.0000003328
Average number of iter. to solve lin. system: 12.5
Total CPU time : 9.2 s
atom # 1 q point # 1 iter # 14
chi: 1 -0.0862395485 residue: 0.0000003300
Average number of iter. to solve lin. system: 12.8
Total CPU time : 9.8 s
atom # 1 q point # 1 iter # 15
chi: 1 -0.0862394127 residue: 0.0000001358
Average number of iter. to solve lin. system: 12.0
Total CPU time : 10.3 s
atom # 1 q point # 1 iter # 16
chi: 1 -0.0862393886 residue: 0.0000000241
Average number of iter. to solve lin. system: 12.0
Total CPU time : 10.9 s
atom # 1 q point # 1 iter # 17
chi: 1 -0.0862393929 residue: 0.0000000043
Average number of iter. to solve lin. system: 13.2
Total CPU time : 11.5 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
=-------------------------------------------------------------=
Calculation for q # 2 = ( 0.0000000 -0.5773503 0.0000000 )
=-------------------------------------------------------------=
Performing NSCF calculation at all points k and k+q...
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 87 44 15 14663 5209 1115
Max 88 47 16 14688 5219 1150
Sum 703 361 121 117447 41709 8999
bravais-lattice index = 0
lattice parameter (alat) = 5.3370 a.u.
unit-cell volume = 1020.0352 (a.u.)^3
number of atoms/cell = 3
number of atomic types = 2
number of electrons = 22.00
number of Kohn-Sham states= 11
kinetic-energy cutoff = 45.0000 Ry
charge density cutoff = 360.0000 Ry
Exchange-correlation = PBE ( 1 4 3 4 0 0)
celldm(1)= 5.336971 celldm(2)= 0.000000 celldm(3)= 7.748186
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( -0.500000 0.866025 0.000000 )
a(3) = ( 0.000000 0.000000 7.748186 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.577350 0.000000 )
b(2) = ( 0.000000 1.154701 0.000000 )
b(3) = ( 0.000000 0.000000 0.129062 )
PseudoPot. # 1 for Ni read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Ni.pbe-n-rrkjus_psl.0.1.UPF
MD5 check sum: a128b0288b8c2a77f60c629508f0875a
Pseudo is Ultrasoft + core correction, Zval = 10.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Using radial grid of 1195 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for O read from file:
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/O.pbe-n-rrkjus_psl.0.1.UPF
MD5 check sum: 2d9b751e792dc3e2bf7510553724b146
Pseudo is Ultrasoft + core correction, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.3MaX
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
Ni 10.00 58.69340 Ni( 1.00)
O 6.00 15.99940 O ( 1.00)
Simplified LDA+U calculation (l_max = 2) with parameters (eV):
atomic species L U alpha J0 beta
Ni 2 0.0000 0.0000 0.0000 0.0000
12 Sym. Ops., with inversion, found
Cartesian axes
site n. atom positions (alat units)
1 Ni tau( 1) = ( 0.0000000 0.0000000 3.8740930 )
2 O tau( 2) = ( 0.5000000 0.2886751 3.5410443 )
3 O tau( 3) = ( 0.0000000 0.5773503 4.2071418 )
number of k points= 14
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k( 2) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.0000000
k( 3) = ( 0.0000000 0.2886751 0.0000000), wk = 0.2500000
k( 4) = ( 0.0000000 -0.2886751 0.0000000), wk = 0.0000000
k( 5) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.1250000
k( 6) = ( 0.0000000 -1.1547005 0.0000000), wk = 0.0000000
k( 7) = ( 0.2500000 0.4330127 0.0000000), wk = 0.5000000
k( 8) = ( 0.2500000 -0.1443376 0.0000000), wk = 0.0000000
k( 9) = ( -0.2500000 0.1443376 0.0000000), wk = 0.5000000
k( 10) = ( -0.2500000 -0.4330127 0.0000000), wk = 0.0000000
k( 11) = ( 0.5000000 -0.2886751 0.0000000), wk = 0.2500000
k( 12) = ( 0.5000000 -0.8660254 0.0000000), wk = 0.0000000
k( 13) = ( -0.5000000 0.0000000 0.0000000), wk = 0.2500000
k( 14) = ( -0.5000000 -0.5773503 0.0000000), wk = 0.0000000
Dense grid: 117447 G-vectors FFT dimensions: ( 36, 36, 250)
Smooth grid: 41709 G-vectors FFT dimensions: ( 24, 24, 180)
Estimated max dynamical RAM per process > 50.59 MB
Estimated total dynamical RAM > 404.70 MB
Check: negative core charge= -0.000022
The potential is recalculated from file :
/scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/NiO2.save/charge-density
negative rho (up, down): 6.875E-04 0.000E+00
Number of +U iterations with fixed ns = 0
Starting occupations:
--- enter write_ns ---
LDA+U parameters:
U( 1) = 0.00000001
alpha( 1) = 0.00000000
atom 1 Tr[ns(na)] = 8.13145
eigenvalues:
0.558 0.558 0.978 0.986 0.986
eigenvectors:
0.000 0.000 1.000 0.000 0.000
0.490 0.106 0.000 0.019 0.385
0.106 0.490 0.000 0.385 0.019
0.072 0.331 0.000 0.569 0.028
0.331 0.072 0.000 0.028 0.569
occupations:
0.978 0.000 -0.000 0.000 0.000
0.000 0.730 0.000 -0.000 -0.210
-0.000 0.000 0.730 -0.210 0.000
0.000 -0.000 -0.210 0.813 -0.000
0.000 -0.210 0.000 -0.000 0.813
N of occupied +U levels = 8.131450
--- exit write_ns ---
Atomic wfc used for LDA+U Projector are orthogonalized
Starting wfcs are 17 atomic wfcs
Band Structure Calculation
Davidson diagonalization with overlap
ethr = 1.00E-11, avg # of iterations = 15.3
total cpu time spent up to now is -1.0 secs
End of band structure calculation
k = 0.0000 0.0000 0.0000 ( 5225 PWs) bands (ev):
-24.5643 -22.2762 -10.5226 -10.5226 -10.4238 -7.2656 -7.2656 -6.4438
-6.1612 -6.1612 -5.4165
k = 0.0000-0.5774 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k = 0.0000 0.2887 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k = 0.0000-0.2887 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k = 0.0000-0.5774 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k = 0.0000-1.1547 0.0000 ( 5225 PWs) bands (ev):
-24.5643 -22.2762 -10.5226 -10.5226 -10.4238 -7.2656 -7.2656 -6.4438
-6.1612 -6.1612 -5.4165
k = 0.2500 0.4330 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
k = 0.2500-0.1443 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k =-0.2500 0.1443 0.0000 ( 5222 PWs) bands (ev):
-23.8612 -22.3276 -10.7658 -10.0979 -9.8295 -9.0108 -8.0408 -6.6144
-5.9769 -5.8555 -5.5522
k =-0.2500-0.4330 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
k = 0.5000-0.2887 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k = 0.5000-0.8660 0.0000 ( 5232 PWs) bands (ev):
-22.7789 -22.6530 -11.6129 -9.8100 -9.6604 -8.7974 -7.8186 -6.9159
-6.8568 -6.8053 -6.2245
k =-0.5000 0.0000 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
k =-0.5000-0.5774 0.0000 ( 5180 PWs) bands (ev):
-22.9694 -22.4610 -10.7089 -10.5854 -9.5983 -8.8467 -8.5873 -7.2094
-6.7443 -6.2870 -5.6169
highest occupied level (ev): -5.4165
Writing output data file NiO2.save/
Done!
WRITING LINEAR-RESPONSE SUMMARY:
Number of symmetries in the small group of q, nsymq = 4
+ the symmetry q -> -q+G
Symmetry matrices (and vectors of fractional translations if f/=0):
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [1,0,0]
cryst. s( 2) = ( 1 0 0 )
( -1 -1 0 )
( 0 0 -1 )
cart. s( 2) = ( 1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 3 inversion
cryst. s( 3) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 3) = ( -1.0000000 -0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cart. axis [1,0,0]
cryst. s( 4) = ( -1 0 0 )
( 1 1 0 )
( 0 0 1 )
cart. s( 4) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
This transformation sends q -> -q+G
isym = 5 identity
cryst. s( 5) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 5) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
G cutoff = 259.7362 ( 14688 G-vectors) FFT grid: ( 36, 36,250)
G cutoff = 129.8681 ( 5209 G-vectors) smooth grid: ( 24, 24,180)
Number of k (and k+q if q/=0) points = 14
cart. coord. (in units 2pi/alat)
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.0000000
k ( 3) = ( 0.0000000 0.2886751 0.0000000), wk = 0.2500000
k ( 4) = ( 0.0000000 -0.2886751 0.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5773503 0.0000000), wk = 0.1250000
k ( 6) = ( 0.0000000 -1.1547005 0.0000000), wk = 0.0000000
k ( 7) = ( 0.2500000 0.4330127 0.0000000), wk = 0.5000000
k ( 8) = ( 0.2500000 -0.1443376 0.0000000), wk = 0.0000000
k ( 9) = ( -0.2500000 0.1443376 0.0000000), wk = 0.5000000
k ( 10) = ( -0.2500000 -0.4330127 0.0000000), wk = 0.0000000
k ( 11) = ( 0.5000000 -0.2886751 0.0000000), wk = 0.2500000
k ( 12) = ( 0.5000000 -0.8660254 0.0000000), wk = 0.0000000
k ( 13) = ( -0.5000000 0.0000000 0.0000000), wk = 0.2500000
k ( 14) = ( -0.5000000 -0.5773503 0.0000000), wk = 0.0000000
cryst. coord.
k ( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.1250000
k ( 2) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.0000000
k ( 3) = ( 0.0000000 0.2500000 0.0000000), wk = 0.2500000
k ( 4) = ( 0.0000000 -0.2500000 0.0000000), wk = 0.0000000
k ( 5) = ( 0.0000000 -0.5000000 0.0000000), wk = 0.1250000
k ( 6) = ( 0.0000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 7) = ( 0.2500000 0.2500000 0.0000000), wk = 0.5000000
k ( 8) = ( 0.2500000 -0.2500000 0.0000000), wk = 0.0000000
k ( 9) = ( -0.2500000 0.2500000 0.0000000), wk = 0.5000000
k ( 10) = ( -0.2500000 -0.2500000 0.0000000), wk = 0.0000000
k ( 11) = ( 0.5000000 -0.5000000 0.0000000), wk = 0.2500000
k ( 12) = ( 0.5000000 -1.0000000 0.0000000), wk = 0.0000000
k ( 13) = ( -0.5000000 0.2500000 0.0000000), wk = 0.2500000
k ( 14) = ( -0.5000000 -0.2500000 0.0000000), wk = 0.0000000
Atomic wfc used for the DFT+U projector are orthogonalized
Total time spent up to now is:
HP : 12.93s CPU 13.18s WALL
=--------------------------------------------=
START SOLVING THE LINEAR SYSTEM
=--------------------------------------------=
atom # 1 q point # 2 iter # 1
chi: 1 -0.4321950797
Average number of iter. to solve lin. system: 29.9
Total CPU time : 14.3 s
atom # 1 q point # 2 iter # 2
chi: 1 0.7097685594 residue: 1.1419636390
Average number of iter. to solve lin. system: 14.4
Total CPU time : 15.0 s
atom # 1 q point # 2 iter # 3
chi: 1 -0.0967698594 residue: 0.8065384188
Average number of iter. to solve lin. system: 13.1
Total CPU time : 15.7 s
atom # 1 q point # 2 iter # 4
chi: 1 -0.0965547306 residue: 0.0002151289
Average number of iter. to solve lin. system: 13.7
Total CPU time : 16.5 s
atom # 1 q point # 2 iter # 5
chi: 1 -0.0927179661 residue: 0.0038367645
Average number of iter. to solve lin. system: 13.4
Total CPU time : 17.1 s
atom # 1 q point # 2 iter # 6
chi: 1 -0.0905207582 residue: 0.0021972079
Average number of iter. to solve lin. system: 14.6
Total CPU time : 17.9 s
atom # 1 q point # 2 iter # 7
chi: 1 -0.0909511313 residue: 0.0004303731
Average number of iter. to solve lin. system: 14.1
Total CPU time : 18.6 s
atom # 1 q point # 2 iter # 8
chi: 1 -0.0909180708 residue: 0.0000330605
Average number of iter. to solve lin. system: 13.9
Total CPU time : 19.3 s
atom # 1 q point # 2 iter # 9
chi: 1 -0.0909120531 residue: 0.0000060177
Average number of iter. to solve lin. system: 14.6
Total CPU time : 20.0 s
atom # 1 q point # 2 iter # 10
chi: 1 -0.0909077642 residue: 0.0000042888
Average number of iter. to solve lin. system: 14.9
Total CPU time : 20.8 s
atom # 1 q point # 2 iter # 11
chi: 1 -0.0909119383 residue: 0.0000041741
Average number of iter. to solve lin. system: 13.4
Total CPU time : 21.5 s
atom # 1 q point # 2 iter # 12
chi: 1 -0.0909125025 residue: 0.0000005642
Average number of iter. to solve lin. system: 14.3
Total CPU time : 22.4 s
atom # 1 q point # 2 iter # 13
chi: 1 -0.0909122105 residue: 0.0000002921
Average number of iter. to solve lin. system: 15.1
Total CPU time : 23.2 s
atom # 1 q point # 2 iter # 14
chi: 1 -0.0909124432 residue: 0.0000002327
Average number of iter. to solve lin. system: 13.9
Total CPU time : 23.9 s
atom # 1 q point # 2 iter # 15
chi: 1 -0.0909123936 residue: 0.0000000496
Average number of iter. to solve lin. system: 14.9
Total CPU time : 24.9 s
atom # 1 q point # 2 iter # 16
chi: 1 -0.0909124576 residue: 0.0000000640
Average number of iter. to solve lin. system: 13.6
Total CPU time : 25.5 s
atom # 1 q point # 2 iter # 17
chi: 1 -0.0909124480 residue: 0.0000000095
Average number of iter. to solve lin. system: 13.4
Total CPU time : 26.2 s
=--------------------------------------------=
CONVERGENCE HAS BEEN REACHED
=--------------------------------------------=
Computing the sum over q of the response occupation matrices...
q # 1 = 0.000000000 0.000000000 0.000000000
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
q # 2 = 0.000000000 -0.577350269 0.000000000
Number of q in the star = 3
List of q in the star:
1 0.000000000 -0.577350269 0.000000000
2 0.500000000 -0.288675135 0.000000000
3 -0.500000000 -0.288675135 0.000000000
Post-processing calculation of Hubbard parameters ...
PRINTING TIMING FROM PWSCF ROUTINES:
init_run : 0.55s CPU 0.55s WALL ( 1 calls)
electrons : 1.01s CPU 1.03s WALL ( 1 calls)
Called by init_run:
wfcinit : 0.02s CPU 0.02s WALL ( 1 calls)
wfcinit:atom : 0.00s CPU 0.00s WALL ( 14 calls)
wfcinit:wfcr : 0.09s CPU 0.09s WALL ( 14 calls)
potinit : 0.03s CPU 0.03s WALL ( 1 calls)
hinit0 : 0.26s CPU 0.26s WALL ( 1 calls)
Called by electrons:
c_bands : 1.01s CPU 1.03s WALL ( 1 calls)
v_of_rho : 0.05s CPU 0.05s WALL ( 2 calls)
v_h : 0.00s CPU 0.00s WALL ( 2 calls)
v_xc : 0.05s CPU 0.05s WALL ( 2 calls)
newd : 0.10s CPU 0.10s WALL ( 2 calls)
Called by c_bands:
init_us_2 : 0.06s CPU 0.06s WALL ( 244 calls)
cegterg : 0.89s CPU 0.91s WALL ( 14 calls)
Called by sum_band:
Called by *egterg:
h_psi : 11.58s CPU 11.88s WALL ( 3904 calls)
s_psi : 0.53s CPU 0.49s WALL ( 7785 calls)
g_psi : 0.01s CPU 0.01s WALL ( 214 calls)
cdiaghg : 0.07s CPU 0.07s WALL ( 228 calls)
cegterg:over : 0.04s CPU 0.04s WALL ( 214 calls)
cegterg:upda : 0.02s CPU 0.03s WALL ( 214 calls)
cegterg:last : 0.02s CPU 0.02s WALL ( 60 calls)
Called by h_psi:
h_psi:pot : 11.38s CPU 11.64s WALL ( 3904 calls)
h_psi:calbec : 0.39s CPU 0.36s WALL ( 3904 calls)
vloc_psi : 10.76s CPU 11.01s WALL ( 3904 calls)
add_vuspsi : 0.22s CPU 0.25s WALL ( 3904 calls)
vhpsi : 0.17s CPU 0.20s WALL ( 3904 calls)
General routines
calbec : 0.87s CPU 0.86s WALL ( 11887 calls)
fft : 0.87s CPU 0.88s WALL ( 544 calls)
ffts : 0.02s CPU 0.02s WALL ( 71 calls)
fftw : 11.36s CPU 11.28s WALL ( 73492 calls)
interpolate : 0.09s CPU 0.10s WALL ( 71 calls)
davcio : 0.27s CPU 0.35s WALL ( 5655 calls)
Parallel routines
fft_scatt_xy : 1.16s CPU 1.34s WALL ( 74107 calls)
fft_scatt_yz : 3.40s CPU 3.15s WALL ( 74107 calls)
Hubbard U routines
vhpsi : 0.17s CPU 0.20s WALL ( 3904 calls)
init_vloc : 0.11s CPU 0.11s WALL ( 2 calls)
init_us_1 : 0.14s CPU 0.14s WALL ( 2 calls)
newd : 0.10s CPU 0.10s WALL ( 2 calls)
add_vuspsi : 0.22s CPU 0.25s WALL ( 3904 calls)
PRINTING TIMING FROM HP ROUTINES:
hp_setup_q : 0.06s CPU 0.07s WALL ( 2 calls)
hp_init_q : 0.06s CPU 0.06s WALL ( 2 calls)
hp_solve_lin : 23.09s CPU 23.60s WALL ( 2 calls)
hp_dvpsi_per : 0.01s CPU 0.01s WALL ( 187 calls)
hp_dnsq : 0.03s CPU 0.04s WALL ( 34 calls)
hp_symdnsq : 0.00s CPU 0.00s WALL ( 34 calls)
hp_dnstot_su : 0.00s CPU 0.00s WALL ( 1 calls)
hp_rotate_dn : 0.00s CPU 0.00s WALL ( 4 calls)
hp_calc_chi : 0.00s CPU 0.00s WALL ( 1 calls)
hp_vpsifft : 0.66s CPU 0.70s WALL ( 176 calls)
hp_sphi : 0.02s CPU 0.02s WALL ( 2 calls)
hp_run_nscf : 1.57s CPU 1.59s WALL ( 1 calls)
hp_psymdvscf : 3.85s CPU 3.85s WALL ( 34 calls)
PRINTING TIMING FROM LR MODULE:
ortho : 0.05s CPU 0.06s WALL ( 187 calls)
cgsolve : 12.55s CPU 12.87s WALL ( 187 calls)
ch_psi : 12.18s CPU 12.53s WALL ( 3662 calls)
incdrhoscf : 0.74s CPU 0.76s WALL ( 187 calls)
dv_of_drho : 0.88s CPU 0.88s WALL ( 34 calls)
mix_pot : 0.14s CPU 0.23s WALL ( 34 calls)
setup_dgc : 0.05s CPU 0.05s WALL ( 2 calls)
setup_dmuxc : 0.01s CPU 0.01s WALL ( 2 calls)
setup_nbnd_o : 0.00s CPU 0.00s WALL ( 2 calls)
cft_wave : 0.62s CPU 0.64s WALL ( 3872 calls)
USPP ROUTINES:
newdq : 1.98s CPU 1.99s WALL ( 34 calls)
adddvscf : 0.03s CPU 0.03s WALL ( 176 calls)
addusdbec : 0.03s CPU 0.02s WALL ( 187 calls)
HP : 25.67s CPU 26.21s WALL
This run was terminated on: 10:18:45 7Sep2018
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=
|