File: NiO2.hp.out

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (939 lines) | stat: -rw-r--r-- 37,768 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

     Program HP v.6.3 starts on  7Sep2018 at 10:18:19 

     This program is part of the open-source Quantum ESPRESSO suite
     for quantum simulation of materials; please cite
         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
         "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
          URL http://www.quantum-espresso.org", 
     in publications or presentations arising from this work. More details at
     http://www.quantum-espresso.org/quote

     Parallel version (MPI), running on     8 processors

     MPI processes distributed on     1 nodes
     R & G space division:  proc/nbgrp/npool/nimage =       8

     =--------------------------------------------------------------------------=

       Calculation of Hubbard parameters from DFPT; please cite this program as

       I. Timrov, N. Marzari, and M. Cococcioni, Phys. Rev. B 98, 085127 (2018)

     =--------------------------------------------------------------------------=

     Reading data from directory:
     /scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/NiO2.save/

     IMPORTANT: XC functional enforced from input :
     Exchange-correlation      = PBE ( 1  4  3  4 0 0)
     Any further DFT definition will be discarded
     Please, verify this is what you really want

               file Ni.pbe-n-rrkjus_psl.0.1.UPF: wavefunction(s)  3D renormalized
 
     Parallelization info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Min          87      44     13                14663     5209     863
     Max          88      47     14                14688     5219     886
     Sum         703     361    109               117447    41709    7021
 

     Check: negative core charge=   -0.000022

     negative rho (up, down):  6.875E-04 0.000E+00
 --- in v_hubbard ---
Hubbard energy    0.0000
 -------
 

     bravais-lattice index     =             0
     lattice parameter (alat)  =        5.3370 (a.u.)
     unit-cell volume          =     1020.0352 (a.u.)^3
     number of atoms/cell      =             3
     number of atomic types    =             2
     kinetic-energy cut-off    =         45.00 (Ry)
     charge density cut-off    =        360.00 (Ry)
     conv. thresh. for NSCF    =       1.0E-11
     conv. thresh. for chi     =       1.0E-08
     Input Hubbard parameters (in eV):
       U ( 1)                     =   1.00000E-08

     celldm(1) =  5.33697  celldm(2) =  0.00000  celldm(3) =  7.74819
     celldm(4) =  0.00000  celldm(5) =  0.00000  celldm(6) =  0.00000

     crystal axes: (cart. coord. in units of alat)
               a(1) = (  1.0000  0.0000  0.0000 )  
               a(2) = ( -0.5000  0.8660  0.0000 )  
               a(3) = (  0.0000  0.0000  7.7482 )  

     reciprocal axes: (cart. coord. in units 2 pi/alat)
               b(1) = (  1.0000  0.5774  0.0000 )  
               b(2) = (  0.0000  1.1547  0.0000 )  
               b(3) = (  0.0000  0.0000  0.1291 )  

     Atoms inside the unit cell (Cartesian axes):
     site n.  atom      mass           positions (alat units)
        1      Ni     58.6934   tau(  1) = (  0.00000  0.00000  3.87409  )
        2      O      15.9994   tau(  2) = (  0.50000  0.28868  3.54104  )
        3      O      15.9994   tau(  3) = (  0.00000  0.57735  4.20714  )

     Atom which will be perturbed:

        1      Ni     58.6934   tau( 1) = (  0.00000  0.00000  3.87409  )
 
     =====================================================================

                          PERTURBED ATOM #    1

     site n.  atom      mass           positions (alat units)
        1      Ni     58.6934   tau( 1) = (  0.00000  0.00000  3.87409  )
 
     =====================================================================

     The perturbed atom has a type which is unique!


     The grid of q-points ( 2, 2, 1)  (  2 q-points ) :
       N       xq(1)         xq(2)         xq(3)       wq
       1   0.000000000   0.000000000   0.000000000   0.250000000
       2   0.000000000  -0.577350269   0.000000000   0.750000000


     =-------------------------------------------------------------=

     Calculation for q #   1 = (   0.0000000   0.0000000   0.0000000 )

     =-------------------------------------------------------------=

                   WRITING LINEAR-RESPONSE SUMMARY:


     Number of symmetries in the small group of q, nsymq = 12
      + the symmetry q -> -q+G 

     Symmetry matrices (and vectors of fractional translations if f/=0):

     isym =  1     identity                                     

     cryst.   s( 1) = (     1          0          0      )
                      (     0          1          0      )
                      (     0          0          1      )

     cart.    s( 1) = (  1.0000000  0.0000000  0.0000000 )
                      (  0.0000000  1.0000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     isym =  2     180 deg rotation - cart. axis [1,0,0]        

     cryst.   s( 2) = (     1          0          0      )
                      (    -1         -1          0      )
                      (     0          0         -1      )

     cart.    s( 2) = (  1.0000000 -0.0000000  0.0000000 )
                      (  0.0000000 -1.0000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym =  3     120 deg rotation - cryst. axis [0,0,1]       

     cryst.   s( 3) = (     0          1          0      )
                      (    -1         -1          0      )
                      (     0          0          1      )

     cart.    s( 3) = ( -0.5000000 -0.8660254  0.0000000 )
                      (  0.8660254 -0.5000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     isym =  4     120 deg rotation - cryst. axis [0,0,-1]      

     cryst.   s( 4) = (    -1         -1          0      )
                      (     1          0          0      )
                      (     0          0          1      )

     cart.    s( 4) = ( -0.5000000  0.8660254  0.0000000 )
                      ( -0.8660254 -0.5000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     isym =  5     180 deg rotation - cryst. axis [0,1,0]       

     cryst.   s( 5) = (    -1         -1          0      )
                      (     0          1          0      )
                      (     0          0         -1      )

     cart.    s( 5) = ( -0.5000000 -0.8660254  0.0000000 )
                      ( -0.8660254  0.5000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym =  6     180 deg rotation - cryst. axis [1,1,0]       

     cryst.   s( 6) = (     0          1          0      )
                      (     1          0          0      )
                      (     0          0         -1      )

     cart.    s( 6) = ( -0.5000000  0.8660254  0.0000000 )
                      (  0.8660254  0.5000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym =  7     inversion                                    

     cryst.   s( 7) = (    -1          0          0      )
                      (     0         -1          0      )
                      (     0          0         -1      )

     cart.    s( 7) = ( -1.0000000 -0.0000000  0.0000000 )
                      (  0.0000000 -1.0000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym =  8     inv. 180 deg rotation - cart. axis [1,0,0]   

     cryst.   s( 8) = (    -1          0          0      )
                      (     1          1          0      )
                      (     0          0          1      )

     cart.    s( 8) = ( -1.0000000  0.0000000  0.0000000 )
                      (  0.0000000  1.0000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     isym =  9     inv. 120 deg rotation - cryst. axis [0,0,1]  

     cryst.   s( 9) = (     0         -1          0      )
                      (     1          1          0      )
                      (     0          0         -1      )

     cart.    s( 9) = (  0.5000000  0.8660254  0.0000000 )
                      ( -0.8660254  0.5000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym = 10     inv. 120 deg rotation - cryst. axis [0,0,-1] 

     cryst.   s(10) = (     1          1          0      )
                      (    -1          0          0      )
                      (     0          0         -1      )

     cart.    s(10) = (  0.5000000 -0.8660254  0.0000000 )
                      (  0.8660254  0.5000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym = 11     inv. 180 deg rotation - cryst. axis [0,1,0]  

     cryst.   s(11) = (     1          1          0      )
                      (     0         -1          0      )
                      (     0          0          1      )

     cart.    s(11) = (  0.5000000  0.8660254  0.0000000 )
                      (  0.8660254 -0.5000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     isym = 12     inv. 180 deg rotation - cryst. axis [1,1,0]  

     cryst.   s(12) = (     0         -1          0      )
                      (    -1          0          0      )
                      (     0          0          1      )

     cart.    s(12) = (  0.5000000 -0.8660254  0.0000000 )
                      ( -0.8660254 -0.5000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     This transformation sends q -> -q+G

     isym = 13     identity                                     

     cryst.   s(13) = (     1          0          0      )
                      (     0          1          0      )
                      (     0          0          1      )

     cart.    s(13) = (  1.0000000  0.0000000  0.0000000 )
                      (  0.0000000  1.0000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     G cutoff =  259.7362  (  14688 G-vectors)     FFT grid: ( 36, 36,250)
     G cutoff =  129.8681  (   5209 G-vectors)  smooth grid: ( 24, 24,180)

     Number of k (and k+q if q/=0) points =     4

                       cart. coord. (in units 2pi/alat)
        k (    1) = (   0.0000000   0.0000000   0.0000000), wk = 0.1250000
        k (    2) = (   0.0000000   0.2886751   0.0000000), wk = 0.7500000
        k (    3) = (   0.0000000  -0.5773503   0.0000000), wk = 0.3750000
        k (    4) = (   0.2500000   0.4330127   0.0000000), wk = 0.7500000

                       cryst. coord.
        k (    1) = (   0.0000000   0.0000000   0.0000000), wk = 0.1250000
        k (    2) = (   0.0000000   0.2500000   0.0000000), wk = 0.7500000
        k (    3) = (   0.0000000  -0.5000000   0.0000000), wk = 0.3750000
        k (    4) = (   0.2500000   0.2500000   0.0000000), wk = 0.7500000

     Atomic wfc used for the DFT+U projector are orthogonalized

     Total time spent up to now is:
     HP           :      0.94s CPU      0.96s WALL

      =--------------------------------------------=
             START SOLVING THE LINEAR SYSTEM
      =--------------------------------------------=

      atom #  1   q point #   1   iter #   1
      chi:   1  -0.3260381632
      Average number of iter. to solve lin. system:   28.2
      Total CPU time :     1.8 s

      atom #  1   q point #   1   iter #   2
      chi:   1   0.3169122664   residue:    0.6429504297
      Average number of iter. to solve lin. system:   12.8
      Total CPU time :     2.4 s

      atom #  1   q point #   1   iter #   3
      chi:   1  -0.0943826070   residue:    0.4112948734
      Average number of iter. to solve lin. system:   11.8
      Total CPU time :     3.2 s

      atom #  1   q point #   1   iter #   4
      chi:   1  -0.0903511493   residue:    0.0040314576
      Average number of iter. to solve lin. system:   11.2
      Total CPU time :     3.9 s

      atom #  1   q point #   1   iter #   5
      chi:   1  -0.0866078034   residue:    0.0037433459
      Average number of iter. to solve lin. system:   12.0
      Total CPU time :     4.5 s

      atom #  1   q point #   1   iter #   6
      chi:   1  -0.0862223031   residue:    0.0003855003
      Average number of iter. to solve lin. system:   12.8
      Total CPU time :     5.1 s

      atom #  1   q point #   1   iter #   7
      chi:   1  -0.0862189383   residue:    0.0000033648
      Average number of iter. to solve lin. system:   12.8
      Total CPU time :     5.8 s

      atom #  1   q point #   1   iter #   8
      chi:   1  -0.0862234779   residue:    0.0000045396
      Average number of iter. to solve lin. system:   12.8
      Total CPU time :     6.4 s

      atom #  1   q point #   1   iter #   9
      chi:   1  -0.0862411535   residue:    0.0000176756
      Average number of iter. to solve lin. system:   12.2
      Total CPU time :     6.9 s

      atom #  1   q point #   1   iter #  10
      chi:   1  -0.0862383739   residue:    0.0000027795
      Average number of iter. to solve lin. system:   11.8
      Total CPU time :     7.5 s

      atom #  1   q point #   1   iter #  11
      chi:   1  -0.0862407246   residue:    0.0000023507
      Average number of iter. to solve lin. system:   12.8
      Total CPU time :     8.1 s

      atom #  1   q point #   1   iter #  12
      chi:   1  -0.0862388858   residue:    0.0000018388
      Average number of iter. to solve lin. system:   12.2
      Total CPU time :     8.6 s

      atom #  1   q point #   1   iter #  13
      chi:   1  -0.0862392185   residue:    0.0000003328
      Average number of iter. to solve lin. system:   12.5
      Total CPU time :     9.2 s

      atom #  1   q point #   1   iter #  14
      chi:   1  -0.0862395485   residue:    0.0000003300
      Average number of iter. to solve lin. system:   12.8
      Total CPU time :     9.8 s

      atom #  1   q point #   1   iter #  15
      chi:   1  -0.0862394127   residue:    0.0000001358
      Average number of iter. to solve lin. system:   12.0
      Total CPU time :    10.3 s

      atom #  1   q point #   1   iter #  16
      chi:   1  -0.0862393886   residue:    0.0000000241
      Average number of iter. to solve lin. system:   12.0
      Total CPU time :    10.9 s

      atom #  1   q point #   1   iter #  17
      chi:   1  -0.0862393929   residue:    0.0000000043
      Average number of iter. to solve lin. system:   13.2
      Total CPU time :    11.5 s
      
      =--------------------------------------------=
             CONVERGENCE HAS BEEN REACHED
      =--------------------------------------------=


     =-------------------------------------------------------------=

     Calculation for q #   2 = (   0.0000000  -0.5773503   0.0000000 )

     =-------------------------------------------------------------=

     Performing NSCF calculation at all points k and k+q...

     Subspace diagonalization in iterative solution of the eigenvalue problem:
     a serial algorithm will be used

 
     Parallelization info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Min          87      44     15                14663     5209    1115
     Max          88      47     16                14688     5219    1150
     Sum         703     361    121               117447    41709    8999
 


     bravais-lattice index     =            0
     lattice parameter (alat)  =       5.3370  a.u.
     unit-cell volume          =    1020.0352 (a.u.)^3
     number of atoms/cell      =            3
     number of atomic types    =            2
     number of electrons       =        22.00
     number of Kohn-Sham states=           11
     kinetic-energy cutoff     =      45.0000  Ry
     charge density cutoff     =     360.0000  Ry
     Exchange-correlation      = PBE ( 1  4  3  4 0 0)

     celldm(1)=   5.336971  celldm(2)=   0.000000  celldm(3)=   7.748186
     celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000

     crystal axes: (cart. coord. in units of alat)
               a(1) = (   1.000000   0.000000   0.000000 )  
               a(2) = (  -0.500000   0.866025   0.000000 )  
               a(3) = (   0.000000   0.000000   7.748186 )  

     reciprocal axes: (cart. coord. in units 2 pi/alat)
               b(1) = (  1.000000  0.577350  0.000000 )  
               b(2) = (  0.000000  1.154701  0.000000 )  
               b(3) = (  0.000000  0.000000  0.129062 )  


     PseudoPot. # 1 for Ni read from file:
     /scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/Ni.pbe-n-rrkjus_psl.0.1.UPF
     MD5 check sum: a128b0288b8c2a77f60c629508f0875a
     Pseudo is Ultrasoft + core correction, Zval = 10.0
     Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
     Using radial grid of 1195 points,  6 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
                l(5) =   2
                l(6) =   2
     Q(r) pseudized with 0 coefficients 


     PseudoPot. # 2 for O  read from file:
     /scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/pseudo/O.pbe-n-rrkjus_psl.0.1.UPF
     MD5 check sum: 2d9b751e792dc3e2bf7510553724b146
     Pseudo is Ultrasoft + core correction, Zval =  6.0
     Generated using "atomic" code by A. Dal Corso v.6.3MaX
     Using radial grid of 1095 points,  4 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
     Q(r) pseudized with 0 coefficients 


     atomic species   valence    mass     pseudopotential
        Ni            10.00    58.69340     Ni( 1.00)
        O              6.00    15.99940     O ( 1.00)


     Simplified LDA+U calculation (l_max = 2) with parameters (eV):
     atomic species    L          U    alpha       J0     beta
        Ni             2     0.0000   0.0000   0.0000   0.0000



     12 Sym. Ops., with inversion, found



   Cartesian axes

     site n.     atom                  positions (alat units)
         1           Ni  tau(   1) = (   0.0000000   0.0000000   3.8740930  )
         2           O   tau(   2) = (   0.5000000   0.2886751   3.5410443  )
         3           O   tau(   3) = (   0.0000000   0.5773503   4.2071418  )

     number of k points=    14
                       cart. coord. in units 2pi/alat
        k(    1) = (   0.0000000   0.0000000   0.0000000), wk =   0.1250000
        k(    2) = (   0.0000000  -0.5773503   0.0000000), wk =   0.0000000
        k(    3) = (   0.0000000   0.2886751   0.0000000), wk =   0.2500000
        k(    4) = (   0.0000000  -0.2886751   0.0000000), wk =   0.0000000
        k(    5) = (   0.0000000  -0.5773503   0.0000000), wk =   0.1250000
        k(    6) = (   0.0000000  -1.1547005   0.0000000), wk =   0.0000000
        k(    7) = (   0.2500000   0.4330127   0.0000000), wk =   0.5000000
        k(    8) = (   0.2500000  -0.1443376   0.0000000), wk =   0.0000000
        k(    9) = (  -0.2500000   0.1443376   0.0000000), wk =   0.5000000
        k(   10) = (  -0.2500000  -0.4330127   0.0000000), wk =   0.0000000
        k(   11) = (   0.5000000  -0.2886751   0.0000000), wk =   0.2500000
        k(   12) = (   0.5000000  -0.8660254   0.0000000), wk =   0.0000000
        k(   13) = (  -0.5000000   0.0000000   0.0000000), wk =   0.2500000
        k(   14) = (  -0.5000000  -0.5773503   0.0000000), wk =   0.0000000

     Dense  grid:   117447 G-vectors     FFT dimensions: (  36,  36, 250)

     Smooth grid:    41709 G-vectors     FFT dimensions: (  24,  24, 180)

     Estimated max dynamical RAM per process >      50.59 MB

     Estimated total dynamical RAM >     404.70 MB

     Check: negative core charge=   -0.000022

     The potential is recalculated from file :
     /scratch/timrov/WORK_Hubbard/Z_git/work2_QE_fork/q-e/tempdir/HP/NiO2.save/charge-density


     negative rho (up, down):  6.875E-04 0.000E+00
     Number of +U iterations with fixed ns =  0
     Starting occupations:
 --- enter write_ns ---
 LDA+U parameters:
U( 1)     =  0.00000001
alpha( 1) =  0.00000000
atom    1   Tr[ns(na)] =   8.13145
    eigenvalues: 
  0.558  0.558  0.978  0.986  0.986
    eigenvectors:
  0.000  0.000  1.000  0.000  0.000
  0.490  0.106  0.000  0.019  0.385
  0.106  0.490  0.000  0.385  0.019
  0.072  0.331  0.000  0.569  0.028
  0.331  0.072  0.000  0.028  0.569
    occupations:
  0.978  0.000 -0.000  0.000  0.000
  0.000  0.730  0.000 -0.000 -0.210
 -0.000  0.000  0.730 -0.210  0.000
  0.000 -0.000 -0.210  0.813 -0.000
  0.000 -0.210  0.000 -0.000  0.813
N of occupied +U levels =    8.131450
 --- exit write_ns ---
 Atomic wfc used for LDA+U Projector are orthogonalized
     Starting wfcs are   17 atomic wfcs

     Band Structure Calculation
     Davidson diagonalization with overlap

     ethr =  1.00E-11,  avg # of iterations = 15.3

     total cpu time spent up to now is       -1.0 secs

     End of band structure calculation

          k = 0.0000 0.0000 0.0000 (  5225 PWs)   bands (ev):

   -24.5643 -22.2762 -10.5226 -10.5226 -10.4238  -7.2656  -7.2656  -6.4438
    -6.1612  -6.1612  -5.4165

          k = 0.0000-0.5774 0.0000 (  5232 PWs)   bands (ev):

   -22.7789 -22.6530 -11.6129  -9.8100  -9.6604  -8.7974  -7.8186  -6.9159
    -6.8568  -6.8053  -6.2245

          k = 0.0000 0.2887 0.0000 (  5222 PWs)   bands (ev):

   -23.8612 -22.3276 -10.7658 -10.0979  -9.8295  -9.0108  -8.0408  -6.6144
    -5.9769  -5.8555  -5.5522

          k = 0.0000-0.2887 0.0000 (  5222 PWs)   bands (ev):

   -23.8612 -22.3276 -10.7658 -10.0979  -9.8295  -9.0108  -8.0408  -6.6144
    -5.9769  -5.8555  -5.5522

          k = 0.0000-0.5774 0.0000 (  5232 PWs)   bands (ev):

   -22.7789 -22.6530 -11.6129  -9.8100  -9.6604  -8.7974  -7.8186  -6.9159
    -6.8568  -6.8053  -6.2245

          k = 0.0000-1.1547 0.0000 (  5225 PWs)   bands (ev):

   -24.5643 -22.2762 -10.5226 -10.5226 -10.4238  -7.2656  -7.2656  -6.4438
    -6.1612  -6.1612  -5.4165

          k = 0.2500 0.4330 0.0000 (  5180 PWs)   bands (ev):

   -22.9694 -22.4610 -10.7089 -10.5854  -9.5983  -8.8467  -8.5873  -7.2094
    -6.7443  -6.2870  -5.6169

          k = 0.2500-0.1443 0.0000 (  5222 PWs)   bands (ev):

   -23.8612 -22.3276 -10.7658 -10.0979  -9.8295  -9.0108  -8.0408  -6.6144
    -5.9769  -5.8555  -5.5522

          k =-0.2500 0.1443 0.0000 (  5222 PWs)   bands (ev):

   -23.8612 -22.3276 -10.7658 -10.0979  -9.8295  -9.0108  -8.0408  -6.6144
    -5.9769  -5.8555  -5.5522

          k =-0.2500-0.4330 0.0000 (  5180 PWs)   bands (ev):

   -22.9694 -22.4610 -10.7089 -10.5854  -9.5983  -8.8467  -8.5873  -7.2094
    -6.7443  -6.2870  -5.6169

          k = 0.5000-0.2887 0.0000 (  5232 PWs)   bands (ev):

   -22.7789 -22.6530 -11.6129  -9.8100  -9.6604  -8.7974  -7.8186  -6.9159
    -6.8568  -6.8053  -6.2245

          k = 0.5000-0.8660 0.0000 (  5232 PWs)   bands (ev):

   -22.7789 -22.6530 -11.6129  -9.8100  -9.6604  -8.7974  -7.8186  -6.9159
    -6.8568  -6.8053  -6.2245

          k =-0.5000 0.0000 0.0000 (  5180 PWs)   bands (ev):

   -22.9694 -22.4610 -10.7089 -10.5854  -9.5983  -8.8467  -8.5873  -7.2094
    -6.7443  -6.2870  -5.6169

          k =-0.5000-0.5774 0.0000 (  5180 PWs)   bands (ev):

   -22.9694 -22.4610 -10.7089 -10.5854  -9.5983  -8.8467  -8.5873  -7.2094
    -6.7443  -6.2870  -5.6169

     highest occupied level (ev):    -5.4165

     Writing output data file NiO2.save/
     Done!

                   WRITING LINEAR-RESPONSE SUMMARY:


     Number of symmetries in the small group of q, nsymq =  4
      + the symmetry q -> -q+G 

     Symmetry matrices (and vectors of fractional translations if f/=0):

     isym =  1     identity                                     

     cryst.   s( 1) = (     1          0          0      )
                      (     0          1          0      )
                      (     0          0          1      )

     cart.    s( 1) = (  1.0000000  0.0000000  0.0000000 )
                      (  0.0000000  1.0000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     isym =  2     180 deg rotation - cart. axis [1,0,0]        

     cryst.   s( 2) = (     1          0          0      )
                      (    -1         -1          0      )
                      (     0          0         -1      )

     cart.    s( 2) = (  1.0000000 -0.0000000  0.0000000 )
                      (  0.0000000 -1.0000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym =  3     inversion                                    

     cryst.   s( 3) = (    -1          0          0      )
                      (     0         -1          0      )
                      (     0          0         -1      )

     cart.    s( 3) = ( -1.0000000 -0.0000000  0.0000000 )
                      (  0.0000000 -1.0000000  0.0000000 )
                      (  0.0000000  0.0000000 -1.0000000 )


     isym =  4     inv. 180 deg rotation - cart. axis [1,0,0]   

     cryst.   s( 4) = (    -1          0          0      )
                      (     1          1          0      )
                      (     0          0          1      )

     cart.    s( 4) = ( -1.0000000  0.0000000  0.0000000 )
                      (  0.0000000  1.0000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     This transformation sends q -> -q+G

     isym =  5     identity                                     

     cryst.   s( 5) = (     1          0          0      )
                      (     0          1          0      )
                      (     0          0          1      )

     cart.    s( 5) = (  1.0000000  0.0000000  0.0000000 )
                      (  0.0000000  1.0000000  0.0000000 )
                      (  0.0000000  0.0000000  1.0000000 )


     G cutoff =  259.7362  (  14688 G-vectors)     FFT grid: ( 36, 36,250)
     G cutoff =  129.8681  (   5209 G-vectors)  smooth grid: ( 24, 24,180)

     Number of k (and k+q if q/=0) points =    14

                       cart. coord. (in units 2pi/alat)
        k (    1) = (   0.0000000   0.0000000   0.0000000), wk = 0.1250000
        k (    2) = (   0.0000000  -0.5773503   0.0000000), wk = 0.0000000
        k (    3) = (   0.0000000   0.2886751   0.0000000), wk = 0.2500000
        k (    4) = (   0.0000000  -0.2886751   0.0000000), wk = 0.0000000
        k (    5) = (   0.0000000  -0.5773503   0.0000000), wk = 0.1250000
        k (    6) = (   0.0000000  -1.1547005   0.0000000), wk = 0.0000000
        k (    7) = (   0.2500000   0.4330127   0.0000000), wk = 0.5000000
        k (    8) = (   0.2500000  -0.1443376   0.0000000), wk = 0.0000000
        k (    9) = (  -0.2500000   0.1443376   0.0000000), wk = 0.5000000
        k (   10) = (  -0.2500000  -0.4330127   0.0000000), wk = 0.0000000
        k (   11) = (   0.5000000  -0.2886751   0.0000000), wk = 0.2500000
        k (   12) = (   0.5000000  -0.8660254   0.0000000), wk = 0.0000000
        k (   13) = (  -0.5000000   0.0000000   0.0000000), wk = 0.2500000
        k (   14) = (  -0.5000000  -0.5773503   0.0000000), wk = 0.0000000

                       cryst. coord.
        k (    1) = (   0.0000000   0.0000000   0.0000000), wk = 0.1250000
        k (    2) = (   0.0000000  -0.5000000   0.0000000), wk = 0.0000000
        k (    3) = (   0.0000000   0.2500000   0.0000000), wk = 0.2500000
        k (    4) = (   0.0000000  -0.2500000   0.0000000), wk = 0.0000000
        k (    5) = (   0.0000000  -0.5000000   0.0000000), wk = 0.1250000
        k (    6) = (   0.0000000  -1.0000000   0.0000000), wk = 0.0000000
        k (    7) = (   0.2500000   0.2500000   0.0000000), wk = 0.5000000
        k (    8) = (   0.2500000  -0.2500000   0.0000000), wk = 0.0000000
        k (    9) = (  -0.2500000   0.2500000   0.0000000), wk = 0.5000000
        k (   10) = (  -0.2500000  -0.2500000   0.0000000), wk = 0.0000000
        k (   11) = (   0.5000000  -0.5000000   0.0000000), wk = 0.2500000
        k (   12) = (   0.5000000  -1.0000000   0.0000000), wk = 0.0000000
        k (   13) = (  -0.5000000   0.2500000   0.0000000), wk = 0.2500000
        k (   14) = (  -0.5000000  -0.2500000   0.0000000), wk = 0.0000000

     Atomic wfc used for the DFT+U projector are orthogonalized

     Total time spent up to now is:
     HP           :     12.93s CPU     13.18s WALL

      =--------------------------------------------=
             START SOLVING THE LINEAR SYSTEM
      =--------------------------------------------=

      atom #  1   q point #   2   iter #   1
      chi:   1  -0.4321950797
      Average number of iter. to solve lin. system:   29.9
      Total CPU time :    14.3 s

      atom #  1   q point #   2   iter #   2
      chi:   1   0.7097685594   residue:    1.1419636390
      Average number of iter. to solve lin. system:   14.4
      Total CPU time :    15.0 s

      atom #  1   q point #   2   iter #   3
      chi:   1  -0.0967698594   residue:    0.8065384188
      Average number of iter. to solve lin. system:   13.1
      Total CPU time :    15.7 s

      atom #  1   q point #   2   iter #   4
      chi:   1  -0.0965547306   residue:    0.0002151289
      Average number of iter. to solve lin. system:   13.7
      Total CPU time :    16.5 s

      atom #  1   q point #   2   iter #   5
      chi:   1  -0.0927179661   residue:    0.0038367645
      Average number of iter. to solve lin. system:   13.4
      Total CPU time :    17.1 s

      atom #  1   q point #   2   iter #   6
      chi:   1  -0.0905207582   residue:    0.0021972079
      Average number of iter. to solve lin. system:   14.6
      Total CPU time :    17.9 s

      atom #  1   q point #   2   iter #   7
      chi:   1  -0.0909511313   residue:    0.0004303731
      Average number of iter. to solve lin. system:   14.1
      Total CPU time :    18.6 s

      atom #  1   q point #   2   iter #   8
      chi:   1  -0.0909180708   residue:    0.0000330605
      Average number of iter. to solve lin. system:   13.9
      Total CPU time :    19.3 s

      atom #  1   q point #   2   iter #   9
      chi:   1  -0.0909120531   residue:    0.0000060177
      Average number of iter. to solve lin. system:   14.6
      Total CPU time :    20.0 s

      atom #  1   q point #   2   iter #  10
      chi:   1  -0.0909077642   residue:    0.0000042888
      Average number of iter. to solve lin. system:   14.9
      Total CPU time :    20.8 s

      atom #  1   q point #   2   iter #  11
      chi:   1  -0.0909119383   residue:    0.0000041741
      Average number of iter. to solve lin. system:   13.4
      Total CPU time :    21.5 s

      atom #  1   q point #   2   iter #  12
      chi:   1  -0.0909125025   residue:    0.0000005642
      Average number of iter. to solve lin. system:   14.3
      Total CPU time :    22.4 s

      atom #  1   q point #   2   iter #  13
      chi:   1  -0.0909122105   residue:    0.0000002921
      Average number of iter. to solve lin. system:   15.1
      Total CPU time :    23.2 s

      atom #  1   q point #   2   iter #  14
      chi:   1  -0.0909124432   residue:    0.0000002327
      Average number of iter. to solve lin. system:   13.9
      Total CPU time :    23.9 s

      atom #  1   q point #   2   iter #  15
      chi:   1  -0.0909123936   residue:    0.0000000496
      Average number of iter. to solve lin. system:   14.9
      Total CPU time :    24.9 s

      atom #  1   q point #   2   iter #  16
      chi:   1  -0.0909124576   residue:    0.0000000640
      Average number of iter. to solve lin. system:   13.6
      Total CPU time :    25.5 s

      atom #  1   q point #   2   iter #  17
      chi:   1  -0.0909124480   residue:    0.0000000095
      Average number of iter. to solve lin. system:   13.4
      Total CPU time :    26.2 s
      
      =--------------------------------------------=
             CONVERGENCE HAS BEEN REACHED
      =--------------------------------------------=

     Computing the sum over q of the response occupation matrices...

     q #   1 =  0.000000000   0.000000000   0.000000000
 
     Number of q in the star =    1
     List of q in the star:
          1   0.000000000   0.000000000   0.000000000

     q #   2 =  0.000000000  -0.577350269   0.000000000
 
     Number of q in the star =    3
     List of q in the star:
          1   0.000000000  -0.577350269   0.000000000
          2   0.500000000  -0.288675135   0.000000000
          3  -0.500000000  -0.288675135   0.000000000

     Post-processing calculation of Hubbard parameters ...

 
     PRINTING TIMING FROM PWSCF ROUTINES: 
 
     init_run     :      0.55s CPU      0.55s WALL (       1 calls)
     electrons    :      1.01s CPU      1.03s WALL (       1 calls)

     Called by init_run:
     wfcinit      :      0.02s CPU      0.02s WALL (       1 calls)
     wfcinit:atom :      0.00s CPU      0.00s WALL (      14 calls)
     wfcinit:wfcr :      0.09s CPU      0.09s WALL (      14 calls)
     potinit      :      0.03s CPU      0.03s WALL (       1 calls)
     hinit0       :      0.26s CPU      0.26s WALL (       1 calls)

     Called by electrons:
     c_bands      :      1.01s CPU      1.03s WALL (       1 calls)
     v_of_rho     :      0.05s CPU      0.05s WALL (       2 calls)
     v_h          :      0.00s CPU      0.00s WALL (       2 calls)
     v_xc         :      0.05s CPU      0.05s WALL (       2 calls)
     newd         :      0.10s CPU      0.10s WALL (       2 calls)

     Called by c_bands:
     init_us_2    :      0.06s CPU      0.06s WALL (     244 calls)
     cegterg      :      0.89s CPU      0.91s WALL (      14 calls)

     Called by sum_band:

     Called by *egterg:
     h_psi        :     11.58s CPU     11.88s WALL (    3904 calls)
     s_psi        :      0.53s CPU      0.49s WALL (    7785 calls)
     g_psi        :      0.01s CPU      0.01s WALL (     214 calls)
     cdiaghg      :      0.07s CPU      0.07s WALL (     228 calls)
     cegterg:over :      0.04s CPU      0.04s WALL (     214 calls)
     cegterg:upda :      0.02s CPU      0.03s WALL (     214 calls)
     cegterg:last :      0.02s CPU      0.02s WALL (      60 calls)

     Called by h_psi:
     h_psi:pot    :     11.38s CPU     11.64s WALL (    3904 calls)
     h_psi:calbec :      0.39s CPU      0.36s WALL (    3904 calls)
     vloc_psi     :     10.76s CPU     11.01s WALL (    3904 calls)
     add_vuspsi   :      0.22s CPU      0.25s WALL (    3904 calls)
     vhpsi        :      0.17s CPU      0.20s WALL (    3904 calls)

     General routines
     calbec       :      0.87s CPU      0.86s WALL (   11887 calls)
     fft          :      0.87s CPU      0.88s WALL (     544 calls)
     ffts         :      0.02s CPU      0.02s WALL (      71 calls)
     fftw         :     11.36s CPU     11.28s WALL (   73492 calls)
     interpolate  :      0.09s CPU      0.10s WALL (      71 calls)
     davcio       :      0.27s CPU      0.35s WALL (    5655 calls)
 
     Parallel routines
     fft_scatt_xy :      1.16s CPU      1.34s WALL (   74107 calls)
     fft_scatt_yz :      3.40s CPU      3.15s WALL (   74107 calls)

     Hubbard U routines
     vhpsi        :      0.17s CPU      0.20s WALL (    3904 calls)
 
     init_vloc    :      0.11s CPU      0.11s WALL (       2 calls)
     init_us_1    :      0.14s CPU      0.14s WALL (       2 calls)
     newd         :      0.10s CPU      0.10s WALL (       2 calls)
     add_vuspsi   :      0.22s CPU      0.25s WALL (    3904 calls)
 
     PRINTING TIMING FROM HP ROUTINES: 
 
     hp_setup_q   :      0.06s CPU      0.07s WALL (       2 calls)
     hp_init_q    :      0.06s CPU      0.06s WALL (       2 calls)
     hp_solve_lin :     23.09s CPU     23.60s WALL (       2 calls)
     hp_dvpsi_per :      0.01s CPU      0.01s WALL (     187 calls)
     hp_dnsq      :      0.03s CPU      0.04s WALL (      34 calls)
     hp_symdnsq   :      0.00s CPU      0.00s WALL (      34 calls)
     hp_dnstot_su :      0.00s CPU      0.00s WALL (       1 calls)
     hp_rotate_dn :      0.00s CPU      0.00s WALL (       4 calls)
     hp_calc_chi  :      0.00s CPU      0.00s WALL (       1 calls)
     hp_vpsifft   :      0.66s CPU      0.70s WALL (     176 calls)
     hp_sphi      :      0.02s CPU      0.02s WALL (       2 calls)
     hp_run_nscf  :      1.57s CPU      1.59s WALL (       1 calls)
     hp_psymdvscf :      3.85s CPU      3.85s WALL (      34 calls)
 
     PRINTING TIMING FROM LR MODULE: 
 
     ortho        :      0.05s CPU      0.06s WALL (     187 calls)
     cgsolve      :     12.55s CPU     12.87s WALL (     187 calls)
     ch_psi       :     12.18s CPU     12.53s WALL (    3662 calls)
     incdrhoscf   :      0.74s CPU      0.76s WALL (     187 calls)
     dv_of_drho   :      0.88s CPU      0.88s WALL (      34 calls)
     mix_pot      :      0.14s CPU      0.23s WALL (      34 calls)
     setup_dgc    :      0.05s CPU      0.05s WALL (       2 calls)
     setup_dmuxc  :      0.01s CPU      0.01s WALL (       2 calls)
     setup_nbnd_o :      0.00s CPU      0.00s WALL (       2 calls)
     cft_wave     :      0.62s CPU      0.64s WALL (    3872 calls)
 
     USPP ROUTINES: 
 
     newdq        :      1.98s CPU      1.99s WALL (      34 calls)
     adddvscf     :      0.03s CPU      0.03s WALL (     176 calls)
     addusdbec    :      0.03s CPU      0.02s WALL (     187 calls)
 
     HP           :     25.67s CPU     26.21s WALL

 
   This run was terminated on:  10:18:45   7Sep2018            

=------------------------------------------------------------------------------=
   JOB DONE.
=------------------------------------------------------------------------------=