1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
!
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------
subroutine ccgsolve_all (ch_psi, ccg_psi, e, d0psi, dpsi, h_diag, &
ndmx, ndim, ethr, ik, kter, conv_root, anorm, nbnd, npol, freq_c)
!----------------------------------------------------------------------
!
! iterative solution of the linear systems (i=1,nbnd):
!
! ( H - e_i + Q ) * dpsi_i = d0psi_i (1)
!
! where H is a complex hermitean matrix, e_i is a real scalar, Q is a
! projector on occupied states, dpsi_i and d0psi_ are complex vectors
!
! on input:
! ch_psi EXTERNAL name of a subroutine:
! Calculates (H-e+Q)*psi products.
! Vectors psi and psip should be dimensioned
! (ndmx,nbnd)
!
! cg_psi EXTERNAL name of a subroutine:
! which calculates (h-e)^-1 * psi, with
! some approximation, e.g. (diag(h)-e)
!
! e real unperturbed eigenvalue.
!
! dpsi contains an estimate of the solution
! vector.
!
! d0psi contains the right hand side vector
! of the system.
!
! ndmx integer row dimension of dpsi, ecc.
!
! ndim integer actual row dimension of dpsi
!
! ethr real convergence threshold. solution
! improvement is stopped when the error in
! eq (1), defined as l.h.s. - r.h.s., becomes
! less than ethr in norm.
!
! on output: dpsi contains the refined estimate of the
! solution vector.
!
! d0psi is corrupted on exit
!
! revised (extensively) 6 Apr 1997 by A. Dal Corso & F. Mauri
! revised (to reduce memory) 29 May 2004 by S. de Gironcoli
!
USE kinds, ONLY : DP
USE mp_bands, ONLY : intra_bgrp_comm, inter_bgrp_comm, use_bgrp_in_hpsi
USE mp, ONLY : mp_sum, mp_barrier
USE control_flags, ONLY : gamma_only
USE gvect, ONLY : gstart
implicit none
!
! first the I/O variables
!
integer :: ndmx, & ! input: the maximum dimension of the vectors
ndim, & ! input: the actual dimension of the vectors
kter, & ! output: counter on iterations
nbnd, & ! input: the number of bands
npol, & ! input: number of components of the wavefunctions
ik ! input: the k point
real(DP) :: &
e(nbnd), & ! input: the actual eigenvalue
anorm, & ! output: the norm of the error in the solution
ethr ! input: the required precision
complex(DP) :: &
dpsi (ndmx*npol, nbnd), & ! output: the solution of the linear syst
h_diag(ndmx*npol,nbnd), & ! input: an estimate of ( H - \epsilon -w)
! w is complex
freq_c , & ! complex frequency
d0psi (ndmx*npol, nbnd) ! input: the known term
logical :: conv_root ! output: if true the root is converged
external ch_psi ! input: the routine computing ch_psi
external ccg_psi ! input: the routine computing cg_psi
!
! here the local variables
!
integer, parameter :: maxter = 1000
! the maximum number of iterations
integer :: iter, ibnd, ibnd_, lbnd
! counters on iteration, bands
integer , allocatable :: conv (:)
! if 1 the root is converged
complex(DP), allocatable :: g (:,:), t (:,:), h (:,:), hold (:,:)
COMPLEX(DP), ALLOCATABLE :: gs (:,:), ts (:,:), hs (:,:), hsold (:,:)
! the gradient of psi
! the preconditioned gradient
! the delta gradient
! the conjugate gradient
! work space
complex(DP) :: dcgamma, dcgamma1, dclambda, dclambda1
! the ratio between rho
! step length
complex(DP), external :: zdotc
REAL(kind=dp), EXTERNAL :: ddot
! the scalar product
real(DP), allocatable :: eu (:)
complex(DP), allocatable :: rho (:), rhoold (:), euc (:), a(:), c(:)
! the residue
! auxiliary for h_diag
real(DP) :: kter_eff
! account the number of iterations with b
! coefficient of quadratic form
integer, allocatable :: indb(:)
! bgrp parallelization auxiliary variables
INTEGER :: n_start, n_end, my_nbnd
logical :: lsave_use_bgrp_in_hpsi
!
call start_clock ('ccgsolve')
call divide (inter_bgrp_comm,nbnd,n_start,n_end)
my_nbnd = n_end - n_start + 1
! my_nbnd =nbnd
! allocate workspace (bgrp distributed)
allocate ( conv(nbnd) )
allocate ( g(ndmx*npol,my_nbnd), t(ndmx*npol,my_nbnd), h(ndmx*npol,my_nbnd), &
hold(ndmx*npol,my_nbnd) )
allocate ( gs(ndmx*npol,my_nbnd), ts(ndmx*npol,my_nbnd), hs(ndmx*npol,my_nbnd), &
hsold(ndmx*npol,my_nbnd) )
allocate ( a(my_nbnd), c(my_nbnd) )
allocate ( rho(my_nbnd), rhoold(my_nbnd) )
allocate ( eu(my_nbnd) )
allocate ( euc(my_nbnd) )
allocate ( indb(my_nbnd) )
! WRITE( stdout,*) g,t,h,hold
kter_eff = 0.d0 ; conv (1:nbnd) = 0
g=(0.d0,0.d0); t=(0.d0,0.d0); h=(0.d0,0.d0); hold=(0.d0,0.d0)
gs=(0.d0,0.d0); ts=(0.d0,0.d0); hs=(0.d0,0.d0); hsold=(0.d0,0.d0)
rho= (0.0d0, 0.0d0); rhoold=(0.0d0,0.d0)
! bgrp parallelization is done outside h_psi/s_psi. set use_bgrp_in_hpsi temporarily to false
lsave_use_bgrp_in_hpsi = use_bgrp_in_hpsi ; use_bgrp_in_hpsi = .false.
do ibnd = 1, nbnd
indb(ibnd) = ibnd
enddo
eu = e
do iter = 1, maxter
!
! compute the gradient. can reuse information from previous step
!
if (iter == 1) then
do ibnd = n_start, n_end
euc(ibnd) = CMPLX(e(indb(ibnd))+DREAL(freq_c), DIMAG(freq_c), KIND=DP)
ENDDO
call ch_psi (ndim, dpsi, g, euc, ik, my_nbnd)
do ibnd = n_start, n_end ; ibnd_ = ibnd - n_start + 1
call zaxpy (ndim, (-1.d0,0.d0), d0psi(1,ibnd), 1, g(1,ibnd_), 1)
enddo
IF (npol==2) THEN
do ibnd = n_start, n_end ; ibnd_ = ibnd - n_start + 1
call zaxpy (ndim, (-1.d0,0.d0), d0psi(ndmx+1,ibnd), 1, g(ndmx+1,ibnd_), 1)
enddo
END IF
gs(:,:) = CONJG(g(:,:))
endif
!
! compute preconditioned residual vector and convergence check
!
lbnd = 0
do ibnd = n_start, n_end ; ibnd_ = ibnd - n_start + 1
if (conv (ibnd) .eq.0) then
lbnd = lbnd+1
call zcopy (ndmx*npol, g (1, ibnd_), 1, h (1, ibnd_), 1)
call zcopy (ndmx*npol, gs (1, ibnd_), 1, hs (1, ibnd_), 1)
call ccg_psi(ndmx, ndim, 1, h(1,ibnd_), h_diag(1,ibnd), 1 )
call ccg_psi(ndmx, ndim, 1, hs(1,ibnd_), h_diag(1,ibnd), -1 )
IF (gamma_only) THEN
rho(lbnd)=2.0d0*ddot(2*ndmx*npol,h(1,ibnd_),1,g(1,ibnd_),1)
IF(gstart==2) THEN
rho(lbnd)=rho(lbnd)-DBLE(h(1,ibnd_))*DBLE(g(1,ibnd_))
ENDIF
ELSE
rho(lbnd) = zdotc (ndmx*npol, hs(1,ibnd_), 1, g(1,ibnd_), 1)
ENDIF
endif
enddo
kter_eff = kter_eff + DBLE (lbnd) / DBLE (nbnd)
call mp_sum( rho(1:lbnd), intra_bgrp_comm )
do ibnd = n_end, n_start, -1 ; ibnd_ = ibnd - n_start + 1
if (conv(ibnd).eq.0) then
rho(ibnd_)=rho(lbnd)
lbnd = lbnd -1
anorm = sqrt ( abs (rho (ibnd_)) )
if (anorm.lt.ethr) conv (ibnd) = 1
endif
enddo
!
conv_root = .true.
do ibnd = n_start, n_end
conv_root = conv_root.and. (conv (ibnd) .eq.1)
enddo
if (conv_root) goto 100
!
! compute the step direction h. Conjugate it to previous step
!
lbnd = 0
do ibnd = n_start, n_end ; ibnd_ = ibnd - n_start + 1
if (conv (ibnd) .eq.0) then
!
! change sign to h and hs
!
call dscal (2 * ndmx * npol, - 1.d0, h (1, ibnd_), 1)
call dscal (2 * ndmx * npol, - 1.d0, hs (1, ibnd_), 1)
if (iter.ne.1) then
dcgamma = rho (ibnd_) / rhoold (ibnd_)
dcgamma1 = CONJG(dcgamma)
call zaxpy (ndmx*npol, dcgamma, hold (1, ibnd_), 1, h (1, ibnd_), 1)
CALL zaxpy (ndmx*npol, dcgamma1, hsold (1, ibnd_), 1, hs (1, ibnd_), 1)
endif
!
! here hold is used as auxiliary vector in order to efficiently compute t = A*h
! it is later set to the current (becoming old) value of h
!
lbnd = lbnd+1
call zcopy (ndmx*npol, h (1, ibnd_), 1, hold (1, lbnd), 1)
CALL zcopy (ndmx*npol, hs (1, ibnd_), 1, hsold (1, lbnd), 1)
indb (lbnd) = ibnd
endif
enddo
!
! compute t = A*h and ts= A^+ * h
!
DO ibnd=1,lbnd
euc(ibnd) = CMPLX(e(indb(ibnd))+DREAL(freq_c), DIMAG(freq_c), KIND=DP)
ENDDO
call ch_psi (ndim, hold, t, euc, ik, lbnd)
call ch_psi (ndim, hsold, ts, conjg(euc), ik, lbnd)
!
! compute the coefficients a and c for the line minimization
! compute step length lambda
!
lbnd=0
do ibnd = n_start, n_end ; ibnd_ = ibnd - n_start + 1
if (conv (ibnd) .eq.0) then
lbnd=lbnd+1
IF (gamma_only) THEN
a(lbnd) = 2.0d0*ddot(2*ndmx*npol,hs(1,ibnd_),1,g(1,ibnd_),1)
c(lbnd) = 2.0d0*ddot(2*ndmx*npol,hs(1,ibnd_),1,t(1,lbnd),1)
IF (gstart == 2) THEN
a(lbnd)=a(lbnd)-DBLE(hs(1,ibnd_))*DBLE(g(1,ibnd_))
c(lbnd)=c(lbnd)-DBLE(hs(1,ibnd_))*DBLE(t(1,lbnd))
ENDIF
ELSE
a(lbnd) = zdotc (ndmx*npol, hs(1,ibnd_), 1, g(1,ibnd_), 1)
c(lbnd) = zdotc (ndmx*npol, hs(1,ibnd_), 1, t(1,lbnd), 1)
ENDIF
end if
end do
!
call mp_sum( a(1:lbnd), intra_bgrp_comm )
call mp_sum( c(1:lbnd), intra_bgrp_comm )
lbnd=0
do ibnd = n_start, n_end ; ibnd_ = ibnd - n_start + 1
if (conv (ibnd) .eq.0) then
lbnd=lbnd+1
dclambda = - a(lbnd) / c(lbnd)
dclambda1 = CONJG(dclambda)
!
! move to new position
!
call zaxpy (ndmx*npol, dclambda, h(1,ibnd_), 1, dpsi(1,ibnd), 1)
!
! update to get the gradient
!
!g=g+lam
call zaxpy (ndmx*npol, dclambda, t(1,lbnd), 1, g(1,ibnd_), 1)
CALL zaxpy (ndmx*npol, dclambda1, ts(1,lbnd), 1, gs(1,ibnd_), 1)
!
! save current (now old) h and rho for later use
!
call zcopy (ndmx*npol, h(1,ibnd_), 1, hold(1,ibnd_), 1)
CALL zcopy (ndmx*npol, hs(1,ibnd_), 1, hsold(1,ibnd_), 1)
rhoold (ibnd_) = rho (ibnd_)
endif
enddo
enddo
100 continue
! deallocate workspace not needed anymore
deallocate (eu) ; deallocate (rho, rhoold) ; deallocate (a,c) ; deallocate (g, t, h, hold)
deallocate (euc)
! wait for all bgrp to complete their task
CALL mp_barrier( inter_bgrp_comm )
! check if all root converged across all bgrp
call mp_sum( conv, inter_bgrp_comm )
conv_root = .true.
do ibnd = 1, nbnd
conv_root = conv_root.and. (conv (ibnd) .eq.1)
enddo
deallocate (conv)
! collect the result
if (n_start > 1 ) dpsi(:, 1:n_start-1) = (0.d0,0.d0) ; if (n_end < nbnd) dpsi(:, n_end+1:nbnd) = (0.d0,0.d0)
call mp_sum( dpsi, inter_bgrp_comm )
call mp_sum( kter_eff, inter_bgrp_comm )
kter = kter_eff
! restore the value of use_bgrp_in_hpsi to its saved value
use_bgrp_in_hpsi = lsave_use_bgrp_in_hpsi
call stop_clock ('ccgsolve')
return
end subroutine ccgsolve_all
|