1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
!
! Copyright (C) 2001-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE ph_vdW_DF
USE kinds, ONLY : dp
USE constants, ONLY : pi, e2
USE mp, ONLY : mp_bcast, mp_sum, mp_barrier
USE mp_pools, ONLY : me_pool, nproc_pool, intra_pool_comm, root_pool
USE io_global, ONLY : ionode
USE fft_base, ONLY : dfftp
USE fft_interfaces, ONLY : fwfft, invfft
USE control_flags, ONLY : iverbosity, gamma_only
USE io_global, ONLY : stdout
USE vdW_DF, ONLY : inlc, initialize_spline_interpolation, &
interpolate_kernel, q_mesh, Nr_points, Nqs, r_max
USE gc_lr, ONLY : grho
IMPLICIT NONE
real(DP) :: lambda_phonon = 0.0005d0
!! -------------------------------------------------------------------------
!! Rho and gradient rhos
!! -------------------------------------------------------------------------
real(dp), allocatable :: total_rho(:)
real(dp), allocatable :: gradient_rho(:,:)
complex(dp), allocatable :: gradient_drho(:,:)
!! -------------------------------------------------------------------------
real(dp), allocatable :: q0(:), q(:)
real(dp), allocatable :: dq0_dq(:), d2q0_dq2(:)
real(dp), allocatable :: dq_dn_n(:), dn_dq_dn_n_n(:), dq_dgradn_n_gmod(:)
real(dp), allocatable, save :: d2y_dx2(:,:)
real(DP), parameter :: epsr = 1.0d-10, epsg = 1.0d-10, epsrv = 1.0d-12
private
public :: lambda_phonon, dv_drho_vdwdf
CONTAINS
!! #####################################################################################################
!! | |
!! | dv_drho_vdw_test |
!! |______________________|
subroutine dv_drho_vdwdf(rho, drho, nspin, q_point, dv_drho)
USE gvect, ONLY : g, ngm
USE cell_base, ONLY : tpiba, omega
integer, intent(IN) :: nspin
real(dp), intent(IN) :: rho(:,:), q_point(3)
complex(DP), intent(IN) :: drho (dfftp%nnr, nspin)
complex(DP), intent(INOUT) :: dv_drho(dfftp%nnr, nspin)
!!
complex(dp), allocatable :: delta_v(:)
integer :: i_grid
character(len=70) :: fn
!!
allocate(delta_v(dfftp%nnr))
CALL get_delta_v(rho, drho, nspin, q_point, delta_v)
dv_drho(:,1) = e2*delta_v(:)
deallocate(delta_v)
end subroutine dv_drho_vdwdf
!! ###############################################################################################################
!! | |
!! | get_thetas_derivatives |
!! |__________________________|
subroutine get_delta_v(rho, drho, nspin, q_point, delta_v)
USE gvect, ONLY : g, ngm
USE cell_base, ONLY : tpiba, omega
integer, intent(IN) :: nspin
real(dp), intent(IN) :: rho(:,:), q_point(3) !
complex(DP), intent(IN) :: drho (dfftp%nnr, nspin)
complex(DP), intent(OUT) :: delta_v(dfftp%nnr)
!! Variables needed for calculations
real(dp) :: gmod, gmod2
real(dp) :: theta, dtheta_dn, dtheta_dgradn, d2theta_dn2, dn_dtheta_dgradn, dgradn_dtheta_dgradn
complex(dp) :: gradn_graddeltan
!! -------------------------------------------------------------------------
!! Terms for the delta_b part
!! -------------------------------------------------------------------------
real(dp), allocatable :: b1(:,:)
complex(dp), allocatable :: b2(:,:)
!! -------------------------------------------------------------------------
!! Terms for the delta_h part
!! -------------------------------------------------------------------------
complex(dp) :: h1, h1part2
complex(dp), allocatable :: h1t(:), h2t(:)
!! -------------------------------------------------------------------------
!! For the interpolation
!! -------------------------------------------------------------------------
integer :: q_low, q_hi, qbin
real(dp) :: dq, a, b, c, d, e, f, temp
!! -------------------------------------------------------------------------
!! Indexes and
!! -------------------------------------------------------------------------
integer :: P_i, icar, i_grid, theta_i, i_proc, I
!! -------------------------------------------------------------------------
!! Delta u and delta_h
!! -------------------------------------------------------------------------
complex(dp), allocatable :: u(:,:), delta_u(:,:)
complex(dp), allocatable :: delta_h(:), delta_h_aux(:)
!! -------------------------------------------------------------------------
!! Delta u and delta_h
!! -------------------------------------------------------------------------
character(len=70) :: fn
integer :: temp_unit
!! -------------------------------------------------------------------------
!! Allocations
!! -------------------------------------------------------------------------
!! Global variables
allocate(total_rho(dfftp%nnr) )
allocate(gradient_rho(3,dfftp%nnr))
allocate(gradient_drho(3,dfftp%nnr))
allocate(q0(dfftp%nnr), q(dfftp%nnr))
allocate(dq0_dq(dfftp%nnr), d2q0_dq2(dfftp%nnr))
allocate(dq_dn_n(dfftp%nnr), dn_dq_dn_n_n(dfftp%nnr), dq_dgradn_n_gmod(dfftp%nnr))
!! Local variables
allocate(b1(dfftp%nnr, Nqs), b2(dfftp%nnr, Nqs))
allocate(u(dfftp%nnr, Nqs), delta_u(dfftp%nnr, Nqs))
!! -------------------------------------------------------------------------
!! Zero all values
!! -------------------------------------------------------------------------
theta = 0.0D0
dtheta_dn = 0.0D0
dtheta_dgradn = 0.0D0
d2theta_dn2 = 0.0D0
dn_dtheta_dgradn = 0.0D0
dgradn_dtheta_dgradn = 0.0D0
b1(:,:) = 0.0D0
b2(:,:) = 0.0D0
u(:,:) = (0.0D0, 0.0D0)
delta_u(:,:) = (0.0D0, 0.0D0)
! Empty the output vector
delta_v(:) = (0.0D0, 0.0_DP)
gradient_drho(:,:) = (0.0D0, 0.0D0)
!! -------------------------------------------------------------------------
!! Gradients
!! -------------------------------------------------------------------------
total_rho(:) = rho(:,1)
call fft_gradient_r2r(dfftp,total_rho,g,gradient_rho)
CALL fft_qgradient (dfftp, drho(:,1), q_point, g, gradient_drho)
!! -------------------------------------------------------------------------
!! q and derivatives [REMOVE q0 AND q BEFORE FINAL VERSION]
!! -------------------------------------------------------------------------
call fill_q0_extended_on_grid ()
call mp_barrier(intra_pool_comm)
!! ---------------------------------------------------------------------------------------------
!! Initialize spline
!! ---------------------------------------------------------------------------------------------
if (.not. allocated( d2y_dx2) ) then
allocate( d2y_dx2(Nqs, Nqs) )
call initialize_spline_interpolation(q_mesh, d2y_dx2(:,:))
end if
!! ---------------------------------------------------------------------------------------------
!! Begin integral for the delta_b part
!!---------------------------------------------------------------------------------------------
do i_grid = 1,dfftp%nnr
CALL get_abcdef (q0, i_grid, q_hi, q_low, dq, a,b,c,d,e,f )
do P_i = 1, Nqs
if (total_rho(i_grid) < epsr) cycle
CALL get_thetas_exentended( q_hi, q_low, dq, a,b,c,d,e,f, P_i, i_grid, & ! Input
gmod, gradn_graddeltan, & ! Output
theta, dtheta_dn, dtheta_dgradn, & ! Output - first derivatives
d2theta_dn2, dn_dtheta_dgradn, dgradn_dtheta_dgradn, .true., total_rho) ! Output - second derivatives
!!
!! Terms needed later
!!
b1(i_grid, P_i) = dtheta_dn
b2(i_grid, P_i) = d2theta_dn2*(drho(i_grid,1)/total_rho(i_grid)) + &
dn_dtheta_dgradn*(gradn_graddeltan/total_rho(i_grid))
!! I need complex variable
u(i_grid, P_i) = CMPLX(theta, 0.0D0, KIND=dp)
!! Here gradn_graddeltan IS complex, the cast is automatic
delta_u(i_grid, P_i) = dtheta_dn*drho(i_grid,1) + dtheta_dgradn*gradn_graddeltan
end do
end do
!! -------------------------------------------------------------------------
!! Delta u part
!! -------------------------------------------------------------------------
CALL get_u_delta_u(u, delta_u, q_point)
do i_grid = 1,dfftp%nnr
do P_i = 1, Nqs
delta_v(i_grid) = delta_v(i_grid) + &
delta_u(i_grid, P_i) * b1(i_grid, P_i) + &
u(i_grid, P_i) * b2(i_grid, P_i)
enddo
enddo
call mp_barrier(intra_pool_comm)
!! -------------------------------------------------------------------------
!! Deallocate something
!! -------------------------------------------------------------------------
deallocate(b1,b2)
allocate(h1t(dfftp%nnr),h2t(dfftp%nnr))
allocate(delta_h(dfftp%nnr))
!! ---------------------------------------------------------------------------------------------
!! Begin h
!!---------------------------------------------------------------------------------------------
delta_h(:) = 0.0_DP
h1t(:) = (0.0D0, 0.0D0)
h2t(:) = (0.0D0, 0.0D0)
do i_grid = 1,dfftp%nnr
CALL get_abcdef (q0, i_grid, q_hi, q_low, dq, a,b,c,d,e,f )
do P_i = 1, Nqs
if (total_rho(i_grid) < epsr) cycle
CALL get_thetas_exentended( q_hi, q_low, dq, a,b,c,d,e,f, P_i, i_grid, & ! Input
gmod, gradn_graddeltan, & ! Output
theta, dtheta_dn, dtheta_dgradn, & ! Output - first derivatives
d2theta_dn2, dn_dtheta_dgradn, dgradn_dtheta_dgradn, .false., total_rho) ! Output - second derivatives
!!
!! Terms nedded later
!!
h1part2 = dn_dtheta_dgradn*(drho(i_grid,1)/total_rho(i_grid)) + dgradn_dtheta_dgradn*(gradn_graddeltan/total_rho(i_grid))
h1t(i_grid) = h1t(i_grid) + delta_u(i_grid,P_i)*dtheta_dgradn + u(i_grid,P_i)*h1part2
h2t(i_grid) = h2t(i_grid) + u(i_grid,P_i)*dtheta_dgradn
end do
end do
!! ---------------------------------------------------------------------------------------------
!! Derivative
!!---------------------------------------------------------------------------------------------
allocate(delta_h_aux(dfftp%nnr))
do icar = 1,3
delta_h(:) = (h1t(:) * gradient_rho(icar,:)+ h2t(:) * gradient_drho(icar,:))
CALL fwfft ('Rho', delta_h, dfftp)
delta_h_aux(:) = (0.0_DP, 0.0_DP)
delta_h_aux(dfftp%nl(:)) = CMPLX(0.0_DP,(g(icar,:)+q_point(icar)),kind=DP ) * delta_h(dfftp%nl(:))
if (gamma_only) delta_h_aux(dfftp%nlm(:)) = CONJG(delta_h_aux(dfftp%nl(:)))
CALL invfft ('Rho', delta_h_aux, dfftp)
delta_h_aux(:) = delta_h_aux(:)*tpiba
delta_v(:) = delta_v(:) - delta_h_aux(:)
end do
!! -------------------------------------------------------------------------
!! Deallocate everything
!! -------------------------------------------------------------------------
call mp_barrier(intra_pool_comm)
deallocate(total_rho, gradient_drho)
deallocate(gradient_rho)
deallocate(q0, q, dq0_dq, d2q0_dq2)
deallocate(dq_dn_n, dn_dq_dn_n_n, dq_dgradn_n_gmod)
deallocate(h1t, h2t)
deallocate(delta_h_aux, delta_h)
deallocate(u, delta_u)
end subroutine get_delta_v
!! ###############################################################################################################
!! | |
!! | get_abcdef |
!! | |
!! ###############################################################################################################
SUBROUTINE get_abcdef (q0, i_grid, q_hi, q_low, dq, a,b,c,d,e,f )
real(dp), intent(IN) :: q0(:)
integer, INTENT(IN) :: i_grid
integer, INTENT(OUT) :: q_hi, q_low
real(dp), intent(OUT) :: a,b,c,d,e,f, dq
integer :: qbin
q_low = 1
q_hi = Nqs
do while ( (q_hi - q_low) > 1)
qbin = int((q_hi + q_low)/2)
if (q_mesh(qbin) > q0(i_grid)) then
q_hi = qbin
else
q_low = qbin
end if
end do
if (q_hi == q_low) call errore('get_potential','qhi == qlow',1)
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
dq = q_mesh(q_hi) - q_mesh(q_low)
a = (q_mesh(q_hi) - q0(i_grid))/dq
b = (q0(i_grid) - q_mesh(q_low))/dq
c = (a**3 - a)*dq**2/6.0D0
d = (b**3 - b)*dq**2/6.0D0
e = (3.0D0*a**2 - 1.0D0)*dq/6.0D0
f = (3.0D0*b**2 - 1.0D0)*dq/6.0D0
END SUBROUTINE get_abcdef
SUBROUTINE get_thetas_exentended (q_hi, q_low, dq, a,b,c,d,e,f, P_i, i_grid, &
gmod, gradn_graddeltan, &
theta, dtheta_dn, dtheta_dgradn, d2theta_dn2, &
dn_dtheta_dgradn, dgradn_dtheta_dgradn, do_write, total_rho)
integer, intent(IN) :: q_low, q_hi, P_i, i_grid
real(dp), intent(IN) :: dq, a, b, c, d, e, f
real(dp), intent(IN) :: total_rho(dfftp%nnr)
logical :: do_write
real(dp), INTENT(OUT) :: gmod, theta, dtheta_dn, dtheta_dgradn, d2theta_dn2, dn_dtheta_dgradn, dgradn_dtheta_dgradn
complex(dp), INTENT(OUT) :: gradn_graddeltan
real(dp) :: y(Nqs), d2P_dq02, dP_dq0, P
character(len=70) :: fn
y = 0.0D0
y(P_i) = 1.0D0
!!
!! P_alpha and derivatives | Num. Recip. Fortran 2nd Ed. p.108
!!
d2P_dq02 = a*d2y_dx2(P_i,q_low) + b*d2y_dx2(P_i,q_hi)
dP_dq0 = (y(q_hi) - y(q_low))/dq - e*d2y_dx2(P_i,q_low) + f*d2y_dx2(P_i,q_hi)
P = a*y(q_low) + b*y(q_hi) + c*d2y_dx2(P_i,q_low) + d*d2y_dx2(P_i,q_hi)
!!
!! Thetas
!!
theta = total_rho(i_grid)*P
dtheta_dn = P + dP_dq0*dq0_dq(i_grid)*dq_dn_n(i_grid) ! Save for later
dtheta_dgradn = dP_dq0*dq0_dq(i_grid)*dq_dgradn_n_gmod(i_grid)
d2theta_dn2 = dP_dq0*dq0_dq(i_grid)*dq_dn_n(i_grid) + &
d2P_dq02*(dq0_dq(i_grid)**2)*(dq_dn_n(i_grid)**2) + &
dP_dq0*d2q0_dq2(i_grid)*(dq_dn_n(i_grid)**2) + &
dP_dq0*dq0_dq(i_grid)*dn_dq_dn_n_n(i_grid)
dn_dtheta_dgradn = d2P_dq02*(dq0_dq(i_grid)**2)*dq_dn_n(i_grid)*dq_dgradn_n_gmod(i_grid) + &
dP_dq0*d2q0_dq2(i_grid)*dq_dn_n(i_grid)*dq_dgradn_n_gmod(i_grid) - &
4.0D0/3.0D0*dP_dq0*dq0_dq(i_grid)*dq_dgradn_n_gmod(i_grid)
dgradn_dtheta_dgradn = d2P_dq02*(dq0_dq(i_grid)**2)*(dq_dgradn_n_gmod(i_grid)**2) + &
dP_dq0*d2q0_dq2(i_grid)*(dq_dgradn_n_gmod(i_grid)**2)
!!
!! Fractions
!!
gmod = sqrt(gradient_rho(1,i_grid)**2+gradient_rho(2,i_grid)**2+gradient_rho(3,i_grid)**2)
gradn_graddeltan = gradient_rho(1,i_grid)*gradient_drho(1,i_grid) + &
gradient_rho(2,i_grid)*gradient_drho(2,i_grid) + &
gradient_rho(3,i_grid)*gradient_drho(3,i_grid)
END SUBROUTINE get_thetas_exentended
!! ###############################################################################################################
!! | |
!! | GET_Q0_ON_GRID |
!! |__________________|
!! This routine first calculates the q value defined in (DION equations 11 and 12), then
!! saturates it according to (SOLER equation 7).
SUBROUTINE fill_q0_extended_on_grid ()
!!
!! more specifically it calcultates the following
!!
!! q0(ir) = q0 as defined above
!! dq0_dq(ir) = d q0 /d q
!! dq_drho(ir) = total_rho * d q /d rho
!! dq_dgradrho = total_rho / |gradient_rho| * d q / d |gradient_rho|
!!
USE vdW_DF, ONLY : q_cut, q_min
!
! _
real(dp), parameter :: LDA_A = 0.031091D0, LDA_a1 = 0.2137D0 !
real(dp), parameter :: LDA_b1 = 7.5957D0 , LDA_b2 = 3.5876D0 ! see J.P. Perdew and Yue Wang, Phys. Rev. B 45, 13244 (1992).
real(dp), parameter :: LDA_b3 = 1.6382D0 , LDA_b4 = 0.49294D0 !_
real(dp) :: Z_ab = -0.8491D0 !! see DION
integer, parameter :: m_cut = 12 !! How many terms to include in the sum
! !! of SOLER equation 7
real(dp) :: kF, r_s, sqrt_r_s, gc !! Intermediate variables needed to get q and q0
real(dp) :: LDA_1, LDA_2, exponent, gmod !!
real(dp) :: expTemp1, expTemp2
real(dp) :: dLDA_1_dn_n, dLDA_2_dn_n, d2LDA_1_dn2_n2, d2LDA_2_dn2_n2
! !! Needed by dq0_drho and dq0_dgradrho by the chain rule.
integer :: i_grid, index, count=0 !! Indexing variables
if ( inlc == 1 .OR. inlc == 3 ) Z_ab = -0.8491D0
if ( inlc == 2 .OR. inlc == 4 .OR. inlc == 5 ) Z_ab = -1.887D0
! initialize q0-related arrays ...
q0(:) = q_cut
q = 0.0_DP
dq0_dq(:) = 0.0_DP !
d2q0_dq2(:) = 0.0_DP
dq_dn_n(:) = 0.0_DP ! total_rho * d q/d rho
dn_dq_dn_n_n(:) = 0.0_DP
dq_dgradn_n_gmod(:) = 0.0_DP ! total_rho / |gradient_rho| * d q / d |gradient_rho|
do i_grid = 1, dfftp%nnr
!! ------------------------------------------------------------------------------------
if (total_rho(i_grid) < epsr) cycle
!! ------------------------------------------------------------------------------------
!! Calculate some intermediate values needed to find q
!! ------------------------------------------------------------------------------------
kF = (3.0D0*pi*pi*total_rho(i_grid))**(1.0D0/3.0D0)
r_s = (3.0D0/(4.0D0*pi*total_rho(i_grid)))**(1.0D0/3.0D0)
sqrt_r_s = sqrt(r_s)
gc = -Z_ab/(36.0D0*kF*total_rho(i_grid)**2) &
* (gradient_rho(1,i_grid)**2+gradient_rho(2,i_grid)**2+gradient_rho(3,i_grid)**2)
gmod = sqrt(gradient_rho(1,i_grid)**2+gradient_rho(2,i_grid)**2+gradient_rho(3,i_grid)**2)
LDA_1 = 8.0D0*pi/3.0D0*(LDA_A*(1.0D0+LDA_a1*r_s))
LDA_2 = 2.0D0*LDA_A * (LDA_b1*sqrt_r_s + LDA_b2*r_s + LDA_b3*r_s*sqrt_r_s + LDA_b4*r_s*r_s)
!! ------------------------------------------------------------------------------------
!! This is the q value defined in equations 11 and 12 of DION
!! ---------------------------------------------------------------
q(i_grid) = kF + LDA_1 * log(1.0D0+1.0D0/LDA_2) + gc
!! ---------------------------------------------------------------
!! ---------------------------------------------------------------------------------------
exponent = 0.0D0
dq0_dq(i_grid) = 0.0D0
expTemp1 = 0.0D0
expTemp2 = 0.0D0
do index = 1, m_cut
exponent = exponent + ( (q(i_grid)/q_cut)**index)/index
dq0_dq(i_grid) = dq0_dq(i_grid) + ( (q(i_grid)/q_cut)**(index-1))
expTemp1 = expTemp1 + ( (q(i_grid)/q_cut)**(index-1))
expTemp2 = expTemp2 + ( ((index-1)/q_cut)*(q(i_grid)/q_cut)**(index-2))
end do
q0(i_grid) = q_cut*(1.0D0 - exp(-exponent))
dq0_dq(i_grid) = dq0_dq(i_grid) * exp(-exponent)
d2q0_dq2(i_grid) = expTemp2*exp(-exponent) - (expTemp1**2)*(1.0D0/q_cut)*exp(-exponent)
dLDA_1_dn_n = -8.0D0*pi/9.0D0 * LDA_A*LDA_a1*r_s
d2LDA_1_dn2_n2 = 32.0D0*pi/27.0D0 * LDA_A*LDA_a1*r_s
dLDA_2_dn_n = -2.0D0*LDA_A*(LDA_b1/6.0D0*sqrt_r_s + LDA_b2/3.0D0*r_s + LDA_b3/2.0D0*r_s*sqrt_r_s + 2.0D0*LDA_b4/3.0D0*r_s**2)
d2LDA_2_dn2_n2 = 2.0D0*LDA_A*(7.0D0*LDA_b1/36.0D0*sqrt_r_s + 4.0D0*LDA_b2/9.0D0*r_s + &
3.0D0*LDA_b3/4.0D0*r_s*sqrt_r_s + 10.0D0*LDA_b4/9.0D0*r_s**2)
!! ---------------------------------------------------------------------------------------
!! This is to handle a case with q0 too small. We simply set it to the smallest q value in
!! out q_mesh. Hopefully this doesn't get used often (ever)
!! ---------------------------------------------------------------------------------------
if (q0(i_grid) < q_min) then
q0(i_grid) = q_min
end if
!! ---------------------------------------------------------------------------------------
!! -------------------------------------------------------------------------------------------------------------------------
dq_dn_n(i_grid) = 1.0D0/3.0D0*kF + (-7.0D0/3.0D0)*gc + dLDA_1_dn_n*log(1.0D0 + 1.0D0/LDA_2) + &
LDA_1*(-1.0D0/(LDA_2*(1.0D0 + LDA_2)))*dLDA_2_dn_n
dn_dq_dn_n_n(i_grid) = 1.0D0/9.0D0*kF + (49.0D0/9.0D0)*gc + dLDA_1_dn_n*log(1.0D0 + 1.0D0/LDA_2) + &
d2LDA_1_dn2_n2*log(1.0D0 + 1.0D0/LDA_2) + &
2.0D0*dLDA_1_dn_n*(-1.0D0/(LDA_2*(1.0D0 + LDA_2)))*dLDA_2_dn_n + &
LDA_1*((1+2.0D0*LDA_2)/((LDA_2*(1.0D0 + LDA_2))**2))*(dLDA_2_dn_n**2) + &
LDA_1*(-1.0D0/(LDA_2*(1.0D0 + LDA_2)))*dLDA_2_dn_n + &
LDA_1*(-1.0D0/(LDA_2*(1.0D0 + LDA_2)))*d2LDA_2_dn2_n2
dq_dgradn_n_gmod(i_grid) = -Z_ab/(18.0D0*kf*total_rho(i_grid))
end do
end SUBROUTINE fill_q0_extended_on_grid
!! #####################################################################################################
!! | |
!! | delta_u |
!! |___________|
subroutine get_u_delta_u(u, delta_u, q_point)
USE gvect, ONLY : g, gg, ngm, igtongl, gl, ngl, gstart
USE cell_base, ONLY : tpiba, omega
complex(dp), intent(inout) :: u(dfftp%nnr,Nqs), delta_u(dfftp%nnr,Nqs)
real(dp), intent(in) :: q_point(3)
!!
!! Valirables
!!
real(dp), allocatable :: kernel_of_g(:,:), kernel_of_gq(:,:)
complex(dp), allocatable :: temp_u(:,:), temp_delta_u(:,:)
real(dp) :: gmod, gqmod
integer :: last_g, g_i, q1_i, q2_i, count, i_grid, final_g !! Index variables
!! -------------------------------------------------------------------------------------------------
!! Allocate variables
!!
allocate( kernel_of_g(Nqs, Nqs), kernel_of_gq(Nqs, Nqs) )
allocate( temp_u(dfftp%nnr, Nqs), temp_delta_u(dfftp%nnr, Nqs) )
temp_u(:,:) = (0.0D0, 0.0D0)
temp_delta_u(:,:) = (0.0D0, 0.0D0)
!!
!! Get argument in reciprocal space
!!
call start_clock( 'vdW_ffts')
do q1_i = 1, Nqs
CALL fwfft ('Rho', u(:,q1_i), dfftp)
CALL fwfft ('Rho', delta_u(:,q1_i), dfftp)
end do
call stop_clock( 'vdW_ffts')
!!
!! Integrate in reciprocal space
!!
last_g = -1
do g_i = 1, ngm
if ( igtongl(g_i) .ne. last_g) then
gmod = sqrt(gl(igtongl(g_i))) * tpiba
call interpolate_kernel(gmod, kernel_of_g)
last_g = igtongl(g_i)
end if
gqmod = sqrt( (g(1,g_i)+q_point(1))**2 + (g(2,g_i)+q_point(2))**2 + (g(3,g_i)+q_point(3))**2 )*tpiba
call interpolate_kernel(gqmod, kernel_of_gq)
!! Loop over alpha
do q2_i = 1, Nqs
!! Sum over beta
do q1_i = 1, Nqs
temp_u(dfftp%nl(g_i), q2_i) = temp_u(dfftp%nl(g_i), q2_i) + kernel_of_g(q2_i,q1_i)*u(dfftp%nl(g_i), q1_i)
temp_delta_u(dfftp%nl(g_i), q2_i) = temp_delta_u(dfftp%nl(g_i), q2_i) + &
kernel_of_gq(q2_i,q1_i)*delta_u(dfftp%nl(g_i), q1_i)
end do
end do
end do
if (gamma_only) then
temp_u(dfftp%nlm(:),:) = CONJG(temp_u(dfftp%nl(:),:))
temp_delta_u(dfftp%nlm(:),:) = CONJG(temp_delta_u(dfftp%nl(:),:))
endif
!!
!! Put everything in real space
!!
call start_clock( 'vdW_ffts')
do q1_i = 1, Nqs
CALL invfft ('Rho', temp_u(:,q1_i), dfftp)
CALL invfft ('Rho', temp_delta_u(:,q1_i), dfftp)
end do
call stop_clock( 'vdW_ffts')
u(:,:) = temp_u(:,:)
delta_u(:,:) = temp_delta_u(:,:)
deallocate(temp_u, temp_delta_u, kernel_of_g, kernel_of_gq)
!! -----------------------------------------------------------------------------------------------
end subroutine get_u_delta_u
END MODULE ph_vdW_DF
! ####################################################################
! | |
! | thetas_to_uk |
|