1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
!
! Copyright (C) 2001-2018 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine localdos (ldos, ldoss, becsum1, dos_ef)
!-----------------------------------------------------------------------
!
! This routine compute the local and total density of state at Ef
!
! Note: this routine use psic as auxiliary variable. it should alread
! be defined
!
! NB: this routine works only with gamma
!
!
USE kinds, ONLY : DP
USE cell_base, ONLY : omega
USE ions_base, ONLY : nat, ityp, ntyp => nsp
USE ener, ONLY : ef
USE fft_base, ONLY : dffts, dfftp
USE fft_interfaces, ONLY : invfft, fft_interpolate
USE buffers, ONLY : get_buffer
USE gvecs, ONLY : doublegrid
USE klist, ONLY : xk, wk, ngk, igk_k, degauss, ngauss, ltetra
USE lsda_mod, ONLY : nspin, lsda, current_spin, isk
USE noncollin_module, ONLY : noncolin, npol, nspin_mag
USE wvfct, ONLY : nbnd, npwx, et
USE becmod, ONLY : calbec, bec_type, allocate_bec_type, deallocate_bec_type
USE wavefunctions, ONLY : evc, psic, psic_nc
USE uspp, ONLY : okvan, nkb, vkb
USE uspp_param, ONLY : upf, nh, nhm
USE qpoint, ONLY : nksq
USE control_lr, ONLY : nbnd_occ
USE units_lr, ONLY : iuwfc, lrwfc
USE mp_pools, ONLY : inter_pool_comm
USE mp, ONLY : mp_sum
USE dfpt_tetra_mod, ONLY : dfpt_tetra_delta
implicit none
complex(DP) :: ldos (dfftp%nnr, nspin_mag), ldoss (dffts%nnr, nspin_mag)
! output: the local density of states at Ef
! output: the local density of states at Ef without augmentation
REAL(DP) :: becsum1 ((nhm * (nhm + 1))/2, nat, nspin_mag)
! output: the local becsum at ef
real(DP) :: dos_ef
! output: the density of states at Ef
!
! local variables for Ultrasoft PP's
!
integer :: ikb, jkb, ijkb0, ih, jh, na, ijh, nt
! counters
complex(DP), allocatable :: becsum1_nc(:,:,:,:)
TYPE(bec_type) :: becp
!
! local variables
!
real(DP) :: weight, w1, wdelta
! weights
real(DP), external :: w0gauss
!
integer :: npw, ik, is, ig, ibnd, j, is1, is2
! counters
integer :: ios
! status flag for i/o
!
! initialize ldos and dos_ef
!
call start_clock ('localdos')
IF (noncolin) THEN
allocate (becsum1_nc( (nhm * (nhm + 1)) / 2, nat, npol, npol))
becsum1_nc=(0.d0,0.d0)
ENDIF
call allocate_bec_type (nkb, nbnd, becp)
becsum1 (:,:,:) = 0.d0
ldos (:,:) = (0d0, 0.0d0)
ldoss(:,:) = (0d0, 0.0d0)
dos_ef = 0.d0
!
! loop over kpoints
!
do ik = 1, nksq
if (lsda) current_spin = isk (ik)
npw = ngk(ik)
weight = wk (ik)
!
! unperturbed wfs in reciprocal space read from unit iuwfc
!
if (nksq > 1) call get_buffer (evc, lrwfc, iuwfc, ik)
call init_us_2 (npw, igk_k(1,ik), xk (1, ik), vkb)
!
call calbec ( npw, vkb, evc, becp)
do ibnd = 1, nbnd_occ (ik)
!
if(ltetra) then
wdelta = dfpt_tetra_delta(ibnd,ik)
else
wdelta = w0gauss ( (ef-et(ibnd,ik)) / degauss, ngauss) / degauss
end if
!
w1 = weight * wdelta / omega
!
! unperturbed wf from reciprocal to real space
!
IF (noncolin) THEN
psic_nc = (0.d0, 0.d0)
do ig = 1, npw
psic_nc (dffts%nl (igk_k(ig,ik)), 1 ) = evc (ig, ibnd)
psic_nc (dffts%nl (igk_k(ig,ik)), 2 ) = evc (ig+npwx, ibnd)
enddo
CALL invfft ('Rho', psic_nc(:,1), dffts)
CALL invfft ('Rho', psic_nc(:,2), dffts)
do j = 1, dffts%nnr
ldoss (j, 1) = ldoss (j, 1) + &
w1 * ( DBLE(psic_nc(j,1))**2+AIMAG(psic_nc(j,1))**2 + &
DBLE(psic_nc(j,2))**2+AIMAG(psic_nc(j,2))**2)
enddo
IF (nspin_mag==4) THEN
DO j = 1, dffts%nnr
!
ldoss(j,2) = ldoss(j,2) + w1*2.0_DP* &
(DBLE(psic_nc(j,1))* DBLE(psic_nc(j,2)) + &
AIMAG(psic_nc(j,1))*AIMAG(psic_nc(j,2)))
ldoss(j,3) = ldoss(j,3) + w1*2.0_DP* &
(DBLE(psic_nc(j,1))*AIMAG(psic_nc(j,2)) - &
DBLE(psic_nc(j,2))*AIMAG(psic_nc(j,1)))
ldoss(j,4) = ldoss(j,4) + w1* &
(DBLE(psic_nc(j,1))**2+AIMAG(psic_nc(j,1))**2 &
-DBLE(psic_nc(j,2))**2-AIMAG(psic_nc(j,2))**2)
!
END DO
END IF
ELSE
psic (:) = (0.d0, 0.d0)
do ig = 1, npw
psic (dffts%nl (igk_k(ig,ik) ) ) = evc (ig, ibnd)
enddo
CALL invfft ('Rho', psic, dffts)
do j = 1, dffts%nnr
ldoss (j, current_spin) = ldoss (j, current_spin) + &
w1 * ( DBLE ( psic (j) ) **2 + AIMAG (psic (j) ) **2)
enddo
END IF
!
! If we have a US pseudopotential we compute here the becsum term
!
w1 = weight * wdelta
ijkb0 = 0
do nt = 1, ntyp
if (upf(nt)%tvanp ) then
do na = 1, nat
if (ityp (na) == nt) then
ijh = 1
do ih = 1, nh (nt)
ikb = ijkb0 + ih
IF (noncolin) THEN
DO is1=1,npol
DO is2=1,npol
becsum1_nc (ijh, na, is1, is2) = &
becsum1_nc (ijh, na, is1, is2) + w1 * &
(CONJG(becp%nc(ikb,is1,ibnd))* &
becp%nc(ikb,is2,ibnd))
END DO
END DO
ELSE
becsum1 (ijh, na, current_spin) = &
becsum1 (ijh, na, current_spin) + w1 * &
DBLE (CONJG(becp%k(ikb,ibnd))*becp%k(ikb,ibnd) )
ENDIF
ijh = ijh + 1
do jh = ih + 1, nh (nt)
jkb = ijkb0 + jh
IF (noncolin) THEN
DO is1=1,npol
DO is2=1,npol
becsum1_nc(ijh,na,is1,is2) = &
becsum1_nc(ijh,na,is1,is2) + w1* &
(CONJG(becp%nc(ikb,is1,ibnd))* &
becp%nc(jkb,is2,ibnd) )
END DO
END DO
ELSE
becsum1 (ijh, na, current_spin) = &
becsum1 (ijh, na, current_spin) + w1 * 2.d0 * &
DBLE(CONJG(becp%k(ikb,ibnd))*becp%k(jkb,ibnd) )
END IF
ijh = ijh + 1
enddo
enddo
ijkb0 = ijkb0 + nh (nt)
endif
enddo
else
do na = 1, nat
if (ityp (na) == nt) ijkb0 = ijkb0 + nh (nt)
enddo
endif
enddo
dos_ef = dos_ef + weight * wdelta
enddo
enddo
if (doublegrid) then
do is = 1, nspin_mag
call fft_interpolate (dffts, ldoss (:, is), dfftp, ldos (:, is))
enddo
else
ldos (:,:) = ldoss (:,:)
endif
IF (noncolin.and.okvan) THEN
DO nt = 1, ntyp
IF ( upf(nt)%tvanp ) THEN
DO na = 1, nat
IF (ityp(na)==nt) THEN
IF (upf(nt)%has_so) THEN
CALL transform_becsum_so(becsum1_nc,becsum1,na)
ELSE
CALL transform_becsum_nc(becsum1_nc,becsum1,na)
END IF
END IF
END DO
END IF
END DO
END IF
call addusldos (ldos, becsum1)
!
! Collects partial sums on k-points from all pools
!
call mp_sum ( ldoss, inter_pool_comm )
call mp_sum ( ldos, inter_pool_comm )
call mp_sum ( dos_ef, inter_pool_comm )
call mp_sum ( becsum1, inter_pool_comm )
!check
! check =0.d0
! do is=1,nspin_mag
! call fwfft('Rho',ldos(:,is),dfftp)
! check = check + omega* DBLE(ldos(nl(1),is))
! call invfft('Rho',ldos(:,is),dfftp)
! end do
! WRITE( stdout,*) ' check ', check, dos_ef
!check
!
IF (noncolin) deallocate(becsum1_nc)
call deallocate_bec_type(becp)
call stop_clock ('localdos')
return
end subroutine localdos
|