1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
|
!
! Copyright (C) 2002-2011 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!------------------------------------------------------------------------------!
MODULE cell_base
!------------------------------------------------------------------------------!
USE kinds, ONLY : DP
USE constants, ONLY : pi, bohr_radius_angs
USE io_global, ONLY : stdout
!
IMPLICIT NONE
SAVE
!
! ibrav: index of the bravais lattice (see latgen.f90)
INTEGER :: ibrav
! celldm: old-style parameters of the simulation cell (se latgen.f90)
REAL(DP) :: celldm(6) = (/ 0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP,0.0_DP /)
! traditional crystallographic cell parameters (alpha=cosbc and so on)
REAL(DP) :: a, b, c, cosab, cosac, cosbc
! format of input cell parameters:
! 'alat','bohr','angstrom'
CHARACTER(len=80) :: cell_units
! alat: lattice parameter - often used to scale quantities, or
! in combination to other parameters/constants to define new units
REAL(DP) :: alat = 0.0_DP
! omega: volume of the simulation cell
REAl(DP) :: omega = 0.0_DP
! tpiba: 2 PI/alat, tpiba2=tpiba^2
REAL(DP) :: tpiba = 0.0_DP, tpiba2 = 0.0_DP
! direct and reciprocal lattice primitive vectors
! at(:,i) are the lattice vectors of the simulation cell, a_i,
! in alat units: a_i(:) = at(:,i)/alat
! bg(:,i) are the reciprocal lattice vectors, b_i,
! in tpiba=2pi/alat units: b_i(:) = bg(:,i)/tpiba
REAL(DP) :: at(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) )
REAL(DP) :: bg(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) )
!
! parameters for reference cell
REAL(DP) :: ref_tpiba2 = 0.0_DP
REAL(DP) :: ref_at(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) )
REAL(DP) :: ref_bg(3,3) = RESHAPE( (/ 0.0_DP /), (/ 3, 3 /), (/ 0.0_DP /) )
!
! parameter to store tpiba2 calculated from the input cell parameter
! used in emass_preconditioning, required for restarting variable cell calculation correctly in CP
REAL(DP) :: init_tpiba2 = 0.0_DP
!
! -------------------------------------------------------------------------
! ... periodicity box
! ... In the matrix "a" every row is the vector of each side of
! ... the cell in the real space
TYPE boxdimensions
REAL(DP) :: a(3,3) ! direct lattice generators
REAL(DP) :: m1(3,3) ! reciprocal lattice generators
REAL(DP) :: omega ! cell volume = determinant of a
REAL(DP) :: g(3,3) ! metric tensor
REAL(DP) :: gvel(3,3) ! metric velocity
REAL(DP) :: pail(3,3) ! stress tensor ( scaled coor. )
REAL(DP) :: paiu(3,3) ! stress tensor ( cartesian coor. )
REAL(DP) :: hmat(3,3) ! cell parameters ( transpose of "a" )
REAL(DP) :: hvel(3,3) ! cell velocity
REAL(DP) :: hinv(3,3)
REAL(DP) :: deth
INTEGER :: perd(3)
END TYPE boxdimensions
! The following relations should always be kept valid:
! h = at*alat; ainv = h^(-1); ht=transpose(h)
REAL(DP) :: h(3,3) = 0.0_DP ! simulation cell at time t
REAL(DP) :: ainv(3,3) = 0.0_DP
REAL(DP) :: hold(3,3) = 0.0_DP ! simulation cell at time t-delt
REAL(DP) :: hnew(3,3) = 0.0_DP ! simulation cell at time t+delt
REAL(DP) :: velh(3,3) = 0.0_DP ! simulation cell velocity
REAL(DP) :: deth = 0.0_DP ! determinant of h ( cell volume )
INTEGER :: iforceh(3,3) = 1 ! if iforceh( i, j ) = 0 then h( i, j )
! is not allowed to move
LOGICAL :: enforce_ibrav = .FALSE.! True if ibrav representation is fix
LOGICAL :: fix_volume = .FALSE.! True if cell volume is kept fixed
LOGICAL :: fix_area = .FALSE. ! True if area in xy plane is kept constant
LOGICAL :: isotropic = .FALSE. ! True if volume option is chosen for cell_dofree
REAL(DP) :: wmass = 0.0_DP ! cell fictitious mass
REAL(DP) :: press = 0.0_DP ! external pressure
REAL(DP) :: frich = 0.0_DP ! friction parameter for cell damped dynamics
REAL(DP) :: greash = 1.0_DP ! greas parameter for damped dynamics
LOGICAL :: tcell_base_init = .FALSE.
INTERFACE cell_init
MODULE PROCEDURE cell_init_ht, cell_init_a
END INTERFACE
INTERFACE pbcs
MODULE PROCEDURE pbcs_components, pbcs_vectors
END INTERFACE
INTERFACE s_to_r
MODULE PROCEDURE s_to_r1, s_to_r1b, s_to_r3
END INTERFACE
INTERFACE r_to_s
MODULE PROCEDURE r_to_s1, r_to_s1b, r_to_s3
END INTERFACE
!------------------------------------------------------------------------------!
CONTAINS
!------------------------------------------------------------------------------!
!
SUBROUTINE cell_base_init( ibrav_, celldm_, a_, b_, c_, cosab_, cosac_, &
cosbc_, trd_ht, rd_ht, cell_units_ )
!
! ... initialize cell_base module variables, set up crystal lattice
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: ibrav_
REAL(DP), INTENT(IN) :: celldm_ (6)
LOGICAL, INTENT(IN) :: trd_ht
REAL(DP), INTENT(IN) :: rd_ht (3,3)
CHARACTER(LEN=*), INTENT(IN) :: cell_units_
REAL(DP), INTENT(IN) :: a_ , b_ , c_ , cosab_, cosac_, cosbc_
REAL(DP) :: units
!
IF ( ibrav_ == 0 .and. .not. trd_ht ) THEN
CALL errore('cell_base_init', 'ibrav=0: must read cell parameters', 1)
ELSE IF ( ibrav_ /= 0 .and. trd_ht ) THEN
CALL errore('cell_base_init', 'redundant data for cell parameters', 2)
END IF
!
ibrav = ibrav_
celldm = celldm_
a = a_ ; b = b_ ; c = c_ ; cosab = cosab_ ; cosac = cosac_ ; cosbc = cosbc_
cell_units = cell_units_
units = 0.0_DP
!
IF ( trd_ht ) THEN
!
! ... crystal lattice vectors read from input: find units
!
SELECT CASE ( TRIM( cell_units ) )
CASE ( 'bohr' )
IF( celldm( 1 ) /= 0.0_DP .OR. a /= 0.0_dp ) CALL errore &
('cell_base_init','lattice parameter specified twice',1)
units = 1.0_DP
CASE ( 'angstrom' )
IF( celldm( 1 ) /= 0.0_DP .OR. a /= 0.0_dp ) CALL errore &
('cell_base_init','lattice parameter specified twice',2)
units = 1.0_DP / bohr_radius_angs
CASE ( 'alat' )
IF( celldm( 1 ) /= 0.0_DP ) THEN
units = celldm( 1 )
ELSE IF ( a /= 0.0_dp ) THEN
units = a / bohr_radius_angs
ELSE
CALL errore ('cell_base_init', &
'lattice parameter not specified',1)
END IF
! following case is deprecated and should be removed
CASE ( 'none' )
! cell_units is 'none' if nothing was specified
IF( celldm( 1 ) /= 0.0_DP ) THEN
units = celldm( 1 )
cell_units = 'alat'
ELSE IF ( a /= 0.0_dp ) THEN
units = a / bohr_radius_angs
cell_units = 'alat'
ELSE
units = 1.0_DP
cell_units = 'bohr'
END IF
!
CASE DEFAULT
CALL errore ('cell_base_init', &
'unexpected cell_units '//TRIM(cell_units),1)
END SELECT
!
! ... Beware the transpose operation between matrices ht and at!
!
at = TRANSPOSE( rd_ht ) * units
!
! ... at is in atomic units: find alat, bring at to alat units, find omega
!
IF( celldm( 1 ) /= 0.0_DP ) THEN
alat = celldm( 1 )
ELSE IF ( a /= 0.0_dp ) THEN
alat = a / bohr_radius_angs
ELSE
alat = SQRT ( at(1,1)**2+at(2,1)**2+at(3,1)**2 )
END IF
! for compatibility: celldm still used in phonon etc
celldm(1) = alat
!
at(:,:) = at(:,:) / alat
CALL volume( alat, at(1,1), at(1,2), at(1,3), omega )
!
ELSE
!
! ... crystal lattice vectors via ibrav + celldm parameters
!
IF ( celldm(1) == 0.D0 .and. a /= 0.D0 ) THEN
!
! ... convert crystallographic parameters into celldm parameters
!
CALL abc2celldm ( ibrav, a,b,c,cosab,cosac,cosbc, celldm )
!
ELSE IF ( celldm(1) /= 0.D0 .and. a /= 0.D0 ) THEN
!
CALL errore( 'input', 'do not specify both celldm and a,b,c!', 1 )
!
END IF
!
! ... generate at (in atomic units) from ibrav and celldm
!
CALL latgen( ibrav, celldm, at(1,1), at(1,2), at(1,3), omega )
!
! ... define lattice constants alat, divide at by alat
!
alat = celldm(1)
at(:,:) = at(:,:) / alat
!
END IF
IF ( alat < 1.9_dp ) CALL infomsg ('cell_base_init', &
'DEPRECATED: use true lattice parameter, not A to a.u. conversion factor')
!
! ... Generate the reciprocal lattice vectors
!
CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) )
!
tpiba = 2.0_DP * pi / alat
tpiba2 = tpiba * tpiba
init_tpiba2 = tpiba2 ! BS : this is used in CPV/src/init_run.f90
RETURN
!
END SUBROUTINE cell_base_init
!
SUBROUTINE ref_cell_base_init( ref_alat, rd_ref_ht, ref_cell_units )
!
! ... initialize cell_base module variables, set up crystal lattice
!
IMPLICIT NONE
REAL(DP), INTENT(IN) :: rd_ref_ht (3,3)
REAL(DP), INTENT(INOUT) :: ref_alat
CHARACTER(LEN=*), INTENT(IN) :: ref_cell_units
REAL(DP) :: units, ref_omega
!
! ... reference cell lattice vectors read from REF_CELL_PARAMETERS Card: find units
!
SELECT CASE ( TRIM( ref_cell_units ) )
!
CASE ( 'bohr' )
units = 1.0_DP
CASE ( 'angstrom' )
units = 1.0_DP / bohr_radius_angs
CASE DEFAULT
IF( ref_alat .GT. 0.0_DP ) THEN
units = ref_alat
ELSE
CALL errore('ref_cell_base_init', 'ref_alat must be set to a positive value (in A.U.) in SYSTEM namelist', 1)
END IF
!
END SELECT
!
! ... Beware the transpose operation between matrices ht and at!
!
ref_at = TRANSPOSE( rd_ref_ht ) * units
!
! ... ref_at is in atomic units: find ref_alat, bring ref_at to ref_alat units
!
ref_alat = SQRT ( ref_at(1,1)**2+ref_at(2,1)**2+ref_at(3,1)**2 )
!
ref_at(:,:) = ref_at(:,:) / ref_alat
!
! ... Generate the reciprocal lattice vectors from the reference cell
!
CALL recips( ref_at(1,1), ref_at(1,2), ref_at(1,3), ref_bg(1,1), ref_bg(1,2), ref_bg(1,3) )
!
ref_tpiba2 = (2.0_DP * pi / ref_alat)**2
!
CALL volume( ref_alat, ref_at(1,1), ref_at(1,2), ref_at(1,3), ref_omega )
!
WRITE( stdout, * )
WRITE( stdout, '(3X,"Reference Cell read from REF_CELL_PARAMETERS Card")' )
WRITE( stdout, '(3X,"Reference Cell alat =",F14.8,1X,"A.U.")' ) ref_alat
WRITE( stdout, '(3X,"ref_cell_a1 = ",1X,3f14.8)' ) ref_at(:,1)*ref_alat
WRITE( stdout, '(3X,"ref_cell_a2 = ",1X,3f14.8)' ) ref_at(:,2)*ref_alat
WRITE( stdout, '(3X,"ref_cell_a3 = ",1X,3f14.8)' ) ref_at(:,3)*ref_alat
WRITE( stdout, * )
WRITE( stdout, '(3X,"ref_cell_b1 = ",1X,3f14.8)' ) ref_bg(:,1)/ref_alat
WRITE( stdout, '(3X,"ref_cell_b2 = ",1X,3f14.8)' ) ref_bg(:,2)/ref_alat
WRITE( stdout, '(3X,"ref_cell_b3 = ",1X,3f14.8)' ) ref_bg(:,3)/ref_alat
WRITE( stdout, '(3X,"Reference Cell Volume",F16.8,1X,"A.U.")' ) ref_omega
!
RETURN
!
END SUBROUTINE ref_cell_base_init
!------------------------------------------------------------------------------!
! ... set box
! ... box%m1(i,1) == b1(i) COLUMN are B vectors
! ... box%a(1,i) == a1(i) ROW are A vector
! ... box%omega == volume
! ... box%g(i,j) == metric tensor G
!------------------------------------------------------------------------------!
SUBROUTINE cell_init_ht( what, box, hval )
TYPE (boxdimensions) :: box
REAL(DP), INTENT(IN) :: hval(3,3)
CHARACTER, INTENT(IN) :: what
IF( what == 't' .OR. what == 'T' ) THEN
! hval == ht
box%a = hval
box%hmat = TRANSPOSE( hval )
ELSE
! hval == hmat
box%hmat = hval
box%a = TRANSPOSE( hval )
END IF
CALL gethinv( box )
box%g = MATMUL( box%a(:,:), box%hmat(:,:) )
box%gvel = 0.0_DP
box%hvel = 0.0_DP
box%pail = 0.0_DP
box%paiu = 0.0_DP
RETURN
END SUBROUTINE cell_init_ht
!------------------------------------------------------------------------------!
SUBROUTINE cell_init_a( alat, at, box )
TYPE (boxdimensions) :: box
REAL(DP), INTENT(IN) :: alat, at(3,3)
INTEGER :: i
DO i=1,3
! this is HT: the rows are the lattice vectors
box%a(1,i) = at(i,1)*alat
box%a(2,i) = at(i,2)*alat
box%a(3,i) = at(i,3)*alat
! this is H : the column are the lattice vectors
box%hmat(i,1) = at(i,1)*alat
box%hmat(i,2) = at(i,2)*alat
box%hmat(i,3) = at(i,3)*alat
END DO
box%pail = 0.0_DP
box%paiu = 0.0_DP
box%hvel = 0.0_DP
CALL gethinv(box)
box%g = MATMUL( box%a(:,:), box%hmat(:,:) )
box%gvel = 0.0_DP
RETURN
END SUBROUTINE cell_init_a
!------------------------------------------------------------------------------!
SUBROUTINE r_to_s1 (r,s,box)
REAL(DP), intent(out) :: S(3)
REAL(DP), intent(in) :: R(3)
type (boxdimensions), intent(in) :: box
integer i,j
DO I=1,3
S(I) = 0.0_DP
DO J=1,3
S(I) = S(I) + R(J)*box%m1(J,I)
END DO
END DO
RETURN
END SUBROUTINE r_to_s1
!------------------------------------------------------------------------------!
SUBROUTINE r_to_s3 ( r, s, nat, hinv )
REAL(DP), intent(out) :: S(:,:)
INTEGER, intent(in) :: nat
REAL(DP), intent(in) :: R(:,:)
REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 )
integer :: i, j, ia
DO ia = 1, nat
DO i=1,3
S(i,ia) = 0.0_DP
DO j=1,3
S(i,ia) = S(i,ia) + R(j,ia)*hinv(i,j)
END DO
END DO
END DO
RETURN
END SUBROUTINE r_to_s3
!------------------------------------------------------------------------------!
SUBROUTINE r_to_s1b ( r, s, hinv )
REAL(DP), intent(out) :: S(:)
REAL(DP), intent(in) :: R(:)
REAL(DP), intent(in) :: hinv(:,:) ! hinv = TRANSPOSE( box%m1 )
integer :: i, j
DO I=1,3
S(I) = 0.0_DP
DO J=1,3
S(I) = S(I) + R(J)*hinv(i,j)
END DO
END DO
RETURN
END SUBROUTINE r_to_s1b
!------------------------------------------------------------------------------!
SUBROUTINE s_to_r1 (S,R,box)
REAL(DP), intent(in) :: S(3)
REAL(DP), intent(out) :: R(3)
type (boxdimensions), intent(in) :: box
integer i,j
DO I=1,3
R(I) = 0.0_DP
DO J=1,3
R(I) = R(I) + S(J)*box%a(J,I)
END DO
END DO
RETURN
END SUBROUTINE s_to_r1
!------------------------------------------------------------------------------!
SUBROUTINE s_to_r1b (S,R,h)
REAL(DP), intent(in) :: S(3)
REAL(DP), intent(out) :: R(3)
REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a )
integer i,j
DO I=1,3
R(I) = 0.0_DP
DO J=1,3
R(I) = R(I) + S(J)*h(I,j)
END DO
END DO
RETURN
END SUBROUTINE s_to_r1b
!------------------------------------------------------------------------------!
SUBROUTINE s_to_r3 ( S, R, nat, h )
REAL(DP), intent(in) :: S(:,:)
INTEGER, intent(in) :: nat
REAL(DP), intent(out) :: R(:,:)
REAL(DP), intent(in) :: h(:,:) ! h = TRANSPOSE( box%a )
integer :: i, j, ia
DO ia = 1, nat
DO I = 1, 3
R(I,ia) = 0.0_DP
DO J = 1, 3
R(I,ia) = R(I,ia) + S(J,ia) * h(I,j)
END DO
END DO
END DO
RETURN
END SUBROUTINE s_to_r3
!
!------------------------------------------------------------------------------!
!
SUBROUTINE gethinv(box)
USE matrix_inversion
IMPLICIT NONE
TYPE (boxdimensions), INTENT (INOUT) :: box
!
CALL invmat( 3, box%a, box%m1, box%omega )
box%deth = box%omega
box%hinv = TRANSPOSE( box%m1 )
!
RETURN
END SUBROUTINE gethinv
FUNCTION get_volume( hmat )
IMPLICIT NONE
REAL(DP) :: get_volume
REAL(DP) :: hmat( 3, 3 )
get_volume = hmat(1,1)*(hmat(2,2)*hmat(3,3)-hmat(2,3)*hmat(3,2)) + &
hmat(1,2)*(hmat(2,3)*hmat(3,1)-hmat(2,1)*hmat(3,3)) + &
hmat(1,3)*(hmat(2,1)*hmat(3,2)-hmat(2,2)*hmat(3,1))
RETURN
END FUNCTION get_volume
!
!------------------------------------------------------------------------------!
!
FUNCTION pbc(rin,box,nl) RESULT (rout)
IMPLICIT NONE
TYPE (boxdimensions) :: box
REAL (DP) :: rin(3)
REAL (DP) :: rout(3), s(3)
INTEGER, OPTIONAL :: nl(3)
s = matmul(box%hinv(:,:),rin)
s = s - box%perd*nint(s)
rout = matmul(box%hmat(:,:),s)
IF (present(nl)) THEN
s = REAL( nl, DP )
rout = rout + matmul(box%hmat(:,:),s)
END IF
END FUNCTION pbc
!
!------------------------------------------------------------------------------!
!
SUBROUTINE get_cell_param(box,cell,ang)
IMPLICIT NONE
TYPE(boxdimensions), INTENT(in) :: box
REAL(DP), INTENT(out), DIMENSION(3) :: cell
REAL(DP), INTENT(out), DIMENSION(3), OPTIONAL :: ang
! This code gets the cell parameters given the h-matrix:
! a
cell(1)=sqrt(box%hmat(1,1)*box%hmat(1,1)+box%hmat(2,1)*box%hmat(2,1) &
+box%hmat(3,1)*box%hmat(3,1))
! b
cell(2)=sqrt(box%hmat(1,2)*box%hmat(1,2)+box%hmat(2,2)*box%hmat(2,2) &
+box%hmat(3,2)*box%hmat(3,2))
! c
cell(3)=sqrt(box%hmat(1,3)*box%hmat(1,3)+box%hmat(2,3)*box%hmat(2,3) &
+box%hmat(3,3)*box%hmat(3,3))
IF (PRESENT(ang)) THEN
! gamma
ang(1)=acos((box%hmat(1,1)*box%hmat(1,2)+ &
box%hmat(2,1)*box%hmat(2,2) &
+box%hmat(3,1)*box%hmat(3,2))/(cell(1)*cell(2)))
! beta
ang(2)=acos((box%hmat(1,1)*box%hmat(1,3)+ &
box%hmat(2,1)*box%hmat(2,3) &
+box%hmat(3,1)*box%hmat(3,3))/(cell(1)*cell(3)))
! alpha
ang(3)=acos((box%hmat(1,2)*box%hmat(1,3)+ &
box%hmat(2,2)*box%hmat(2,3) &
+box%hmat(3,2)*box%hmat(3,3))/(cell(2)*cell(3)))
! ang=ang*180.0_DP/pi
ENDIF
END SUBROUTINE get_cell_param
!------------------------------------------------------------------------------!
SUBROUTINE pbcs_components(x1, y1, z1, x2, y2, z2, m)
! ... This subroutine compute the periodic boundary conditions in the scaled
! ... variables system
USE kinds
INTEGER, INTENT(IN) :: M
REAL(DP), INTENT(IN) :: X1,Y1,Z1
REAL(DP), INTENT(OUT) :: X2,Y2,Z2
REAL(DP) MIC
MIC = REAL( M, DP )
X2 = X1 - DNINT(X1/MIC)*MIC
Y2 = Y1 - DNINT(Y1/MIC)*MIC
Z2 = Z1 - DNINT(Z1/MIC)*MIC
RETURN
END SUBROUTINE pbcs_components
!------------------------------------------------------------------------------!
SUBROUTINE pbcs_vectors(v, w, m)
! ... This subroutine compute the periodic boundary conditions in the scaled
! ... variables system
USE kinds
INTEGER, INTENT(IN) :: m
REAL(DP), INTENT(IN) :: v(3)
REAL(DP), INTENT(OUT) :: w(3)
REAL(DP) :: MIC
MIC = REAL( M, DP )
w(1) = v(1) - DNINT(v(1)/MIC)*MIC
w(2) = v(2) - DNINT(v(2)/MIC)*MIC
w(3) = v(3) - DNINT(v(3)/MIC)*MIC
RETURN
END SUBROUTINE pbcs_vectors
!------------------------------------------------------------------------------!
SUBROUTINE set_h_ainv()
!
! CP-PW compatibility: align CP arrays H and ainv to at and bg
!
IMPLICIT NONE
!
!write(stdout,*) 'alat=',alat
!write(stdout,*) 'at=',at
!write(stdout,*) 'bg=',bg
!
h(:,:) = at(:,:)*alat
!
ainv(1,:) = bg(:,1)/alat
ainv(2,:) = bg(:,2)/alat
ainv(3,:) = bg(:,3)/alat
!
END SUBROUTINE set_h_ainv
!------------------------------------------------------------------------------!
SUBROUTINE cell_dyn_init( trd_ht, rd_ht, wc_ , total_ions_mass , press_ , &
frich_ , greash_ , cell_dofree )
USE constants, ONLY: au_gpa, amu_au
USE io_global, ONLY: stdout
IMPLICIT NONE
CHARACTER(LEN=*), INTENT(IN) :: cell_dofree
LOGICAL, INTENT(IN) :: trd_ht
REAL(DP), INTENT(IN) :: rd_ht (3,3)
REAL(DP), INTENT(IN) :: wc_ , frich_ , greash_ , total_ions_mass
REAL(DP), INTENT(IN) :: press_ ! external pressure from input
! ( in KBar = 0.1 GPa )
INTEGER :: j
!
press = press_ / 10.0_DP ! convert press in KBar to GPa
press = press / au_gpa ! convert to AU
! frich = frich_ ! for the time being this is set elsewhere
greash = greash_
WRITE( stdout, 105 )
WRITE( stdout, 110 ) press_
105 format(/,3X,'Simulation Cell Parameters (from input)')
110 format( 3X,'external pressure = ',f15.2,' [KBar]')
wmass = wc_
IF( wmass == 0.0_DP ) THEN
wmass = 3.0_DP / (4.0_DP * pi**2 ) * total_ions_mass
wmass = wmass * AMU_AU
WRITE( stdout,130) wmass
ELSE
WRITE( stdout,120) wmass
END IF
120 format(3X,'wmass (read from input) = ',f15.2,' [AU]')
130 format(3X,'wmass (calculated) = ',f15.2,' [AU]')
IF( wmass <= 0.0_DP ) &
CALL errore(' cell_dyn_init',' wmass out of range ',0)
IF ( trd_ht ) THEN
!
WRITE( stdout, 210 )
WRITE( stdout, 220 ) ( rd_ht( 1, j ), j = 1, 3 )
WRITE( stdout, 220 ) ( rd_ht( 2, j ), j = 1, 3 )
WRITE( stdout, 220 ) ( rd_ht( 3, j ), j = 1, 3 )
!
210 format(3X,'initial cell from CELL_PARAMETERS card')
220 format(3X,3F14.8)
!
END IF
!
ainv(1,:) = bg(:,1)/alat
ainv(2,:) = bg(:,2)/alat
ainv(3,:) = bg(:,3)/alat
!
CALL init_dofree ( cell_dofree )
!
tcell_base_init = .TRUE.
WRITE( stdout, 300 ) ibrav
WRITE( stdout, 305 ) alat
WRITE( stdout, 310 ) at(:,1)*alat
WRITE( stdout, 320 ) at(:,2)*alat
WRITE( stdout, 330 ) at(:,3)*alat
WRITE( stdout, * )
WRITE( stdout, 350 ) bg(:,1)/alat
WRITE( stdout, 360 ) bg(:,2)/alat
WRITE( stdout, 370 ) bg(:,3)/alat
WRITE( stdout, 340 ) omega
300 FORMAT( 3X, 'ibrav = ',I4)
305 FORMAT( 3X, 'alat = ',F14.8)
310 FORMAT( 3X, 'a1 = ',3F14.8)
320 FORMAT( 3X, 'a2 = ',3F14.8)
330 FORMAT( 3X, 'a3 = ',3F14.8)
350 FORMAT( 3X, 'b1 = ',3F14.8)
360 FORMAT( 3X, 'b2 = ',3F14.8)
370 FORMAT( 3X, 'b3 = ',3F14.8)
340 FORMAT( 3X, 'omega = ',F16.8)
RETURN
END SUBROUTINE cell_dyn_init
!------------------------------------------------------------------------------!
SUBROUTINE init_dofree ( cell_dofree )
! set constraints on cell dynamics/optimization
CHARACTER(LEN=*), INTENT(IN) :: cell_dofree
SELECT CASE ( TRIM( cell_dofree ) )
CASE ( 'all', 'default' )
iforceh = 1
CASE ( 'ibrav')
iforceh = 1
enforce_ibrav = .true.
CASE ( 'shape' )
iforceh = 1
fix_volume = .true.
! 2DSHAPE: CASE FOR SHAPE CHANGE IN xy PLANE WITH CONST AREA
! contribution from Richard Charles Andrew
! Physics Department, University of Pretoria
! South Africa, august 2012.
CASE ( '2Dshape' )
iforceh = 1
iforceh(3,3) = 0
iforceh(1,3) = 0
iforceh(3,1) = 0
iforceh(2,3) = 0
iforceh(3,2) = 0
fix_area = .true.
! 2DSHAPE
CASE ( 'volume' )
!CALL errore(' init_dofree ', &
! ' cell_dofree = '//TRIM(cell_dofree)//' not yet implemented ', 1 )
IF ( ibrav /= 1 ) THEN
CALL errore('cell_dofree', 'Isotropic expansion is only allowed for ibrav=1; i.e. for simple cubic', 1)
END IF
iforceh = 0
iforceh(1,1) = 1
iforceh(2,2) = 1
iforceh(3,3) = 1
isotropic = .TRUE.
CASE ('x')
iforceh = 0
iforceh(1,1) = 1
CASE ('y')
iforceh = 0
iforceh(2,2) = 1
CASE ('z')
iforceh = 0
iforceh(3,3) = 1
CASE ('xy')
iforceh = 0
iforceh(1,1) = 1
iforceh(2,2) = 1
! ... if you want the entire xy plane to be free, uncomment:
! iforceh(1,2) = 1
! iforceh(2,1) = 1
! 2DSHAPE THE ENTIRE xy PLANE IS FREE
CASE ('2Dxy')
iforceh = 0
iforceh(1,1) = 1
iforceh(2,2) = 1
iforceh(1,2) = 1
iforceh(2,1) = 1
! 2DSHAPE
CASE ('xz')
iforceh = 0
iforceh(1,1) = 1
iforceh(3,3) = 1
CASE ('yz')
iforceh = 0
iforceh(2,2) = 1
iforceh(3,3) = 1
CASE ('xyz')
iforceh = 0
iforceh(1,1) = 1
iforceh(2,2) = 1
iforceh(3,3) = 1
! epitaxial constraints (2 axes fixed, one free)
! added by ulrich.aschauer@dcb.unibe.ch on 2018-02-02
CASE ('epitaxial_ab')
!fix the a and b axis while allowing c to change
iforceh = 0
iforceh(1,3) = 1
iforceh(2,3) = 1
iforceh(3,3) = 1
CASE ('epitaxial_ac')
!fix the a and c axis while allowing b to change
iforceh = 0
iforceh(1,2) = 1
iforceh(2,2) = 1
iforceh(3,2) = 1
CASE ('epitaxial_bc')
!fix the b and c axis while allowing a to change
iforceh = 0
iforceh(1,1) = 1
iforceh(2,1) = 1
iforceh(3,1) = 1
CASE DEFAULT
CALL errore(' init_dofree ',' unknown cell_dofree '//TRIM(cell_dofree), 1 )
END SELECT
END SUBROUTINE init_dofree
!------------------------------------------------------------------------------!
SUBROUTINE cell_base_reinit( ht )
USE control_flags, ONLY: iverbosity
IMPLICIT NONE
REAL(DP), INTENT(IN) :: ht (3,3)
INTEGER :: j
alat = sqrt( ht(1,1)*ht(1,1) + ht(1,2)*ht(1,2) + ht(1,3)*ht(1,3) )
tpiba = 2.0_DP * pi / alat
tpiba2 = tpiba * tpiba
!
IF( iverbosity > 2 ) THEN
WRITE( stdout, 210 )
WRITE( stdout, 220 ) ( ht( 1, j ), j = 1, 3 )
WRITE( stdout, 220 ) ( ht( 2, j ), j = 1, 3 )
WRITE( stdout, 220 ) ( ht( 3, j ), j = 1, 3 )
END IF
210 format(3X,'Simulation cell parameters with the new cell:')
220 format(3X,3F14.8)
! matrix "ht" used in CP is the transpose of matrix "at"
! times the lattice parameter "alat"; matrix "ainv" is "bg" divided alat
!
at = TRANSPOSE( ht ) / alat
!
CALL recips( at(1,1), at(1,2), at(1,3), bg(1,1), bg(1,2), bg(1,3) )
CALL volume( alat, at(1,1), at(1,2), at(1,3), deth )
omega = deth
!
ainv(1,:) = bg(:,1)/alat
ainv(2,:) = bg(:,2)/alat
ainv(3,:) = bg(:,3)/alat
!
IF( iverbosity > 2 ) THEN
WRITE( stdout, 305 ) alat
WRITE( stdout, 310 ) at(:,1)*alat
WRITE( stdout, 320 ) at(:,2)*alat
WRITE( stdout, 330 ) at(:,3)*alat
WRITE( stdout, * )
WRITE( stdout, 350 ) bg(:,1)/alat
WRITE( stdout, 360 ) bg(:,2)/alat
WRITE( stdout, 370 ) bg(:,3)/alat
WRITE( stdout, 340 ) omega
END IF
305 FORMAT( 3X, 'alat = ',F14.8)
310 FORMAT( 3X, 'a1 = ',3F14.8)
320 FORMAT( 3X, 'a2 = ',3F14.8)
330 FORMAT( 3X, 'a3 = ',3F14.8)
350 FORMAT( 3X, 'b1 = ',3F14.8)
360 FORMAT( 3X, 'b2 = ',3F14.8)
370 FORMAT( 3X, 'b3 = ',3F14.8)
340 FORMAT( 3X, 'omega = ',F14.8)
RETURN
END SUBROUTINE cell_base_reinit
!------------------------------------------------------------------------------!
SUBROUTINE cell_steepest( hnew, h, delt, iforceh, fcell )
REAL(DP), INTENT(OUT) :: hnew(3,3)
REAL(DP), INTENT(IN) :: h(3,3), fcell(3,3)
INTEGER, INTENT(IN) :: iforceh(3,3)
REAL(DP), INTENT(IN) :: delt
INTEGER :: i, j
REAL(DP) :: dt2,fiso
dt2 = delt * delt
!
IF( isotropic ) THEN
!
! Isotropic force on the cell
!
fiso = (fcell(1,1)+fcell(2,2)+fcell(3,3))/3.0_DP
!
DO j=1,3
DO i=1,3
hnew(i,j) = h(i,j) + dt2 * fiso * REAL( iforceh(i,j), DP )
ENDDO
ENDDO
!
ELSE
!
DO j=1,3
DO i=1,3
hnew(i,j) = h(i,j) + dt2 * fcell(i,j) * REAL( iforceh(i,j), DP )
ENDDO
ENDDO
!
END IF
!
RETURN
END SUBROUTINE cell_steepest
!------------------------------------------------------------------------------!
SUBROUTINE cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos )
REAL(DP), INTENT(OUT) :: hnew(3,3)
REAL(DP), INTENT(IN) :: h(3,3), hold(3,3), hnos(3,3), fcell(3,3)
INTEGER, INTENT(IN) :: iforceh(3,3)
REAL(DP), INTENT(IN) :: frich, delt
LOGICAL, INTENT(IN) :: tnoseh
REAL(DP) :: htmp(3,3)
REAL(DP) :: verl1, verl2, verl3, dt2, ftmp, v1, v2, v3, fiso
INTEGER :: i, j
dt2 = delt * delt
IF( tnoseh ) THEN
ftmp = 0.0_DP
htmp = hnos
ELSE
ftmp = frich
htmp = 0.0_DP
END IF
verl1 = 2.0_DP / ( 1.0_DP + ftmp )
verl2 = 1.0_DP - verl1
verl3 = dt2 / ( 1.0_DP + ftmp )
verl1 = verl1 - 1.0_DP
IF( isotropic ) THEN
!
fiso = (fcell(1,1)+fcell(2,2)+fcell(3,3))/3.0_DP
!
DO j=1,3
DO i=1,3
v1 = verl1 * h(i,j)
v2 = verl2 * hold(i,j)
v3 = verl3 * ( fiso - htmp(i,j) )
hnew(i,j) = h(i,j) + ( v1 + v2 + v3 ) * REAL( iforceh(i,j), DP )
ENDDO
ENDDO
!
ELSE
!
DO j=1,3
DO i=1,3
v1 = verl1 * h(i,j)
v2 = verl2 * hold(i,j)
v3 = verl3 * ( fcell(i,j) - htmp(i,j) )
hnew(i,j) = h(i,j) + ( v1 + v2 + v3 ) * REAL( iforceh(i,j), DP )
ENDDO
ENDDO
!
END IF
RETURN
END SUBROUTINE cell_verlet
!------------------------------------------------------------------------------!
subroutine cell_hmove( h, hold, delt, iforceh, fcell )
REAL(DP), intent(out) :: h(3,3)
REAL(DP), intent(in) :: hold(3,3), fcell(3,3)
REAL(DP), intent(in) :: delt
integer, intent(in) :: iforceh(3,3)
REAL(DP) :: dt2by2, fac
integer :: i, j
dt2by2 = 0.5_DP * delt * delt
fac = dt2by2
do i=1,3
do j=1,3
h(i,j) = hold(i,j) + fac * iforceh(i,j) * fcell(i,j)
end do
end do
return
end subroutine cell_hmove
!------------------------------------------------------------------------------!
subroutine cell_force( fcell, ainv, stress, omega, press, wmassIN )
USE constants, ONLY : eps8
REAL(DP), intent(out) :: fcell(3,3)
REAL(DP), intent(in) :: stress(3,3), ainv(3,3)
REAL(DP), intent(in) :: omega, press
REAL(DP), intent(in), optional :: wmassIN
integer :: i, j
REAL(DP) :: wmass, fiso
IF (.not. present(wmassIN)) THEN
wmass = 1.0
ELSE
wmass = wmassIN
END IF
do j=1,3
do i=1,3
fcell(i,j) = ainv(j,1)*stress(i,1) + ainv(j,2)*stress(i,2) + ainv(j,3)*stress(i,3)
end do
end do
do j=1,3
do i=1,3
fcell(i,j) = fcell(i,j) - ainv(j,i) * press
end do
end do
IF( wmass < eps8 ) &
CALL errore( ' movecell ',' cell mass is less than 0 ! ', 1 )
fcell = omega * fcell / wmass
! added this :
IF( isotropic ) THEN
!
! Isotropic force on the cell
!
fiso = (fcell(1,1)+fcell(2,2)+fcell(3,3))/3.0_DP
do i=1,3
fcell(i,i)=fiso
end do
END IF
!
return
end subroutine cell_force
!------------------------------------------------------------------------------!
subroutine cell_move( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, vnhh, velh, tsdc )
REAL(DP), intent(out) :: hnew(3,3)
REAL(DP), intent(in) :: h(3,3), hold(3,3), fcell(3,3)
REAL(DP), intent(in) :: vnhh(3,3), velh(3,3)
integer, intent(in) :: iforceh(3,3)
REAL(DP), intent(in) :: frich, delt
logical, intent(in) :: tnoseh, tsdc
REAL(DP) :: hnos(3,3)
hnew = 0.0
if( tnoseh ) then
hnos = vnhh * velh
else
hnos = 0.0_DP
end if
!
IF( tsdc ) THEN
call cell_steepest( hnew, h, delt, iforceh, fcell )
ELSE
call cell_verlet( hnew, h, hold, delt, iforceh, fcell, frich, tnoseh, hnos )
END IF
return
end subroutine cell_move
!------------------------------------------------------------------------------!
SUBROUTINE cell_gamma( hgamma, ainv, h, velh )
!
! Compute hgamma = g^-1 * dg/dt
! that enters in the ions equation of motion
!
IMPLICIT NONE
REAL(DP), INTENT(OUT) :: hgamma(3,3)
REAL(DP), INTENT(IN) :: ainv(3,3), h(3,3), velh(3,3)
REAL(DP) :: gm1(3,3), gdot(3,3)
!
! g^-1 inverse of metric tensor = (ht*h)^-1 = ht^-1 * h^-1
!
gm1 = MATMUL( ainv, TRANSPOSE( ainv ) )
!
! dg/dt = d(ht*h)/dt = dht/dt*h + ht*dh/dt ! derivative of metrix tensor
!
gdot = MATMUL( TRANSPOSE( velh ), h ) + MATMUL( TRANSPOSE( h ), velh )
!
hgamma = MATMUL( gm1, gdot )
!
RETURN
END SUBROUTINE cell_gamma
!------------------------------------------------------------------------------!
SUBROUTINE cell_update_vel( htp, ht0, htm, delt, velh )
!
IMPLICIT NONE
TYPE (boxdimensions) :: htp, ht0, htm
REAL(DP), INTENT(IN) :: delt
REAL(DP), INTENT(OUT) :: velh( 3, 3 )
velh(:,:) = ( htp%hmat(:,:) - htm%hmat(:,:) ) / ( 2.0d0 * delt )
htp%gvel = ( htp%g(:,:) - htm%g(:,:) ) / ( 2.0d0 * delt )
ht0%hvel = velh
RETURN
END SUBROUTINE cell_update_vel
!------------------------------------------------------------------------------!
subroutine cell_kinene( ekinh, temphh, velh )
use constants, only: k_boltzmann_au
implicit none
REAL(DP), intent(out) :: ekinh, temphh(3,3)
REAL(DP), intent(in) :: velh(3,3)
integer :: i,j
ekinh = 0.0_DP
do j=1,3
do i=1,3
ekinh = ekinh + 0.5_DP*wmass*velh(i,j)*velh(i,j)
temphh(i,j) = wmass*velh(i,j)*velh(i,j)/k_boltzmann_au
end do
end do
return
end subroutine cell_kinene
!------------------------------------------------------------------------------!
function cell_alat( )
real(DP) :: cell_alat
if( .NOT. tcell_base_init ) &
call errore( ' cell_alat ', ' alat has not been set ', 1 )
cell_alat = alat
return
end function cell_alat
!
!------------------------------------------------------------------------------!
END MODULE cell_base
!------------------------------------------------------------------------------!
|