1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
!
! Copyright (C) 2004-2016 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!---------------------------------------------------------------------
SUBROUTINE dmxc( length, sr_d, rho_in, dmuxc )
!---------------------------------------------------------------------
!! Wrapper routine. Calls dmxc-driver routines from internal libraries
!! or from the external one 'libxc', depending on the input choice.
!
! Only two possibilities in the present version (LDA only):
! 1) iexch libxc + icorr libxc
! 2) iexch qe + icorr qe
!
USE kinds, ONLY: DP
USE funct, ONLY: get_iexch, get_icorr, is_libxc
USE xc_lda_lsda, ONLY: xc_lda, xc_lsda
#if defined(__LIBXC)
#include "xc_version.h"
USE xc_f03_lib_m
#endif
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the I/O arrays
INTEGER, INTENT(IN) :: sr_d
!! number of spin components
REAL(DP), INTENT(IN) :: rho_in(length,sr_d)
!! charge density
REAL(DP), INTENT(OUT) :: dmuxc(length,sr_d,sr_d)
!! the derivative of the xc potential
!
! ... local variables
!
#if defined(__LIBXC)
TYPE(xc_f03_func_t) :: xc_func
TYPE(xc_f03_func_info_t) :: xc_info1, xc_info2
INTEGER :: pol_unpol
REAL(DP), ALLOCATABLE :: rho_lxc(:)
REAL(DP), ALLOCATABLE :: dmxc_lxc(:), dmex_lxc(:), dmcr_lxc(:)
LOGICAL :: exch_lxc_avail, corr_lxc_avail
#if (XC_MAJOR_VERSION > 4)
INTEGER(8) :: lengthxc
#else
INTEGER :: lengthxc
#endif
#endif
!
INTEGER :: iexch, icorr
INTEGER :: ir, length_lxc, length_dlxc
REAL(DP), PARAMETER :: small = 1.E-10_DP, rho_trash = 0.5_DP
!
iexch = get_iexch()
icorr = get_icorr()
!
#if defined(__LIBXC)
!
lengthxc = length
!
IF ( (is_libxc(1) .OR. iexch==0) .AND. (is_libxc(2) .OR. icorr==0)) THEN
!
length_lxc = length*sr_d
!
! ... set libxc input
SELECT CASE( sr_d )
CASE( 1 )
!
ALLOCATE( rho_lxc(length_lxc) )
pol_unpol = 1
rho_lxc = rho_in(:,1)
!
CASE( 2 )
!
ALLOCATE( rho_lxc(length_lxc) )
pol_unpol = 2
DO ir = 1, length
rho_lxc(2*ir-1) = rho_in(ir,1)
rho_lxc(2*ir) = rho_in(ir,2)
ENDDO
!
CASE( 4 )
!
CALL errore( 'dmxc', 'The derivative of the xc potential with libxc &
&is not available for noncollinear case', 1 )
!
CASE DEFAULT
!
CALL errore( 'dmxc', 'Wrong number of spin dimensions', 2 )
!
END SELECT
!
length_dlxc = length
IF (pol_unpol == 2) length_dlxc = length*3
!
!
ALLOCATE( dmex_lxc(length_dlxc), dmcr_lxc(length_dlxc), &
dmxc_lxc(length_dlxc) )
!
! ... DERIVATIVE FOR EXCHANGE
dmex_lxc(:) = 0.0_DP
IF (iexch /= 0) THEN
CALL xc_f03_func_init( xc_func, iexch, pol_unpol )
xc_info1 = xc_f03_func_get_info( xc_func )
CALL xc_f03_lda_fxc( xc_func, lengthxc, rho_lxc(1), dmex_lxc(1) )
CALL xc_f03_func_end( xc_func )
ENDIF
!
! ... DERIVATIVE FOR CORRELATION
dmcr_lxc(:) = 0.0_DP
IF (icorr /= 0) THEN
CALL xc_f03_func_init( xc_func, icorr, pol_unpol )
xc_info2 = xc_f03_func_get_info( xc_func )
CALL xc_f03_lda_fxc( xc_func, lengthxc, rho_lxc(1), dmcr_lxc(1) )
CALL xc_f03_func_end( xc_func )
ENDIF
!
dmxc_lxc = (dmex_lxc + dmcr_lxc)*2.0_DP
!
IF (sr_d == 1) THEN
dmuxc(:,1,1) = dmxc_lxc(:)
ELSEIF (sr_d == 2) THEN
DO ir = 1, length
dmuxc(ir,1,1) = dmxc_lxc(3*ir-2)
dmuxc(ir,1,2) = dmxc_lxc(3*ir-1)
dmuxc(ir,2,1) = dmxc_lxc(3*ir-1)
dmuxc(ir,2,2) = dmxc_lxc(3*ir)
ENDDO
ENDIF
!
DEALLOCATE( dmex_lxc, dmcr_lxc, dmxc_lxc )
DEALLOCATE( rho_lxc )
!
ELSEIF ((.NOT.is_libxc(1)) .AND. (.NOT.is_libxc(2)) ) THEN
!
IF ( sr_d == 1 ) CALL dmxc_lda( length, rho_in(:,1), dmuxc(:,1,1) )
IF ( sr_d == 2 ) CALL dmxc_lsda( length, rho_in, dmuxc )
!
ELSE
!
CALL errore( 'dmxc', 'Derivatives of exchange and correlation terms, &
& at present, must be both qe or both libxc.', 3 )
!
ENDIF
!
#else
!
SELECT CASE( sr_d )
CASE( 1 )
!
CALL dmxc_lda( length, rho_in(:,1), dmuxc(:,1,1) )
!
CASE( 2 )
!
CALL dmxc_lsda( length, rho_in, dmuxc )
!
CASE( 4 )
!
CALL dmxc_nc( length, rho_in(:,1), rho_in(:,2:4), dmuxc )
!
CASE DEFAULT
!
CALL errore( 'xc_LDA', 'Wrong ns input', 4 )
!
END SELECT
!
#endif
!
!
RETURN
!
END SUBROUTINE
!
!
!-----------------------------------------------------------------------
SUBROUTINE dmxc_lda( length, rho_in, dmuxc )
!---------------------------------------------------------------------
!! Computes the derivative of the xc potential with respect to the
!! local density.
!
USE xc_lda_lsda, ONLY: xc_lda
USE exch_lda, ONLY: slater
USE funct, ONLY: get_iexch, get_icorr
USE kinds, ONLY: DP
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the input/output arrays
REAL(DP), INTENT(IN), DIMENSION(length) :: rho_in
!! the charge density ( positive )
REAL(DP), INTENT(OUT), DIMENSION(length) :: dmuxc
!! the derivative of the xc potential
!
! ... local variables
!
REAL(DP), ALLOCATABLE, DIMENSION(:) :: ex, vx
REAL(DP), ALLOCATABLE, DIMENSION(:) :: arho, rhoaux, dr
REAL(DP), ALLOCATABLE, DIMENSION(:) :: ec, vc
!
REAL(DP) :: rho, rs, ex_s, vx_s
REAL(DP) :: dpz
INTEGER :: iexch, icorr
INTEGER :: iflg, ir, i1, i2, f1, f2
!
REAL(DP), PARAMETER :: small = 1.E-30_DP, e2 = 2.0_DP, &
pi34 = 0.75_DP/3.141592653589793_DP, &
third = 1.0_DP/3.0_DP, rho_trash = 0.5_DP, &
rs_trash = 1.0_DP
#if defined(_OPENMP)
INTEGER :: ntids
INTEGER, EXTERNAL :: omp_get_num_threads
!
!
ntids = omp_get_num_threads()
#endif
!
iexch = get_iexch()
icorr = get_icorr()
!
dmuxc = 0.0_DP
!
! ... first case: analytical derivatives available
!
IF (iexch == 1 .AND. icorr == 1) THEN
!
!$omp parallel if(ntids==1)
!$omp do private( rs, rho, ex_s, vx_s , iflg)
DO ir = 1, length
!
rho = rho_in(ir)
IF ( rho < -small ) rho = -rho_in(ir)
!
IF ( rho > small ) THEN
rs = (pi34 / rho)**third
ELSE
dmuxc(ir) = 0.0_DP
CYCLE
ENDIF
!
CALL slater( rs, ex_s, vx_s )
dmuxc(ir) = vx_s / (3.0_DP * rho)
!
iflg = 2
IF (rs < 1.0_DP) iflg = 1
dmuxc(ir) = dmuxc(ir) + dpz( rs, iflg )
dmuxc(ir) = dmuxc(ir) * SIGN(1.0_DP,rho_in(ir))
!
ENDDO
!$omp end do
!$omp end parallel
!
ELSE
!
! ... second case: numerical derivatives
!
ALLOCATE( ex(2*length), vx(2*length) )
ALLOCATE( ec(2*length), vc(2*length) )
ALLOCATE( arho(length), dr(length), rhoaux(2*length) )
!
i1 = 1 ; f1 = length !two blocks: [ rho+dr ]
i2 = length+1 ; f2 = 2*length ! [ rho-dr ]
!
arho = ABS(rho_in)
dr = 0.0_DP
WHERE ( arho > small ) dr = MIN( 1.E-6_DP, 1.E-4_DP * rho_in )
!
rhoaux(i1:f1) = arho+dr
rhoaux(i2:f2) = arho-dr
!
CALL xc_lda( length*2, rhoaux, ex, ec, vx, vc )
!
WHERE ( arho < small ) dr = 1.0_DP ! ... to avoid NaN in the next operation
!
dmuxc(:) = (vx(i1:f1) + vc(i1:f1) - vx(i2:f2) - vc(i2:f2)) / &
(2.0_DP * dr(:))
!
DEALLOCATE( ex, vx )
DEALLOCATE( ec, vc )
DEALLOCATE( dr, rhoaux )
!
WHERE ( arho < small ) dmuxc = 0.0_DP
! however a higher threshold is already present in xc_lda()
dmuxc(:) = dmuxc(:) * SIGN(1.0_DP,rho_in(:))
!
DEALLOCATE( arho )
!
ENDIF
!
! bring to rydberg units
!
dmuxc = e2 * dmuxc
!
RETURN
!
END SUBROUTINE dmxc_lda
!
!
!-----------------------------------------------------------------------
SUBROUTINE dmxc_lsda( length, rho_in, dmuxc )
!-----------------------------------------------------------------------
!! Computes the derivative of the xc potential with respect to the
!! local density in the spin-polarized case.
!
USE kinds, ONLY: DP
USE funct, ONLY: get_iexch, get_icorr
USE xc_lda_lsda, ONLY: xc_lsda
USE exch_lda, ONLY: slater
USE corr_lda, ONLY: pz, pz_polarized
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the input/output arrays
REAL(DP), INTENT(IN), DIMENSION(length,2) :: rho_in
!! spin-up and spin-down charge density
REAL(DP), INTENT(OUT), DIMENSION(length,2,2) :: dmuxc
!! u-u, u-d, d-u, d-d derivatives of the XC functional
!
! ... local variables
!
REAL(DP), ALLOCATABLE :: rhotot(:), zeta(:), zeta_eff(:)
!
REAL(DP), ALLOCATABLE, DIMENSION(:) :: aux1, aux2, dr, dz
REAL(DP), ALLOCATABLE, DIMENSION(:) :: rhoaux, zetaux
REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: vx, vc, vxc
REAL(DP) :: ecu, ecp, ex_s
REAL(DP) :: vcu, vcp, vx_s
!
REAL(DP) :: fz, fz1, fz2, dmcu, dmcp, aa, bb, cc
REAL(DP) :: rs, zeta_s
!
REAL(DP) :: dpz, dpz_polarized
!
INTEGER :: iexch, icorr
INTEGER :: ir, is, iflg
INTEGER :: i1, i2, i3, i4
INTEGER :: f1, f2, f3, f4
!
REAL(DP), PARAMETER :: small = 1.E-30_DP, e2 = 2.0_DP, &
pi34 = 0.75_DP/3.141592653589793_DP, &
third = 1.0_DP/3.0_DP, p43 = 4.0_DP/3.0_DP, &
p49 = 4.0_DP/9.0_DP, m23 = -2.0_DP/3.0_DP
!
iexch = get_iexch()
icorr = get_icorr()
!
dmuxc = 0.0_DP
ALLOCATE(rhotot(length))
rhotot(:) = rho_in(:,1) + rho_in(:,2)
!
IF (iexch == 1 .AND. icorr == 1) THEN
!
! ... first case: analytical derivative available
!
!$omp parallel do default(private) shared(length,rhotot, rho_in, dmuxc )
DO ir = 1, length
!
IF (rhotot(ir) < small) CYCLE
zeta_s = (rho_in(ir,1) - rho_in(ir,2)) / rhotot(ir)
IF (ABS(zeta_s) > 1.0_DP) CYCLE
!
! ... exchange
!
rs = ( pi34 / (2.0_DP * rho_in(ir,1)) )**third
CALL slater( rs, ex_s, vx_s )
!
dmuxc(ir,1,1) = vx_s / (3.0_DP * rho_in(ir,1))
!
rs = ( pi34 / (2.0_DP * rho_in(ir,2)) )**third
CALL slater( rs, ex_s, vx_s )
!
dmuxc(ir,2,2) = vx_s / (3.0_DP * rho_in(ir,2))
!
! ... correlation
!
rs = (pi34 / rhotot(ir))**third
!
CALL pz( rs, 1, ecu, vcu )
CALL pz_polarized( rs, ecp, vcp )
!
fz = ( (1.0_DP + zeta_s)**p43 + (1.0_DP - zeta_s)**p43 - 2.0_DP ) &
/ (2.0_DP**p43 - 2.0_DP)
fz1 = p43 * ( (1.0_DP + zeta_s)**third - (1.0_DP - zeta_s)**third) &
/ (2.0_DP**p43 - 2.0_DP)
fz2 = p49 * ( (1.0_DP + zeta_s)**m23 + (1.0_DP - zeta_s)**m23) &
/ (2.0_DP**p43 - 2.0_DP)
!
iflg = 2
IF (rs < 1.0_DP) iflg = 1
!
dmcu = dpz( rs, iflg )
dmcp = dpz_polarized( rs, iflg )
!
aa = dmcu + fz * (dmcp - dmcu)
bb = 2.0_DP * fz1 * (vcp - vcu - (ecp - ecu) ) / rhotot(ir)
cc = fz2 * (ecp - ecu) / rhotot(ir)
!
dmuxc(ir,1,1) = dmuxc(ir,1,1) + aa + (1.0_DP - zeta_s) * bb + &
(1.0_DP - zeta_s)**2 * cc
dmuxc(ir,2,1) = dmuxc(ir,2,1) + aa + (-zeta_s) * bb + &
(zeta_s**2 - 1.0_DP) * cc
dmuxc(ir,1,2) = dmuxc(ir,2,1)
dmuxc(ir,2,2) = dmuxc(ir,2,2) + aa - (1.0_DP + zeta_s) * bb + &
(1.0_DP + zeta_s)**2 * cc
ENDDO
!
ELSE
!
!
ALLOCATE( vx(4*length,2) , vc(4*length,2), vxc(2*length,2) )
ALLOCATE( rhoaux(4*length), zetaux(4*length) )
ALLOCATE( aux1(4*length) , aux2(4*length) )
ALLOCATE( dr(length), dz(length) )
ALLOCATE( zeta(length), zeta_eff(length))
!
i1 = 1 ; f1 = length ! four blocks: [ rho+dr , zeta ]
i2 = f1+1 ; f2 = 2*length ! [ rho-dr , zeta ]
i3 = f2+1 ; f3 = 3*length ! [ rho , zeta+dz ]
i4 = f3+1 ; f4 = 4*length ! [ rho , zeta-dz ]
!
!
dz(:) = 1.E-6_DP ! dz(:) = MIN( 1.d-6, 1.d-4*ABS(zeta(:)) )
!
! ... THRESHOLD STUFF AND dr(:)
dr(:) = 0.0_DP
zeta(:) = 0.0_dp
zeta_eff(:) = 0.0_dp
DO ir = 1, length
IF (rhotot(ir) > small) THEN
zeta_s = (rho_in(ir,1) - rho_in(ir,2)) / rhotot(ir)
zeta(ir) = zeta_s
! ... If zeta is too close to +-1, the derivative is computed at a slightly
! smaller zeta
zeta_eff(ir) = SIGN( MIN( ABS(zeta_s), (1.0_DP-2.0_DP*dz(ir)) ), zeta_s )
dr(ir) = MIN( 1.E-6_DP, 1.E-4_DP * rhotot(ir) )
IF (ABS(zeta_s) > 1.0_DP) THEN
rhotot(ir) = 0.d0 ; dr(ir) = 0.d0 ! e.g. vx=vc=0.0
ENDIF
ENDIF
ENDDO
!
rhoaux(i1:f1) = rhotot + dr ; zetaux(i1:f1) = zeta
rhoaux(i2:f2) = rhotot - dr ; zetaux(i2:f2) = zeta
rhoaux(i3:f3) = rhotot ; zetaux(i3:f3) = zeta_eff + dz
rhoaux(i4:f4) = rhotot ; zetaux(i4:f4) = zeta_eff - dz
!
CALL xc_lsda( length*4, rhoaux, zetaux, aux1, aux2, vx, vc )
!
WHERE (rhotot <= small) ! ... to avoid NaN in the next operations
dr=1.0_DP ; rhotot=0.5d0
END WHERE
!
dmuxc(:,1,1) = ( vx(i1:f1,1) + vc(i1:f1,1) - vx(i2:f2,1) - vc(i2:f2,1) ) / (2.0_DP*dr)
dmuxc(:,2,2) = ( vx(i1:f1,2) + vc(i1:f1,2) - vx(i2:f2,2) - vc(i2:f2,2) ) / (2.0_DP*dr)
!
aux1(i1:f1) = 1.0_DP / rhotot(:) / (2.0_DP*dz(:))
aux1(i2:f2) = aux1(i1:f1)
!
vxc(i1:f2,1) = ( vx(i3:f4,1) + vc(i3:f4,1) ) * aux1(i1:f2)
vxc(i1:f2,2) = ( vx(i3:f4,2) + vc(i3:f4,2) ) * aux1(i1:f2)
!
dmuxc(:,2,1) = dmuxc(:,1,1) - (vxc(i1:f1,1) - vxc(i2:f2,1)) * (1.0_DP+zeta)
dmuxc(:,1,2) = dmuxc(:,2,2) + (vxc(i1:f1,2) - vxc(i2:f2,2)) * (1.0_DP-zeta)
dmuxc(:,1,1) = dmuxc(:,1,1) + (vxc(i1:f1,1) - vxc(i2:f2,1)) * (1.0_DP-zeta)
dmuxc(:,2,2) = dmuxc(:,2,2) - (vxc(i1:f1,2) - vxc(i2:f2,2)) * (1.0_DP+zeta)
!
DEALLOCATE( vx, vc, vxc )
DEALLOCATE( rhoaux, zetaux )
DEALLOCATE( aux1, aux2 )
DEALLOCATE( dr, dz )
!
ENDIF
!
! ... bring to Rydberg units
!
dmuxc = e2 * dmuxc
!
RETURN
!
END SUBROUTINE dmxc_lsda
!
!
!-----------------------------------------------------------------------
SUBROUTINE dmxc_nc( length, rho_in, m, dmuxc )
!-----------------------------------------------------------------------
!! Computes the derivative of the xc potential with respect to the
!! local density and magnetization in the non-collinear case.
!
USE xc_lda_lsda, ONLY: xc_lsda
USE kinds, ONLY: DP
!
IMPLICIT NONE
!
INTEGER, INTENT(IN) :: length
!! length of the input/output arrays
REAL(DP), INTENT(IN), DIMENSION(length) :: rho_in
!! total charge density
REAL(DP), INTENT(IN), DIMENSION(length,3) :: m
!! magnetization vector
REAL(DP), INTENT(OUT), DIMENSION(length,4,4) :: dmuxc
!! derivative of XC functional
!
! ... local variables
!
REAL(DP), DIMENSION(length) :: rhotot, amag, zeta, zeta_eff, dr, dz
REAL(DP), DIMENSION(length) :: vs
LOGICAL, DIMENSION(length) :: is_null
REAL(DP), ALLOCATABLE, DIMENSION(:) :: rhoaux, zetaux
REAL(DP), ALLOCATABLE, DIMENSION(:) :: aux1, aux2
REAL(DP), ALLOCATABLE, DIMENSION(:,:) :: vx, vc
REAL(DP), DIMENSION(length) :: dvxc_rho, dbx_rho, dby_rho, dbz_rho
!
REAL(DP) :: dvxc_mx, dvxc_my, dvxc_mz, &
dbx_mx, dbx_my, dbx_mz, &
dby_mx, dby_my, dby_mz, &
dbz_mx, dbz_my, dbz_mz
REAL(DP) :: zeta_s
!
INTEGER :: i1, i2, i3, i4, i5, i
INTEGER :: f1, f2, f3, f4, f5
!
REAL(DP), PARAMETER :: small = 1.E-30_DP, e2 = 2.0_DP, &
rho_trash = 0.5_DP, zeta_trash = 0.5_DP, &
amag_trash= 0.025_DP
!
dmuxc = 0.0_DP
!
ALLOCATE( rhoaux(length*5), zetaux(length*5) )
ALLOCATE( aux1(length*5), aux2(length*5) )
ALLOCATE( vx(length*5,2), vc(length*5,2) )
!
rhotot = rho_in
zeta = zeta_trash
amag = amag_trash
is_null = .FALSE.
!
i1 = 1 ; f1 = length ! five blocks: [ rho , zeta ]
i2 = f1+1 ; f2 = 2*length ! [ rho+dr , zeta ]
i3 = f2+1 ; f3 = 3*length ! [ rho-dr , zeta ]
i4 = f3+1 ; f4 = 4*length ! [ rho , zeta+dz ]
i5 = f4+1 ; f5 = 5*length ! [ rho , zeta-dz ]
!
dz = 1.0E-6_DP !dz = MIN( 1.d-6, 1.d-4*ABS(zeta) )
!
DO i = 1, length
zeta_s = zeta_trash
IF (rhotot(i) <= small) THEN
rhotot(i) = rho_trash
is_null(i) = .TRUE.
ENDIF
amag(i) = SQRT( m(i,1)**2 + m(i,2)**2 + m(i,3)**2 )
IF (rhotot(i) > small) zeta_s = amag(i) / rhotot(i)
zeta(i) = zeta_s
zeta_eff(i) = SIGN( MIN( ABS(zeta_s), (1.0_DP-2.0_DP*dz(i)) ), zeta_s )
IF (ABS(zeta_s) > 1.0_DP) is_null(i) = .TRUE.
ENDDO
!
dr = MIN( 1.E-6_DP, 1.E-4_DP * rhotot )
!
rhoaux(i1:f1) = rhotot ; zetaux(i1:f1) = zeta
rhoaux(i2:f2) = rhotot + dr ; zetaux(i2:f2) = zeta
rhoaux(i3:f3) = rhotot - dr ; zetaux(i3:f3) = zeta
rhoaux(i4:f4) = rhotot ; zetaux(i4:f4) = zeta_eff + dz
rhoaux(i5:f5) = rhotot ; zetaux(i5:f5) = zeta_eff - dz
!
!
CALL xc_lsda( length*5, rhoaux, zetaux, aux1, aux2, vx, vc )
!
!
vs(:) = 0.5_DP*( vx(i1:f1,1)+vc(i1:f1,1)-vx(i1:f1,2)-vc(i1:f1,2) )
!
dvxc_rho(:) = ((vx(i2:f2,1) + vc(i2:f2,1) - vx(i3:f3,1) - vc(i3:f3,1)) + &
(vx(i2:f2,2) + vc(i2:f2,2) - vx(i3:f3,2) - vc(i3:f3,2))) / (4.0_DP*dr)
!
aux2(1:length) = vx(i2:f2,1) + vc(i2:f2,1) - vx(i3:f3,1) - vc(i3:f3,1) - &
( vx(i2:f2,2) + vc(i2:f2,2) - vx(i3:f3,2) - vc(i3:f3,2) )
!
WHERE (amag > 1.E-10_DP)
dbx_rho(:) = aux2(1:length) * m(:,1) / (4.0_DP*dr*amag)
dby_rho(:) = aux2(1:length) * m(:,2) / (4.0_DP*dr*amag)
dbz_rho(:) = aux2(1:length) * m(:,3) / (4.0_DP*dr*amag)
END WHERE
!
aux1(1:length) = vx(i4:f4,1) + vc(i4:f4,1) - vx(i5:f5,1) - vc(i5:f5,1) + &
vx(i4:f4,2) + vc(i4:f4,2) - vx(i5:f5,2) - vc(i5:f5,2)
aux2(1:length) = vx(i4:f4,1) + vc(i4:f4,1) - vx(i5:f5,1) - vc(i5:f5,1) - &
( vx(i4:f4,2) + vc(i4:f4,2) - vx(i5:f5,2) - vc(i5:f5,2) )
!
DO i = 1, length
!
IF ( is_null(i) ) THEN
dmuxc(i,:,:) = 0.0_DP
CYCLE
ENDIF
!
IF (amag(i) <= 1.E-10_DP) THEN
dmuxc(i,1,1) = dvxc_rho(i)
CYCLE
ENDIF
!
dvxc_rho(i) = dvxc_rho(i) - aux1(i) * zeta(i)/rhotot(i) / (4.0_DP*dz(i))
dbx_rho(i) = dbx_rho(i) - aux2(i) * m(i,1) * zeta(i)/rhotot(i) / (4.0_DP*dz(i)*amag(i))
dby_rho(i) = dby_rho(i) - aux2(i) * m(i,2) * zeta(i)/rhotot(i) / (4.0_DP*dz(i)*amag(i))
dbz_rho(i) = dbz_rho(i) - aux2(i) * m(i,3) * zeta(i)/rhotot(i) / (4.0_DP*dz(i)*amag(i))
!
dmuxc(i,1,1) = dvxc_rho(i)
dmuxc(i,2,1) = dbx_rho(i)
dmuxc(i,3,1) = dby_rho(i)
dmuxc(i,4,1) = dbz_rho(i)
!
! ... Here the derivatives with respect to m
!
dvxc_mx = aux1(i) * m(i,1) / rhotot(i) / (4.0_DP*dz(i)*amag(i))
dvxc_my = aux1(i) * m(i,2) / rhotot(i) / (4.0_DP*dz(i)*amag(i))
dvxc_mz = aux1(i) * m(i,3) / rhotot(i) / (4.0_DP*dz(i)*amag(i))
!
dbx_mx = (aux2(i) * m(i,1) * m(i,1) * amag(i)/rhotot(i) / (4.0_DP*dz(i)) + &
vs(i) * (m(i,2)**2+m(i,3)**2)) / amag(i)**3
dbx_my = (aux2(i) * m(i,1) * m(i,2) * amag(i)/rhotot(i) / (4.0_DP*dz(i)) - &
vs(i) * m(i,1) * m(i,2) ) / amag(i)**3
dbx_mz = (aux2(i) * m(i,1) * m(i,3) * amag(i)/rhotot(i) / (4.0_DP*dz(i)) - &
vs(i) * m(i,1) * m(i,3) ) / amag(i)**3
!
dby_mx = dbx_my
dby_my = (aux2(i) * m(i,2) * m(i,2) * amag(i)/rhotot(i) / (4.0_DP*dz(i)) + &
vs(i) * (m(i,1)**2 + m(i,3)**2)) / amag(i)**3
dby_mz = (aux2(i) * m(i,2) * m(i,3) * amag(i)/rhotot(i) / (4.0_DP*dz(i)) - &
vs(i) * m(i,2) * m(i,3)) / amag(i)**3
!
dbz_mx = dbx_mz
dbz_my = dby_mz
dbz_mz = (aux2(i) * m(i,3) * m(i,3) * amag(i)/rhotot(i) / (4.0_DP*dz(i)) + &
vs(i)*(m(i,1)**2 + m(i,2)**2)) / amag(i)**3
!
! ... assigns values to dmuxc and sets to zero trash points
!
dmuxc(i,1,2) = dvxc_mx
dmuxc(i,1,3) = dvxc_my
dmuxc(i,1,4) = dvxc_mz
!
dmuxc(i,2,2) = dbx_mx
dmuxc(i,2,3) = dbx_my
dmuxc(i,2,4) = dbx_mz
!
dmuxc(i,3,2) = dby_mx
dmuxc(i,3,3) = dby_my
dmuxc(i,3,4) = dby_mz
!
dmuxc(i,4,2) = dbz_mx
dmuxc(i,4,3) = dbz_my
dmuxc(i,4,4) = dbz_mz
!
ENDDO
!
! ... brings to rydberg units
!
dmuxc = e2 * dmuxc
!
DEALLOCATE( rhoaux, zetaux)
DEALLOCATE( aux1, aux2 )
DEALLOCATE( vx, vc )
!
RETURN
!
END SUBROUTINE dmxc_nc
!
!
!-----------------------------------------------------------------------
FUNCTION dpz( rs, iflg )
!-----------------------------------------------------------------------
!! Derivative of the correlation potential with respect to local density
!! Perdew and Zunger parameterization of the Ceperley-Alder functional.
!
USE kinds, ONLY: DP
USE constants, ONLY: pi, fpi
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: rs
INTEGER, INTENT(IN) :: iflg
REAL(DP) :: dpz
!
! ... local variables
! a,b,c,d,gc,b1,b2 are the parameters defining the functional
!
REAL(DP), PARAMETER :: a = 0.0311d0, b = -0.048d0, c = 0.0020d0, &
d = -0.0116d0, gc = -0.1423d0, b1 = 1.0529d0, b2 = 0.3334d0,&
a1 = 7.0d0 * b1 / 6.d0, a2 = 4.d0 * b2 / 3.d0
REAL(DP) :: x, den, dmx, dmrs
!
IF (iflg == 1) THEN
dmrs = a / rs + 2.d0 / 3.d0 * c * (LOG(rs) + 1.d0) + &
(2.d0 * d-c) / 3.d0
ELSE
x = SQRT(rs)
den = 1.d0 + x * (b1 + x * b2)
dmx = gc * ( (a1 + 2.d0 * a2 * x) * den - 2.d0 * (b1 + 2.d0 * &
b2 * x) * (1.d0 + x * (a1 + x * a2) ) ) / den**3
dmrs = 0.5d0 * dmx / x
ENDIF
!
dpz = - fpi * rs**4.d0 / 9.d0 * dmrs
!
RETURN
!
END FUNCTION dpz
!
!
!-----------------------------------------------------------------------
FUNCTION dpz_polarized( rs, iflg )
!-----------------------------------------------------------------------
!! Derivative of the correlation potential with respect to local density
!! Perdew and Zunger parameterization of the Ceperley-Alder functional. |
!! Spin-polarized case.
!
USE kinds, ONLY: DP
USE constants, ONLY: pi, fpi
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: rs
INTEGER, INTENT(IN) :: iflg
REAL(DP) :: dpz_polarized
!
! ... local variables
!
! a,b,c,d,gc,b1,b2 are the parameters defining the functional
!
REAL(DP), PARAMETER :: a=0.01555_DP, b=-0.0269_DP, c=0.0007_DP, &
d=-0.0048_DP, gc=-0.0843_DP, b1=1.3981_DP,&
b2=0.2611_DP, a1=7.0_DP*b1/6._DP, a2=4._DP*b2/3._DP
REAL(DP) :: x, den, dmx, dmrs
!
!
IF (iflg == 1) THEN
dmrs = a/rs + 2._DP/3._DP * c * (LOG(rs) + 1._DP) + &
(2._DP*d - c)/3._DP
ELSE
x = SQRT(rs)
den = 1._DP + x * (b1 + x*b2)
dmx = gc * ( (a1 + 2._DP * a2 * x) * den - 2._DP * (b1 + 2._DP * &
b2 * x) * (1._DP + x * (a1 + x*a2) ) ) / den**3
dmrs = 0.5d0 * dmx/x
ENDIF
!
dpz_polarized = - fpi * rs**4._DP / 9._DP * dmrs
!
!
RETURN
!
END FUNCTION dpz_polarized
|