1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
!
! Copyright (C) 2018 Quantum ESPRESSO Foundation
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!--------------------------------------------------------------------
! Various routines computing gradient and similar quantities via FFT
!--------------------------------------------------------------------
! FIXME: there is a dependency upon "cell_base" via variable tpiba
! (2\pi/a) that maybe should be taken out from here?
!--------------------------------------------------------------------
SUBROUTINE external_gradient( a, grada )
!--------------------------------------------------------------------
!
! Interface for computing gradients of a real function in real space,
! to be called by an external module
!
USE kinds, ONLY : DP
USE fft_base, ONLY : dfftp
USE gvect, ONLY : g
!
IMPLICIT NONE
!
REAL( DP ), INTENT(IN) :: a( dfftp%nnr )
REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr )
! A in real space, grad(A) in real space
CALL fft_gradient_r2r( dfftp, a, g, grada )
RETURN
END SUBROUTINE external_gradient
!----------------------------------------------------------------------------
SUBROUTINE fft_gradient_r2r( dfft, a, g, ga )
!----------------------------------------------------------------------------
!
! ... Calculates ga = \grad a
! ... input : dfft FFT descriptor
! ... a(:) a real function on the real-space FFT grid
! ... g(3,:) G-vectors, in 2\pi/a units
! ... output: ga(3,:) \grad a, real, on the real-space FFT grid
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_interfaces,ONLY : fwfft, invfft
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
REAL(DP), INTENT(IN) :: a(dfft%nnr), g(3,dfft%ngm)
REAL(DP), INTENT(OUT) :: ga(3,dfft%nnr)
!
INTEGER :: ipol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:)
!
ALLOCATE( aux( dfft%nnr ) )
ALLOCATE( gaux( dfft%nnr ) )
!
aux = CMPLX( a(:), 0.0_dp, kind=DP)
!
! ... bring a(r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by (iG) to get (\grad_ipol a)(G) ...
!
DO ipol = 1, 3
!
gaux(:) = (0.0_dp, 0.0_dp)
!
gaux(dfft%nl(:)) = g(ipol,:) * CMPLX( -AIMAG( aux(dfft%nl(:)) ), &
REAL( aux(dfft%nl(:)) ), kind=DP)
!
IF ( dfft%lgamma ) THEN
!
gaux(dfft%nlm(:)) = CMPLX( REAL( gaux(dfft%nl(:)) ), &
-AIMAG( gaux(dfft%nl(:)) ), kind=DP)
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ga(ipol,:) = tpiba * DBLE( gaux(:) )
!
END DO
!
DEALLOCATE( gaux )
DEALLOCATE( aux )
!
RETURN
!
END SUBROUTINE fft_gradient_r2r
!
!--------------------------------------------------------------------
SUBROUTINE fft_qgradient (dfft, a, xq, g, ga)
!--------------------------------------------------------------------
!
! Like fft_gradient_r2r, for complex arrays having a e^{iqr} behavior
! ... input : dfft FFT descriptor
! ... a(:) a complex function on the real-space FFT grid
! ... xq(3) q-vector, in 2\pi/a units
! ... g(3,:) G-vectors, in 2\pi/a units
! ... output: ga(3,:) \grad a, complex, on the real-space FFT grid
!
USE kinds, ONLY: dp
USE cell_base, ONLY: tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces, ONLY: fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
!
COMPLEX(DP), INTENT(IN) :: a(dfft%nnr)
REAL(DP), INTENT(IN):: xq(3), g(3,dfft%ngm)
COMPLEX(DP), INTENT(OUT) :: ga(3,dfft%nnr)
INTEGER :: n, ipol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:)
ALLOCATE (gaux(dfft%nnr))
ALLOCATE (aux (dfft%nnr))
! bring a(r) to G-space, a(G) ...
aux (:) = a(:)
CALL fwfft ('Rho', aux, dfft)
! multiply by i(q+G) to get (\grad_ipol a)(q+G) ...
DO ipol = 1, 3
gaux (:) = (0.0_dp, 0.0_dp)
DO n = 1, dfft%ngm
gaux(dfft%nl(n)) = CMPLX( 0.0_dp, xq (ipol) + g(ipol,n), kind=DP ) * &
aux (dfft%nl(n))
IF ( dfft%lgamma ) gaux(dfft%nlm(n)) = CONJG( gaux (dfft%nl(n)) )
END DO
! bring back to R-space, (\grad_ipol a)(r) ...
CALL invfft ('Rho', gaux, dfft)
! ...and add the factor 2\pi/a missing in the definition of q+G
DO n = 1, dfft%nnr
ga (ipol,n) = gaux (n) * tpiba
END DO
END DO
DEALLOCATE (aux)
DEALLOCATE (gaux)
RETURN
END SUBROUTINE fft_qgradient
!
!----------------------------------------------------------------------------
SUBROUTINE fft_gradient_g2r( dfft, a, g, ga )
!----------------------------------------------------------------------------
!
! ... Calculates ga = \grad a - like fft_gradient with a(G) instead of a(r)
! ... input : dfft FFT descriptor
! ... a(:) a(G), a complex function in G-space
! ... g(3,:) G-vectors, in 2\pi/a units
! ... output: ga(3,:) \grad a, real, on the real-space FFT grid
!
USE cell_base, ONLY : tpiba
USE kinds, ONLY : DP
USE fft_interfaces,ONLY : invfft
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
COMPLEX(DP), INTENT(IN) :: a(dfft%ngm)
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
REAL(DP), INTENT(OUT) :: ga(3,dfft%nnr)
!
INTEGER :: ipol, n
COMPLEX(DP), ALLOCATABLE :: gaux(:)
!
!
ALLOCATE( gaux( dfft%nnr ) )
ga(:,:) = 0.D0
!
IF ( dfft%lgamma) THEN
!
! ... Gamma tricks: perform 2 FFT's in a single shot
! x and y
ipol = 1
gaux(:) = (0.0_dp,0.0_dp)
!
! ... multiply a(G) by iG to get the gradient in real space
!
DO n = 1, dfft%ngm
gaux(dfft%nl (n)) = CMPLX( 0.0_dp, g(ipol, n), kind=DP )* a(n) - &
g(ipol+1,n) * a(n)
gaux(dfft%nlm(n)) = CMPLX( 0.0_dp,-g(ipol, n), kind=DP )*CONJG(a(n)) +&
g(ipol+1,n) * CONJG(a(n))
ENDDO
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ... bring back to R-space, (\grad_ipol a)(r)
! ... add the factor 2\pi/a missing in the definition of q+G
!
DO n = 1, dfft%nnr
ga (ipol , n) = REAL( gaux(n) ) * tpiba
ga (ipol+1, n) = AIMAG( gaux(n) ) * tpiba
ENDDO
! z
ipol = 3
gaux(:) = (0.0_dp,0.0_dp)
!
! ... multiply a(G) by iG to get the gradient in real space
!
gaux(dfft%nl (:)) = g(ipol,:) * CMPLX( -AIMAG(a(:)), REAL(a(:)), kind=DP)
gaux(dfft%nlm(:)) = CONJG( gaux(dfft%nl(:)) )
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ga(ipol,:) = tpiba * REAL( gaux(:) )
!
ELSE
!
DO ipol = 1, 3
!
gaux(:) = (0.0_dp,0.0_dp)
!
! ... multiply a(G) by iG to get the gradient in real space
!
gaux(dfft%nl(:)) = g(ipol,:) * CMPLX( -AIMAG(a(:)), REAL(a(:)), kind=DP)
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ga(ipol,:) = tpiba * REAL( gaux(:) )
!
END DO
!
END IF
!
DEALLOCATE( gaux )
!
RETURN
!
END SUBROUTINE fft_gradient_g2r
!----------------------------------------------------------------------------
SUBROUTINE fft_graddot( dfft, a, g, da )
!----------------------------------------------------------------------------
!
! ... Calculates da = \sum_i \grad_i a_i in R-space
! ... input : dfft FFT descriptor
! ... a(3,:) a real function on the real-space FFT grid
! ... g(3,:) G-vectors, in 2\pi/a units
! ... output: ga(:) \sum_i \grad_i a_i, real, on the real-space FFT grid
!
USE cell_base, ONLY : tpiba
USE kinds, ONLY : DP
USE fft_interfaces,ONLY : fwfft, invfft
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
REAL(DP), INTENT(IN) :: a(3,dfft%nnr), g(3,dfft%ngm)
REAL(DP), INTENT(OUT) :: da(dfft%nnr)
!
INTEGER :: n, ipol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:)
COMPLEX(DP) :: fp, fm, aux1, aux2
!
ALLOCATE( aux(dfft%nnr) )
ALLOCATE( gaux(dfft%nnr) )
!
gaux(:) = (0.0_dp,0.0_dp)
!
IF ( dfft%lgamma ) THEN
!
! Gamma tricks: perform 2 FFT's in a single shot
! x and y
ipol = 1
aux(:) = CMPLX( a(ipol,:), a(ipol+1,:), kind=DP)
!
! ... bring a(ipol,r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by iG to get the gradient in G-space
!
DO n = 1, dfft%ngm
!
fp = (aux(dfft%nl(n)) + aux (dfft%nlm(n)))*0.5_dp
fm = (aux(dfft%nl(n)) - aux (dfft%nlm(n)))*0.5_dp
aux1 = CMPLX( REAL(fp), AIMAG(fm), kind=DP)
aux2 = CMPLX(AIMAG(fp), -REAL(fm), kind=DP)
gaux (dfft%nl(n)) = &
CMPLX(0.0_dp, g(ipol ,n),kind=DP) * aux1 + &
CMPLX(0.0_dp, g(ipol+1,n),kind=DP) * aux2
ENDDO
! z
ipol = 3
aux(:) = CMPLX( a(ipol,:), 0.0_dp, kind=DP)
!
! ... bring a(ipol,r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by iG to get the gradient in G-space
! ... fill both gaux(G) and gaux(-G) = gaux*(G)
!
DO n = 1, dfft%ngm
gaux(dfft%nl(n)) = gaux(dfft%nl(n)) + g(ipol,n) * &
CMPLX( -AIMAG( aux(dfft%nl(n)) ), &
REAL( aux(dfft%nl(n)) ), kind=DP)
gaux(dfft%nlm(n)) = CONJG( gaux(dfft%nl(n)) )
END DO
!
ELSE
!
DO ipol = 1, 3
!
aux = CMPLX( a(ipol,:), 0.0_dp, kind=DP)
!
! ... bring a(ipol,r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by iG to get the gradient in G-space
!
DO n = 1, dfft%ngm
gaux(dfft%nl(n)) = gaux(dfft%nl(n)) + g(ipol,n) * &
CMPLX( -AIMAG( aux(dfft%nl(n)) ), &
REAL( aux(dfft%nl(n)) ), kind=DP)
END DO
!
END DO
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ... add the factor 2\pi/a missing in the definition of G and sum
!
da(:) = tpiba * REAL( gaux(:) )
!
DEALLOCATE( aux, gaux )
!
RETURN
!
END SUBROUTINE fft_graddot
!--------------------------------------------------------------------
SUBROUTINE fft_qgraddot ( dfft, a, xq, g, da)
!--------------------------------------------------------------------
!
! Like fft_graddot, for complex arrays having a e^{iqr} dependency
! ... input : dfft FFT descriptor
! ... a(3,:) a complex function on the real-space FFT grid
! ... xq(3) q-vector, in 2\pi/a units
! ... g(3,:) G-vectors, in 2\pi/a units
! ... output: ga(:) \sum_i \grad_i a_i, complex, on the real-space FFT grid
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_interfaces, ONLY : fwfft, invfft
USE fft_types, ONLY : fft_type_descriptor
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
COMPLEX(DP), INTENT(IN) :: a(3,dfft%nnr)
REAL(DP), INTENT(IN) :: xq(3), g(3,dfft%ngm)
COMPLEX(DP), INTENT(OUT) :: da(dfft%nnr)
INTEGER :: n, ipol
COMPLEX(DP), allocatable :: aux (:)
ALLOCATE (aux (dfft%nnr))
da(:) = (0.0_dp, 0.0_dp)
DO ipol = 1, 3
! copy a(ipol,r) to a complex array...
DO n = 1, dfft%nnr
aux (n) = a (ipol, n)
END DO
! bring a(ipol,r) to G-space, a(G) ...
CALL fwfft ('Rho', aux, dfft)
! multiply by i(q+G) to get (\grad_ipol a)(q+G) ...
DO n = 1, dfft%ngm
da (dfft%nl(n)) = da (dfft%nl(n)) + &
CMPLX(0.0_dp, xq (ipol) + g (ipol, n),kind=DP) * aux(dfft%nl(n))
END DO
END DO
IF ( dfft%lgamma ) THEN
DO n = 1, dfft%ngm
da (dfft%nlm(n)) = CONJG( da (dfft%nl(n)) )
END DO
END IF
! bring back to R-space, (\grad_ipol a)(r) ...
CALL invfft ('Rho', da, dfft)
! ...add the factor 2\pi/a missing in the definition of q+G
da (:) = da (:) * tpiba
DEALLOCATE(aux)
RETURN
END SUBROUTINE fft_qgraddot
!--------------------------------------------------------------------
! Routines computing laplacian via FFT
!--------------------------------------------------------------------
!--------------------------------------------------------------------
SUBROUTINE external_laplacian( a, lapla )
!--------------------------------------------------------------------
!
! Interface for computing laplacian in real space, to be called by
! an external module
!
USE kinds, ONLY : DP
USE fft_base, ONLY : dfftp
USE gvect, ONLY : gg
!
IMPLICIT NONE
!
REAL( DP ), INTENT(IN) :: a( dfftp%nnr )
REAL( DP ), INTENT(OUT) :: lapla( dfftp%nnr )
! A in real space, lapl(A) in real space
CALL fft_laplacian( dfftp, a, gg, lapla )
RETURN
END SUBROUTINE external_laplacian
!--------------------------------------------------------------------
SUBROUTINE fft_laplacian( dfft, a, gg, lapla )
!--------------------------------------------------------------------
!
! ... Calculates lapla = laplacian(a)
! ... input : dfft FFT descriptor
! ... a(:) a real function on the real-space FFT grid
! ... gg(:) square modules of G-vectors, in (2\pi/a)^2 units
! ... output: lapla(:) \nabla^2 a, real, on the real-space FFT grid
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba2
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces,ONLY : fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
REAL(DP), INTENT(IN) :: a(dfft%nnr), gg(dfft%ngm)
REAL(DP), INTENT(OUT) :: lapla(dfft%nnr)
!
INTEGER :: ig
COMPLEX(DP), ALLOCATABLE :: aux(:), laux(:)
!
!
ALLOCATE( aux( dfft%nnr ) )
ALLOCATE( laux( dfft%nnr ) )
!
aux = CMPLX( a(:), 0.0_dp, kind=DP)
!
! ... bring a(r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... Compute the laplacian
!
laux(:) = (0.0_dp, 0.0_dp)
!
DO ig = 1, dfft%ngm
!
laux(dfft%nl(ig)) = -gg(ig)*aux(dfft%nl(ig))
!
END DO
!
IF ( dfft%lgamma ) THEN
!
laux(dfft%nlm(:)) = CMPLX( REAL(laux(dfft%nl(:)) ), &
-AIMAG(laux(dfft%nl(:)) ), kind=DP)
!
ENDIF
!
! ... bring back to R-space, (\lapl a)(r) ...
!
CALL invfft ('Rho', laux, dfft)
!
! ... add the missing factor (2\pi/a)^2 in G
!
lapla = tpiba2 * REAL( laux )
!
DEALLOCATE( laux )
DEALLOCATE( aux )
!
RETURN
!
END SUBROUTINE fft_laplacian
!
!--------------------------------------------------------------------
! Routines computing hessian via FFT
!--------------------------------------------------------------------
!
!----------------------------------------------------------------------
SUBROUTINE fft_hessian_g2r ( dfft, a, g, ha )
!----------------------------------------------------------------------
!
! ... Calculates ha = hessian(a)
! ... input : dfft FFT descriptor
! ... a(:) a real function on the real-space FFT grid
! ... g(3,:) G-vectors, in (2\pi/a)^2 units
! ... output: ha(6,:) hessian(a), real, on the real-space FFT grid
! ... lower-packed matrix indeces 1-6 correspond to:
! ... 1 = xx, 2 = yx, 3 = yy, 4 = zx, 5 = zy, 6 = zz
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces,ONLY : fwfft, invfft
USE fft_helper_subroutines, ONLY: fftx_oned2threed
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
REAL(DP), INTENT(IN) :: g(3,dfft%ngm)
COMPLEX(DP), INTENT(IN) :: a(dfft%ngm)
REAL(DP), INTENT(OUT) :: ha( 6, dfft%nnr )
!
INTEGER :: ig, ir
COMPLEX(DP), ALLOCATABLE :: aux(:), haux(:,:)
!
IF ( .NOT. dfft%lgamma ) CALL errore ('fft_hessian_g2r',&
'only gamma case is implemented',1)
ALLOCATE ( aux(dfft%nnr))
ALLOCATE (haux(dfft%ngm,2))
! xx, yx
DO ig=1,dfft%ngm
haux(ig,1) = -tpiba**2*g(1,ig)**2 *a(ig)
haux(ig,2) = -tpiba**2*g(1,ig)*g(2,ig)*a(ig)
END DO
CALL fftx_oned2threed( dfft, aux, haux(:,1), haux(:,2) )
CALL invfft('Rho', aux, dfft)
DO ir=1,dfft%nnr
ha(1,ir) = DBLE(aux(ir))
ha(2,ir) =AIMAG(aux(ir))
END DO
! yy, zx
DO ig=1,dfft%ngm
haux(ig,1) = -tpiba**2*g(2,ig)**2 *a(ig)
haux(ig,2) = -tpiba**2*g(1,ig)*g(3,ig)*a(ig)
END DO
CALL fftx_oned2threed( dfft, aux, haux(:,1), haux(:,2) )
CALL invfft('Rho', aux, dfft)
DO ir=1,dfft%nnr
ha(3,ir) = DBLE(aux(ir))
ha(4,ir) =AIMAG(aux(ir))
END DO
! zy, zz
DO ig=1,dfft%ngm
haux(ig,1) = -tpiba**2*g(2,ig)*g(3,ig)*a(ig)
haux(ig,2) = -tpiba**2*g(3,ig)**2 *a(ig)
END DO
CALL fftx_oned2threed( dfft, aux, haux(:,1), haux(:,2) )
CALL invfft('Rho', aux, dfft)
DO ir=1,dfft%nnr
ha(5,ir) = DBLE(aux(ir))
ha(6,ir) =AIMAG(aux(ir))
END DO
!
DEALLOCATE(aux)
DEALLOCATE(haux)
END SUBROUTINE fft_hessian_g2r
!--------------------------------------------------------------------
SUBROUTINE fft_hessian( dfft, a, g, ga, ha )
!--------------------------------------------------------------------
!
! ... Calculates ga = \grad a and ha = hessian(a)
! ... input : dfft FFT descriptor
! ... a(:) a real function on the real-space FFT grid
! ... g(3,:) G-vectors, in (2\pi/a)^2 units
! ... output: ga(3,:) \grad a, real, on the real-space FFT grid
! ... ha(3,3,:) hessian(a), real, on the real-space FFT grid
!
USE kinds, ONLY : DP
USE cell_base, ONLY : tpiba
USE fft_types, ONLY : fft_type_descriptor
USE fft_interfaces,ONLY : fwfft, invfft
!
IMPLICIT NONE
!
TYPE(fft_type_descriptor),INTENT(IN) :: dfft
REAL(DP), INTENT(IN) :: a(dfft%nnr), g(3,dfft%ngm)
REAL(DP), INTENT(OUT) :: ga( 3, dfft%nnr )
REAL(DP), INTENT(OUT) :: ha( 3, 3, dfft%nnr )
!
INTEGER :: ipol, jpol
COMPLEX(DP), ALLOCATABLE :: aux(:), gaux(:), haux(:)
!
!
ALLOCATE( aux( dfft%nnr ) )
ALLOCATE( gaux( dfft%nnr ) )
ALLOCATE( haux( dfft%nnr ) )
!
aux = CMPLX( a(:), 0.0_dp, kind=DP)
!
! ... bring a(r) to G-space, a(G) ...
!
CALL fwfft ('Rho', aux, dfft)
!
! ... multiply by (iG) to get (\grad_ipol a)(G) ...
!
DO ipol = 1, 3
!
gaux(:) = (0.0_dp,0.0_dp)
!
gaux(dfft%nl(:)) = g(ipol,:) * CMPLX( -AIMAG( aux(dfft%nl(:)) ), &
REAL( aux(dfft%nl(:)) ), kind=DP )
!
IF ( dfft%lgamma ) THEN
!
gaux(dfft%nlm(:)) = CMPLX( REAL( gaux(dfft%nl(:)) ), &
-AIMAG( gaux(dfft%nl(:)) ), kind=DP)
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', gaux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ga(ipol,:) = tpiba * REAL( gaux(:) )
!
! ... compute the second derivatives
!
DO jpol = 1, ipol
!
haux(:) = (0.0_dp,0.0_dp)
!
haux(dfft%nl(:)) = - g(ipol,:) * g(jpol,:) * &
CMPLX( REAL( aux(dfft%nl(:)) ), &
AIMAG( aux(dfft%nl(:)) ), kind=DP)
!
IF ( dfft%lgamma ) THEN
!
haux(dfft%nlm(:)) = CMPLX( REAL( haux(dfft%nl(:)) ), &
-AIMAG( haux(dfft%nl(:)) ), kind=DP)
!
END IF
!
! ... bring back to R-space, (\grad_ipol a)(r) ...
!
CALL invfft ('Rho', haux, dfft)
!
! ...and add the factor 2\pi/a missing in the definition of G
!
ha(ipol, jpol, :) = tpiba * tpiba * REAL( haux(:) )
!
ha(jpol, ipol, :) = ha(ipol, jpol, :)
!
END DO
!
END DO
!
DEALLOCATE( haux )
DEALLOCATE( gaux )
DEALLOCATE( aux )
!
RETURN
!
END SUBROUTINE fft_hessian
!--------------------------------------------------------------------
SUBROUTINE external_hessian( a, grada, hessa )
!--------------------------------------------------------------------
!
! Interface for computing hessian in real space, to be called by
! an external module
!
USE kinds, ONLY : DP
USE fft_base, ONLY : dfftp
USE gvect, ONLY : g
!
IMPLICIT NONE
!
REAL( DP ), INTENT(IN) :: a( dfftp%nnr )
REAL( DP ), INTENT(OUT) :: grada( 3, dfftp%nnr )
REAL( DP ), INTENT(OUT) :: hessa( 3, 3, dfftp%nnr )
! A in real space, grad(A) and hess(A) in real space
CALL fft_hessian( dfftp, a, g, grada, hessa )
RETURN
END SUBROUTINE external_hessian
!--------------------------------------------------------------------
|