1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
! Slightly modified version of LINPACK routines zgefa and zgedi
SUBROUTINE ZGEFA(A,LDA,N,IPVT,INFO)
USE kinds, ONLY : DP
INTEGER LDA,N,IPVT(*),INFO
COMPLEX(DP) A(LDA,*)
!
! ZGEFA FACTORS A COMPLEX(DP) MATRIX BY GAUSSIAN ELIMINATION.
!
! ZGEFA IS USUALLY CALLED BY ZGECO, BUT IT CAN BE CALLED
! DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
! (TIME FOR ZGECO) = (1 + 9/N)*(TIME FOR ZGEFA) .
!
! ON ENTRY
!
! A COMPLEX(DP)(LDA, N)
! THE MATRIX TO BE FACTORED.
!
! LDA INTEGER
! THE LEADING DIMENSION OF THE ARRAY A .
!
! N INTEGER
! THE ORDER OF THE MATRIX A .
!
! ON RETURN
!
! A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
! WHICH WERE USED TO OBTAIN IT.
! THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
! L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
! TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
!
! IPVT INTEGER(N)
! AN INTEGER VECTOR OF PIVOT INDICES.
!
! INFO INTEGER
! = 0 NORMAL VALUE.
! = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
! CONDITION FOR THIS SUBROUTINE, BUT IT DOES
! INDICATE THAT ZGESL OR ZGEDI WILL DIVIDE BY ZERO
! IF CALLED. USE RCOND IN ZGECO FOR A RELIABLE
! INDICATION OF SINGULARITY.
!
! LINPACK. THIS VERSION DATED 08/14/78 .
! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
!
! SUBROUTINES AND FUNCTIONS
!
! BLAS ZAXPY,ZSCAL,IZAMAX
! FORTRAN DABS
!
! INTERNAL VARIABLES
!
COMPLEX(DP) T
INTEGER IZAMAX,J,K,KP1,L,NM1
!
COMPLEX(DP) ZDUM
REAL(DP) CABS1
REAL(DP) REAL,AIMAG
COMPLEX(DP) ZDUMR,ZDUMI
REAL(ZDUMR) = ZDUMR
AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI
CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM))
!
! GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
!
INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
!
! FIND L = PIVOT INDEX
!
L = IZAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
!
! ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
!
IF (CABS1(A(L,K)) .EQ. 0.0D0) GO TO 40
!
! INTERCHANGE IF NECESSARY
!
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
!
! COMPUTE MULTIPLIERS
!
T = -(1.0D0,0.0D0)/A(K,K)
CALL ZSCAL(N-K,T,A(K+1,K),1)
!
! ROW ELIMINATION WITH COLUMN INDEXING
!
DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL ZAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (CABS1(A(N,N)) .EQ. 0.0D0) INFO = N
RETURN
END SUBROUTINE ZGEFA
SUBROUTINE ZGEDI(A,LDA,N,IPVT,DET,WORK,JOB)
USE kinds, ONLY : DP
INTEGER LDA,N,IPVT(*),JOB
COMPLEX(DP) A(LDA,*),DET(2),WORK(*)
!
! ZGEDI COMPUTES THE DETERMINANT AND INVERSE OF A MATRIX
! USING THE FACTORS COMPUTED BY ZGECO OR ZGEFA.
!
! ON ENTRY
!
! A COMPLEX(DP)(LDA, N)
! THE OUTPUT FROM ZGECO OR ZGEFA.
!
! LDA INTEGER
! THE LEADING DIMENSION OF THE ARRAY A .
!
! N INTEGER
! THE ORDER OF THE MATRIX A .
!
! IPVT INTEGER(N)
! THE PIVOT VECTOR FROM ZGECO OR ZGEFA.
!
! WORK COMPLEX(DP)(N)
! WORK VECTOR. CONTENTS DESTROYED.
!
! JOB INTEGER
! = 11 BOTH DETERMINANT AND INVERSE.
! = 01 INVERSE ONLY.
! = 10 DETERMINANT ONLY.
!
! ON RETURN
!
! A INVERSE OF ORIGINAL MATRIX IF REQUESTED.
! OTHERWISE UNCHANGED.
!
! DET COMPLEX(DP)(2)
! DETERMINANT OF ORIGINAL MATRIX IF REQUESTED.
! OTHERWISE NOT REFERENCED.
! DETERMINANT = DET(1) * 10.0**DET(2)
! WITH 1.0 .LE. CABS1(DET(1)) .LT. 10.0
! OR DET(1) .EQ. 0.0 .
!
! ERROR CONDITION
!
! A DIVISION BY ZERO WILL OCCUR IF THE INPUT FACTOR CONTAINS
! A ZERO ON THE DIAGONAL AND THE INVERSE IS REQUESTED.
! IT WILL NOT OCCUR IF THE SUBROUTINES ARE CALLED CORRECTLY
! AND IF ZGECO HAS SET RCOND .GT. 0.0 OR ZGEFA HAS SET
! INFO .EQ. 0 .
!
! LINPACK. THIS VERSION DATED 08/14/78 .
! CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
!
! SUBROUTINES AND FUNCTIONS
!
! BLAS ZAXPY,ZSCAL,ZSWAP
! FORTRAN DABS,CMPLX,MOD
!
! INTERNAL VARIABLES
!
COMPLEX(DP) T
REAL(DP) TEN
INTEGER I,J,K,KB,KP1,L,NM1
!
COMPLEX(DP) ZDUM
REAL(DP) CABS1
REAL(DP) REAL,AIMAG
COMPLEX(DP) ZDUMR,ZDUMI
REAL(ZDUMR) = ZDUMR
AIMAG(ZDUMI) = (0.0D0,-1.0D0)*ZDUMI
CABS1(ZDUM) = DABS(REAL(ZDUM)) + DABS(AIMAG(ZDUM))
!
! COMPUTE DETERMINANT
!
IF (JOB/10 .EQ. 0) GO TO 70
DET(1) = (1.0D0,0.0D0)
DET(2) = (0.0D0,0.0D0)
TEN = 10.0D0
DO 50 I = 1, N
IF (IPVT(I) .NE. I) DET(1) = -DET(1)
DET(1) = A(I,I)*DET(1)
! ...EXIT
IF (CABS1(DET(1)) .EQ. 0.0D0) GO TO 60
10 IF (CABS1(DET(1)) .GE. 1.0D0) GO TO 20
DET(1) = CMPLX(TEN,0.0D0,KIND=dp)*DET(1)
DET(2) = DET(2) - (1.0D0,0.0D0)
GO TO 10
20 CONTINUE
30 IF (CABS1(DET(1)) .LT. TEN) GO TO 40
DET(1) = DET(1)/CMPLX(TEN,0.0D0,KIND=dp)
DET(2) = DET(2) + (1.0D0,0.0D0)
GO TO 30
40 CONTINUE
50 CONTINUE
60 CONTINUE
70 CONTINUE
!
! COMPUTE INVERSE(U)
!
IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100 K = 1, N
A(K,K) = (1.0D0,0.0D0)/A(K,K)
T = -A(K,K)
CALL ZSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KP1) GO TO 90
DO 80 J = KP1, N
T = A(K,J)
A(K,J) = (0.0D0,0.0D0)
CALL ZAXPY(K,T,A(1,K),1,A(1,J),1)
80 CONTINUE
90 CONTINUE
100 CONTINUE
!
! FORM INVERSE(U)*INVERSE(L)
!
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K = N - KB
KP1 = K + 1
DO 110 I = KP1, N
WORK(I) = A(I,K)
A(I,K) = (0.0D0,0.0D0)
110 CONTINUE
DO 120 J = KP1, N
T = WORK(J)
CALL ZAXPY(N,T,A(1,J),1,A(1,K),1)
120 CONTINUE
L = IPVT(K)
IF (L .NE. K) CALL ZSWAP(N,A(1,K),1,A(1,L),1)
130 CONTINUE
140 CONTINUE
150 CONTINUE
RETURN
END SUBROUTINE ZGEDI
|