File: metagga.f90

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (1568 lines) | stat: -rw-r--r-- 46,730 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
!
! Copyright (C) 2001-2012 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-------------------------------------------------------------------------
!
!                        META-GGA FUNCTIONALS
!
!  Available functionals :
!           - TPSS (Tao, Perdew, Staroverov & Scuseria)
!           - M06L
!  Other options are available through libxc library (must be specified
!  in input).
!
!=========================================================================
!
MODULE metagga                       !<GPU:metagga=>metagga_gpu>
!
USE exch_lda,  ONLY : slater   !<GPU:slater=>slater_d,exch_lda=>exch_lda_gpu>
USE corr_lda,  ONLY : pw, pw_spin   !<GPU:pw=>pw_d,pw_spin=>pw_spin_d,corr_lda=>corr_lda_gpu>
USE corr_gga,  ONLY : pbec, pbec_spin   !<GPU:pbec=>pbec_d,pbec_spin=>pbec_spin_d,corr_gga=>corr_gga_gpu>
!
 CONTAINS
!                             TPSS
!
!-------------------------------------------------------------------------
SUBROUTINE tpsscxc( rho, grho, tau, sx, sc, v1x, v2x, v3x, v1c, v2c, v3c )                    !<GPU:DEVICE>
  !-----------------------------------------------------------------------
  !! TPSS metaGGA corrections for exchange and correlation - Hartree a.u.
  !
  !! Definition:  E_x = \int E_x(rho,grho) dr
  !
  USE kinds,            ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the charge density
  REAL(DP), INTENT(IN) :: grho
  !! grho = |\nabla rho|^2
  REAL(DP), INTENT(IN) :: tau
  !! kinetic energy density
  REAL(DP), INTENT(OUT) :: sx
  !! sx = E_x(rho,grho)
  REAL(DP), INTENT(OUT) :: sc
  !! sc = E_c(rho,grho)
  REAL(DP), INTENT(OUT) :: v1x
  !! v1x = D(E_x)/D(rho)
  REAL(DP), INTENT(OUT) :: v2x
  !! v2x = D(E_x)/D( D rho/D r_alpha ) / |\nabla rho|
  REAL(DP), INTENT(OUT) :: v3x
  !! v3x = D(E_x)/D(tau)
  REAL(DP), INTENT(OUT) :: v1c
  !! v1c = D(E_c)/D(rho)
  REAL(DP), INTENT(OUT) :: v2c
  !! v2c = D(E_c)/D( D rho/D r_alpha ) / |\nabla rho|
  REAL(DP), INTENT(OUT) :: v3c
  !! v3c = D(E_c)/D(tau)
  !
  ! ... local variables
  !
  REAL(DP), PARAMETER :: small = 1.E-10_DP
  !
  IF (rho <= small) THEN
     sx  = 0.0_DP
     v1x = 0.0_DP
     v2x = 0.0_DP
     sc  = 0.0_DP
     v1c = 0.0_DP
     v2c = 0.0_DP
     v3x = 0.0_DP
     v3c = 0.0_DP
     RETURN
  ENDIF
  !
  ! exchange
  CALL metax( rho, grho, tau, sx, v1x, v2x, v3x )                   !<GPU:metax=>metax_d>
  ! correlation
  CALL metac( rho, grho, tau, sc, v1c, v2c, v3c )                   !<GPU:metac=>metac_d>
  !
  RETURN
  !
END SUBROUTINE tpsscxc
!
!
!-------------------------------------------------------------------------
SUBROUTINE metax( rho, grho2, tau, ex, v1x, v2x, v3x )                    !<GPU:DEVICE>
  !--------------------------------------------------------------------
  !! TPSS meta-GGA exchange potential and energy.
  !
  !! NOTE: E_x(rho,grho) = rho\epsilon_x(rho,grho) ;
  !! ex = E_x(rho,grho)    NOT \epsilon_x(rho,grho) ;
  !! v1x= D(E_x)/D(rho) ;
  !! v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho| ;
  !! v3x= D(E_x)/D( tau ) ;
  !! tau is the kinetic energy density ;
  !! the same applies to correlation terms ;
  !! input grho2 is |\nabla rho|^2 .
  !
  USE kinds,       ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the charge density
  REAL(DP), INTENT(IN) :: grho2
  !! grho2 = |\nabla rho|^2
  REAL(DP), INTENT(IN) :: tau
  !! kinetic energy density
  REAL(DP), INTENT(OUT) :: ex
  !! ex = E_x(rho,grho)
  REAL(DP), INTENT(OUT) :: v1x
  !! v1x = D(E_x)/D(rho)
  REAL(DP), INTENT(OUT) :: v2x
  !! v2x = D(E_x)/D( D rho/D r_alpha ) / |\nabla rho|
  REAL(DP), INTENT(OUT) :: v3x
  !! v3x = D(E_x)/D(tau)
  !
  ! ... local variables
  !
  REAL(DP) :: rs, vx_unif, ex_unif
  !  ex_unif:   lda \epsilon_x(rho)
  !  ec_unif:   lda \epsilon_c(rho)
  REAL(DP), PARAMETER :: small=1.E-10_DP
  REAL(DP), PARAMETER :: pi34=0.6203504908994_DP, third=1.0_DP/3.0_DP
  !  fx=Fx(p,z)
  !  fxp=d Fx / d p
  !  fxz=d Fx / d z
  REAL(DP) :: fx, f1x, f2x, f3x
  !
  IF (ABS(tau) < small) THEN
    ex  = 0.0_DP
    v1x = 0.0_DP
    v2x = 0.0_DP
    v3x = 0.0_DP
    RETURN
  ENDIF
  !
  rs = pi34/rho**third
  CALL slater( rs, ex_unif, vx_unif )                                  !<GPU:slater=>slater_d>
  CALL metaFX( rho, grho2, tau, fx, f1x, f2x, f3x )                    !<GPU:metaFX=>metaFX_d>
  !
  ex = rho*ex_unif
  v1x = vx_unif*fx + ex*f1x
  v2x = ex*f2x
  v3x = ex*f3x
  ex  = ex*fx
  !
  RETURN
  !
END SUBROUTINE metax
!
!
!------------------------------------------------------------------
SUBROUTINE metac( rho, grho2, tau, ec, v1c, v2c, v3c )                    !<GPU:DEVICE>
  !--------------------------------------------------------------
  !! TPSS meta-GGA correlation energy and potentials.
  !
  USE kinds,  ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the charge density
  REAL(DP), INTENT(IN) :: grho2
  !! grho2 = |\nabla rho|^2
  REAL(DP), INTENT(IN) :: tau
  !! kinetic energy density
  REAL(DP), INTENT(OUT) :: ec
  !! ec = E_c(rho,grho)
  REAL(DP), INTENT(OUT) :: v1c
  !! v1c = D(E_c)/D(rho)
  REAL(DP), INTENT(OUT) :: v2c
  !! v2c = D(E_c)/D( D rho/D r_alpha ) / |\nabla rho|
  REAL(DP), INTENT(OUT) :: v3c
  !! v3c = D(E_c)/D(tau)
  !
  ! ... local variables
  !
  REAL(DP) :: z, z2, tauw, ec_rev
  REAL(DP) :: d1rev, d2rev, d3rev
  !  d1ec=  D ec_rev / D rho
  !  d2ec=  D ec_rev / D |D rho/ D r| / |\nabla rho|
  !  d3ec=  D ec_rev / D tau
  REAL(DP) :: cf1, cf2, cf3
  REAL(DP) :: v1c_pbe, v2c_pbe, ec_pbe
  REAL(DP) :: v1c_sum(2), v2c_sum, ec_sum
  !
  REAL(DP) :: rs
  REAL(DP) :: ec_unif, vc_unif
  REAL(DP) :: vc_unif_s(2)
  !
  REAL(DP) :: rhoup, grhoup
  !
  REAL(DP), PARAMETER :: small=1.0E-10_DP
  REAL(DP), PARAMETER :: pi34=0.75_DP/3.141592653589793_DP, &
                         third=1.0_DP/3.0_DP
  REAL(DP), PARAMETER :: dd=2.80_DP  !in unit of Hartree^-1
  REAL(DP), PARAMETER :: cab=0.53_DP, cabone=1.0_DP+cab
  !
  IF (ABS(tau) < small) THEN
     ec  = 0.0_DP
     v1c = 0.0_DP
     v2c = 0.0_DP
     v3c = 0.0_DP
     RETURN
  ENDIF
  !
  rhoup = 0.5_DP*rho
  grhoup = 0.5_DP*SQRT(grho2)
  !
  IF (rhoup > small) THEN
     !
     rs = (pi34/rhoup)**third
     CALL pw_spin( rs, 1.0_DP, ec_unif, vc_unif_s(1), vc_unif_s(2) )                                  !<GPU:pw_spin=>pw_spin_d>
     !
     IF (ABS(grhoup) > small) THEN
        ! zeta=1.0_DP-small to avoid pow_e of 0 in pbec_spin
        CALL pbec_spin( rhoup, 1.0_DP-small, grhoup**2, 1, &           !<GPU:pbec_spin=>pbec_spin_d>
                        ec_sum, v1c_sum(1), v1c_sum(2), v2c_sum )
     ELSE
        ec_sum  = 0.0_DP
        v1c_sum = 0.0_DP
        v2c_sum = 0.0_DP
     ENDIF
     ec_sum = ec_sum/rhoup + ec_unif
     v1c_sum(1) = (v1c_sum(1) + vc_unif_s(1)-ec_sum)/rho !rho, not rhoup
     v2c_sum = v2c_sum/(2.0_DP*rho)
  ELSE
     ec_sum  = 0.0_DP
     v1c_sum = 0.0_DP
     v2c_sum = 0.0_DP
  ENDIF
  !
  rs = (pi34/rho)**third
  CALL pw( rs, 1, ec_unif, vc_unif )                             !<GPU:pw=>pw_d>
  !
  !  ... PBE correlation energy and potential:
  !  ec_pbe=rho*H,  not rho*(epsion_c_uinf + H)
  !  v1c_pbe=D (rho*H) /D rho
  !  v2c_pbe= for rho, 2 for
  CALL pbec( rho, grho2, 1, ec_pbe, v1c_pbe, v2c_pbe )           !<GPU:pbec=>pbec_d>
  !
  ec_pbe  = ec_pbe/rho+ec_unif
  v1c_pbe = (v1c_pbe+vc_unif-ec_pbe)/rho
  v2c_pbe = v2c_pbe/rho
  !
  IF (ec_sum < ec_pbe) THEN
     ec_sum = ec_pbe
     v1c_sum(1) = v1c_pbe
     v2c_sum = v2c_pbe
  ENDIF
  !
  tauw = 0.1250_DP * grho2/rho
  z = tauw/tau
  z2 = z*z
  !
  ec_rev = ec_pbe*(1+cab*z2)-cabone*z2*ec_sum
  !
  d1rev  = v1c_pbe + (cab*v1c_pbe-cabone*v1c_sum(1))*z2  &
                   - (ec_pbe*cab - ec_sum*cabone)*2.0_DP*z2/rho
  d2rev  = v2c_pbe + (cab*v2c_pbe-cabone*v2c_sum)*z2     &
                   + (ec_pbe*cab - ec_sum*cabone)*4.0_DP*z2/grho2
  d3rev  = -(ec_pbe*cab - ec_sum*cabone)*2.0_DP*z2/tau
  !
  cf1 = 1.0_DP + dd*ec_rev*z2*z
  cf2 = rho*(1.0_DP+2.0_DP*z2*z*dd*ec_rev)
  cf3 = ec_rev*ec_rev*3.0_DP*dd*z2*z
  v1c = ec_rev*cf1 + cf2*d1rev-cf3
  !
  cf3 = cf3*rho
  v2c = cf2*d2rev + cf3*2.0_DP/grho2
  v3c = cf2*d3rev - cf3/tau
  !
  ec = rho*ec_rev*(1.0_DP+dd*ec_rev*z2*z)  !-rho*ec_unif(1)
  !v1c = v1c - vc_unif(1)
  !
  RETURN
  !
END SUBROUTINE metac
!
!
!-------------------------------------------------------------------------
SUBROUTINE metaFX( rho, grho2, tau, fx, f1x, f2x, f3x )                    !<GPU:DEVICE>
  !-------------------------------------------------------------------------
  !
  USE kinds,           ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! charge density
  REAL(DP), INTENT(IN) :: grho2
  !! square of gradient of rho
  REAL(DP), INTENT(IN) :: tau
  !! kinetic energy density
  REAL(DP), INTENT(OUT) :: fx
  !! fx = Fx(p,z)
  REAL(DP), INTENT(OUT) :: f1x
  !! f1x=D (Fx) / D rho
  REAL(DP), INTENT(OUT) :: f2x
  !! f2x=D (Fx) / D ( D rho/D r_alpha) /|nabla rho|
  REAL(DP), INTENT(OUT) :: f3x
  !! f3x=D (Fx) / D tau
  !
  ! ... local variables
  !
  REAL(DP) x, p, z, qb, al, localdp, dz
  REAL(DP) dfdx, dxdp, dxdz, dqbdp, daldp, dqbdz, daldz
  REAL(DP) fxp, fxz  ! fxp =D fx /D p
  REAL(DP) tauw, tau_unif
  !  work variables
  REAL(DP) xf1, xf2
  REAL(DP) xfac1, xfac2, xfac3, xfac4, xfac5, xfac6, xfac7, z2
  !
  REAL(DP), PARAMETER :: pi=3.141592653589793_DP
  REAL(DP), PARAMETER :: THRD=0.3333333333333333_DP
  REAL(DP), PARAMETER :: ee=1.537_DP
  REAL(DP), PARAMETER :: cc=1.59096_DP
  REAL(DP), PARAMETER :: kk=0.804_DP
  REAL(DP), PARAMETER :: bb=0.40_DP
  REAL(DP), PARAMETER :: miu=0.21951_DP
  REAL(DP), PARAMETER :: fac1=9.57078000062731_DP !fac1=(3*pi^2)^(2/3)
  REAL(DP), PARAMETER :: small=1.0E-6_DP
  !
  tauw = 0.125_DP*grho2/rho
  z = tauw/tau
  !
  p = SQRT(grho2)/rho**THRD/rho
  p = p*p/(fac1*4.0_DP)
  tau_unif = 0.3_DP*fac1*rho**(5.0_DP/3.0_DP)
  al = (tau-tauw)/tau_unif
  al = ABS(al)  !make sure al is always .gt. 0.0_DP
  qb = 0.45_DP*(al-1.0_DP)/SQRT(1.0_DP+bb*al*(al-1.0_DP))
  qb = qb+2.0_DP*THRD*p
  !
  !  calculate x(p,z) and fx
  z2 = z*z
  xf1 = 10.0_DP/81.0_DP
  xfac1 = xf1+cc*z2/(1+z2)**2.0_DP
  xfac2 = 146.0_DP/2025.0_DP
  xfac3 = SQRT(0.5_DP*(0.36_DP*z2+p*p))
  xfac4 = xf1*xf1/kk
  xfac5 = 2.0_DP*SQRT(ee)*xf1*0.36_DP
  xfac6 = xfac1*p+xfac2*qb**2.0_DP-73.0_DP/405.0_DP*qb*xfac3
  xfac6 = xfac6+xfac4*p**2.0_DP+xfac5*z2+ee*miu*p**3.0_DP
  xfac7 = (1+SQRT(ee)*p)
  x = xfac6/(xfac7*xfac7)
  !  fx=kk-kk/(1.0_DP+x/kk)
  fx = 1.0_DP + kk-kk/(1.0_DP+x/kk)
  !
  !  calculate the derivatives of fx w.r.t p and z
  dfdx = (kk/(kk+x))**2.0_DP
  daldp = 5.0_DP*THRD*(tau/tauw-1.0_DP)
  !
  !   daldz=-0.50_DP*THRD*
  !  * (tau/(2.0_DP*fac1*rho**THRD*0.1250_DP*sqrt(grho2)))**2.0_DP
  daldz = -5.0_DP*THRD*p/z2
  dqbdz = 0.45_DP*(0.50_DP*bb*(al-1.0_DP)+1.0_DP)
  dqbdz = dqbdz/(1.0_DP+bb*al*(al-1.0_DP))**1.5_DP
  !
  dqbdp = dqbdz*daldp+2.0_DP*THRD
  dqbdz = dqbdz*daldz
  !
  !  calculate dx/dp
  xf1 = 73.0_DP/405.0_DP/xfac3*0.50_DP*qb
  xf2 = 2.0_DP*xfac2*qb-73.0_DP/405.0_DP*xfac3
  !
  dxdp = -xf1*p
  dxdp = dxdp+xfac1+xf2*dqbdp
  dxdp = dxdp+2.0_DP*xfac4*p
  dxdp = dxdp+3.0_DP*ee*miu*p*p
  dxdp = dxdp/(xfac7*xfac7)-2.0_DP*x*SQRT(ee)/xfac7
  !
  !  dx/dz
  dxdz = -xf1*0.36_DP*z
  xfac1 = cc*2.0_DP*z*(1-z2)/(1+z2)**3.0_DP
  dxdz = dxdz+xfac1*p+xf2*dqbdz
  dxdz = dxdz+xfac5*2.0_DP*z
  dxdz = dxdz/(xfac7*xfac7)
  !
  fxp = dfdx*dxdp
  fxz = dfdx*dxdz
  !
  !  calculate f1x
  localdp = -8.0_DP*THRD*p/rho  ! D p /D rho
  dz = -z/rho                   ! D z /D rho
  f1x = fxp*localdp+fxz*dz
  !
  !  f2x
  localdp = 2.0_DP/(fac1*4.0_DP*rho**(8.0_DP/3.0_DP))
  dz = 2.0_DP*0.125_DP/(rho*tau)
  f2x = fxp*localdp + fxz*dz
  !
  !  f3x
  localdp = 0.0_DP
  dz = -z/tau
  f3x = fxz*dz
  !
  RETURN
  !
END SUBROUTINE metaFX
!
!
!---------------------------------------------------------------------------
SUBROUTINE tpsscx_spin( rhoup, rhodw, grhoup2, grhodw2, tauup, taudw, sx, &       !<GPU:DEVICE>
                        v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw )
  !-----------------------------------------------------------------------
  !! TPSS metaGGA for exchange - Hartree a.u.
  !
  USE kinds,            ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rhoup
  !! up charge
  REAL(DP), INTENT(IN) :: rhodw
  !! down charge
  REAL(DP), INTENT(IN) :: grhoup2
  !! up gradient of the charge
  REAL(DP), INTENT(IN) :: grhodw2
  !! down gradient of the charge
  REAL(DP), INTENT(IN) :: tauup
  !! up kinetic energy density
  REAL(DP), INTENT(IN) :: taudw
  !! down kinetic energy density
  REAL(DP), INTENT(OUT) :: sx
  !! exchange energy
  REAL(DP), INTENT(OUT) :: v1xup
  !! derivatives of exchange wr. rho - up
  REAL(DP), INTENT(OUT) :: v1xdw
  !! derivatives of exchange wr. rho - down
  REAL(DP), INTENT(OUT) :: v2xup
  !! derivatives of exchange wr. grho - up
  REAL(DP), INTENT(OUT) :: v2xdw
  !! derivatives of exchange wr. grho - down
  REAL(DP), INTENT(OUT) :: v3xup
  !! derivatives of exchange wr. tau - up
  REAL(DP), INTENT(OUT) :: v3xdw
  !! derivatives of exchange wr. tau - down
  !
  ! ... local variables
  !
  REAL(DP), PARAMETER :: small = 1.E-10_DP
  REAL(DP) :: rho, sxup, sxdw
  !
  ! exchange
  rho = rhoup + rhodw
  IF (rhoup>small .AND. SQRT(ABS(grhoup2))>small &
       .AND. ABS(tauup) > small) THEN
     CALL metax( 2.0_DP*rhoup, 4.0_DP*grhoup2, &              !<GPU:metax=>metax_d>
                 2.0_DP*tauup, sxup, v1xup, v2xup, v3xup )
  ELSE
     sxup = 0.0_DP
     v1xup = 0.0_DP
     v2xup = 0.0_DP
     v3xup = 0.0_DP
  ENDIF
  !
  IF (rhodw > small .AND. SQRT(ABS(grhodw2)) > small &
       .AND. ABS(taudw) > small) THEN
     CALL metax( 2.0_DP*rhodw, 4.0_DP*grhodw2, &              !<GPU:metax=>metax_d>
                 2.0_DP*taudw, sxdw, v1xdw, v2xdw, v3xdw )
  ELSE
     sxdw = 0.0_DP
     v1xdw = 0.0_DP
     v2xdw = 0.0_DP
     v3xdw = 0.0_DP
  ENDIF
  !
  sx = 0.5_DP*(sxup+sxdw)
  v2xup = 2.0_DP*v2xup
  v2xdw = 2.0_DP*v2xdw
  !
  RETURN
  !
END SUBROUTINE tpsscx_spin
!
!
!---------------------------------------------------------------------------
SUBROUTINE tpsscc_spin( rho, zeta, grhoup, grhodw, &       !<GPU:DEVICE>
                        atau, sc, v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw )
  !--------------------------------------------------------------------------
  !! TPSS metaGGA for correlations - Hartree a.u.
  !
  USE kinds,       ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the total charge
  REAL(DP), INTENT(IN) :: zeta
  !! the magnetization
  REAL(DP), INTENT(IN) :: atau
  !! the total kinetic energy density
  REAL(DP), INTENT(IN) :: grhoup(3)
  !! the gradient of the charge - up
  REAL(DP), INTENT(IN) :: grhodw(3)
  !! the gradient of the charge - down
  REAL(DP), INTENT(OUT) :: sc
  !! correlation energy
  REAL(DP), INTENT(OUT) :: v1cup
  !! derivatives of correlation wr. rho - up
  REAL(DP), INTENT(OUT) :: v1cdw
  !! derivatives of correlation wr. rho - down
  REAL(DP), INTENT(OUT) :: v2cup(3)
  !! derivatives of correlation wr. grho - up
  REAL(DP), INTENT(OUT) :: v2cdw(3)
  !! derivatives of correlation wr. grho - down
  REAL(DP), INTENT(OUT) :: v3cup
  !! derivatives of correlation wr. tau - up
  REAL(DP), INTENT(OUT) :: v3cdw
  !! derivatives of correlation wr. tau - down
  !
  ! ... local variables
  !
  REAL(DP) :: grho_vec(3)
  REAL(DP) :: v3c, grho !grho=grho2
  INTEGER :: ipol
  REAL(DP), PARAMETER :: small = 1.E-10_DP
  !
  ! vector
  grho_vec = grhoup + grhodw
  grho = 0.0_DP
  !
  DO ipol = 1, 3
     grho = grho + grho_vec(ipol)**2
  ENDDO
  !
  IF (rho <= small .OR. ABS(zeta) > 1.0_DP .OR. SQRT(ABS(grho)) <= small &
       .OR. ABS(atau) < small )  THEN
     !
     sc = 0.0_DP
     v1cup = 0.0_DP
     v1cdw = 0.0_DP
     !
     v2cup(:) = 0.0_DP
     v2cdw(:) = 0.0_DP
     !
     v3cup = 0.0_DP
     v3cdw = 0.0_DP
     !
     v3c = 0.0_DP
  ELSE
     CALL metac_spin( rho, zeta, grhoup, grhodw, &              !<GPU:metac_spin=>metac_spin_d>
                        atau, sc, v1cup, v1cdw, v2cup, v2cdw, v3c )
  ENDIF
  !
  v3cup = v3c
  v3cdw = v3c
  !
  RETURN
  !
END SUBROUTINE tpsscc_spin
!
!
!---------------------------------------------------------------
SUBROUTINE metac_spin( rho, zeta, grhoup, grhodw, &       !<GPU:DEVICE>
                       tau, sc, v1up, v1dw, v2up, v2dw, v3 )
  !---------------------------------------------------------------
  USE kinds,    ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the total charge
  REAL(DP), INTENT(IN) :: zeta
  !! the magnetization
  REAL(DP), INTENT(IN) :: grhoup(3)
  !! the gradient of the charge - up
  REAL(DP), INTENT(IN) :: grhodw(3)
  !! the gradient of the charge - down
  REAL(DP), INTENT(IN) :: tau
  !! the total kinetic energy density
  REAL(DP), INTENT(OUT) :: sc
  !! correlation energy
  REAL(DP), INTENT(OUT) :: v1up
  !! derivatives of correlation wr. rho - up
  REAL(DP), INTENT(OUT) :: v1dw
  !! derivatives of correlation wr. rho - down
  REAL(DP), INTENT(OUT) :: v2up(3)
  !! derivatives of correlation wr. grho - up
  REAL(DP), INTENT(OUT) :: v2dw(3)
  !! derivatives of correlation wr. grho - down
  REAL(DP), INTENT(OUT) :: v3
  !! derivatives of correlation wr. tau
  !
  ! ... local variables
  !
  REAL(DP) :: rhoup, rhodw, tauw, grhovec(3), grho2, grho, &
              grhoup2, grhodw2
  !
  REAL(DP) :: rs, ec_u, vc_u(2), v1_0v(2), v1_pbe(2)
  !
  !grhovec   vector gradient of rho
  !grho    mod of gradient of rho
  !REAL(DP) :: ec_u, vcup_u, vcdw_u
  REAL(DP) :: ec_pbe, v1up_pbe, v1dw_pbe, v2up_pbe(3), v2dw_pbe(3)
  REAL(DP) :: ecup_0, v1up_0, v2up_0(3), v2_tmp
  REAL(DP) :: ecdw_0, v1dw_0, v2dw_0(3)
  REAL(DP) :: ec_rev, cab, aa, bb, aa2
  !
  REAL(DP) :: z2, z, ca0, dca0da, dcabda, dcabdb
  REAL(DP) :: term(3), term1, term2, term3
  !
  REAL(DP) :: drev1up, drev1dw, drev2up(3), drev2dw(3), drev3
  REAL(DP) :: sum, dsum1up, dsum1dw, dsum2up(3), dsum2dw(3)
  !
  REAL(DP) :: dcab1up, dcab1dw, dcab2up(3), dcab2dw(3)
  REAL(DP) :: db1up,   db1dw,   db2up(3),   db2dw(3)
  REAL(DP) :: da1up,   da1dw
  REAL(DP) :: ecup_til, ecdw_til
  !
  REAL(DP) :: v1up_uptil, v1up_dwtil, v2up_uptil(3), v2up_dwtil(3)
  REAL(DP) :: v1dw_uptil, v1dw_dwtil, v2dw_uptil(3), v2dw_dwtil(3)
  !
  REAL(DP), PARAMETER :: small=1.0E-10_DP, &
                         fac=3.09366772628013593097_DP**2
  !                      fac = (3*PI**2)**(2/3)
  REAL(DP), PARAMETER :: pi34=0.75_DP/3.141592653589793_DP, &
                         p43=4.0_DP/3.0_DP, third=1.0_DP/3.0_DP
  INTEGER :: ipol
  !
  rhoup = (1+zeta)*0.5_DP*rho
  rhodw = (1-zeta)*0.5_DP*rho
  grho2   = 0.0_DP
  grhoup2 = 0.0_DP
  grhodw2 = 0.0_DP
  !
  DO ipol = 1, 3
     grhovec(ipol) = grhoup(ipol) + grhodw(ipol)
     grho2   = grho2   + grhovec(ipol)**2
     grhoup2 = grhoup2 + grhoup(ipol)**2
     grhodw2 = grhodw2 + grhodw(ipol)**2
  ENDDO
  !
  grho = SQRT(grho2)
  !
  IF (rho > small) THEN
     !
     v2_tmp = 0.0_DP
     rs = (pi34/rho)**third
     CALL pw_spin( rs, zeta, ec_u, vc_u(1), vc_u(2) )             !<GPU:pw_spin=>pw_spin_d>
     !
     IF ((ABS(grho) > small) .AND. (zeta <= 1.0_DP)) THEN
        CALL pbec_spin( rho, zeta, grho2, 1, ec_pbe, v1_pbe(1), v1_pbe(2), v2_tmp )             !<GPU:pbec_spin=>pbec_spin_d>
        v1up_pbe=v1_pbe(1)
        v1dw_pbe=v1_pbe(2)
     ELSE
        ec_pbe   = 0.0_DP
        v1up_pbe = 0.0_DP
        v1dw_pbe = 0.0_DP
        v2up_pbe = 0.0_DP
     ENDIF
     !
     ec_pbe = ec_pbe/rho+ec_u
     ! v1xx_pbe = D_epsilon_c/ D_rho_xx   :xx= up, dw
     v1up_pbe = (v1up_pbe+vc_u(1)-ec_pbe)/rho
     v1dw_pbe = (v1dw_pbe+vc_u(2)-ec_pbe)/rho
     ! v2xx_pbe = (D_Ec / D grho)/rho = (D_Ec/ D|grho|/|grho|)*grho/rho
     v2up_pbe = v2_tmp/rho*grhovec
     ! v2dw === v2up for PBE
     v2dw_pbe = v2up_pbe
  ELSE
     ec_pbe   = 0.0_DP
     v1up_pbe = 0.0_DP
     v1dw_pbe = 0.0_DP
     v2up_pbe = 0.0_DP
     v2dw_pbe = 0.0_DP
  ENDIF
  !
  ! ec_pbe(rhoup,0,grhoup,0)
  IF (rhoup > small) THEN
     v2_tmp = 0.0_DP
     !
     rs = (pi34/rhoup)**third
     CALL pw_spin( rs, 1.0_DP, ec_u, vc_u(1), vc_u(2) )     !<GPU:pw_spin=>pw_spin_d>
     !
     IF (SQRT(grhoup2) > small) THEN
        CALL pbec_spin( rhoup, 1.0_DP-small, grhoup2, 1, &    !<GPU:pbec_spin=>pbec_spin_d>
                        ecup_0, v1_0v(1), v1_0v(2), v2_tmp )
        v1up_0 = v1_0v(1)
        v1dw_0 = v1_0v(2)
     ELSE
        ecup_0 = 0.0_DP
        v1up_0 = 0.0_DP
        v2up_0 = 0.0_DP
     ENDIF
     !
     ecup_0 = ecup_0/rhoup + ec_u
     v1up_0 = (v1up_0 + vc_u(1)-ecup_0)/rhoup
     v2up_0 = v2_tmp/rhoup*grhoup
  ELSE
     ecup_0 = 0.0_DP
     v1up_0 = 0.0_DP
     v2up_0 = 0.0_DP
  ENDIF
  !
  IF (ecup_0 > ec_pbe) THEN
     ecup_til = ecup_0
     v1up_uptil = v1up_0
     v2up_uptil = v2up_0
     v1up_dwtil = 0.0_DP
     v2up_dwtil = 0.0_DP
  ELSE
     ecup_til = ec_pbe
     v1up_uptil = v1up_pbe
     v1up_dwtil = v1dw_pbe
     v2up_uptil = v2up_pbe
     v2up_dwtil = v2up_pbe
  ENDIF
  ! ec_pbe(rhodw,0,grhodw,0)
  ! zeta = 1.0_DP
  IF (rhodw > small) THEN
     v2_tmp = 0.0_DP
     !
     rs = (pi34/rhodw)**third
     CALL pw_spin( rs, -1.0_DP, ec_u, vc_u(1), vc_u(2) )     !<GPU:pw_spin=>pw_spin_d>
     !
     IF (SQRT(grhodw2) > small) THEN
        !
        CALL pbec_spin( rhodw, -1.0_DP+small, grhodw2, 1, &   !<GPU:pbec_spin=>pbec_spin_d>
                        ecdw_0, v1_0v(1), v1_0v(2), v2_tmp )
        !
        v1up_0 = v1_0v(1)
        v1dw_0 = v1_0v(2)
        !
     ELSE
        ecdw_0 = 0.0_DP
        v1dw_0 = 0.0_DP
        v2dw_0 = 0.0_DP
     ENDIF
     !
     ecdw_0 = ecdw_0/rhodw + ec_u
     v1dw_0 = (v1dw_0 + vc_u(2)-ecdw_0)/rhodw
     v2dw_0 = v2_tmp/rhodw*grhodw
  ELSE
     ecdw_0 = 0.0_DP
     v1dw_0 = 0.0_DP
     v2dw_0 = 0.0_DP
  ENDIF
  !
  IF (ecdw_0 > ec_pbe) THEN
     ecdw_til = ecdw_0
     v1dw_dwtil = v1dw_0
     v2dw_dwtil = v2dw_0
     v1dw_uptil = 0.0_DP
     v2dw_uptil = 0.0_DP
  ELSE
     ecdw_til = ec_pbe
     v1dw_dwtil = v1dw_pbe
     v2dw_dwtil = v2dw_pbe
     v1dw_uptil = v1up_pbe
     v2dw_uptil = v2dw_pbe
  ENDIF
  !cccccccccccccccccccccccccccccccccccccccccc-------checked
  sum = (rhoup*ecup_til+rhodw*ecdw_til)/rho
  dsum1up = (ecup_til-ecdw_til)*rhodw/rho**2  &
            + (rhoup*v1up_uptil + rhodw*v1dw_uptil)/rho
  dsum1dw = (ecdw_til-ecup_til)*rhoup/rho**2  &
            + (rhodw*v1dw_dwtil + rhoup*v1up_dwtil)/rho
  ! vector
  dsum2up = (rhoup*v2up_uptil + rhodw*v2dw_uptil)/rho
  dsum2dw = (rhodw*v2dw_dwtil + rhoup*v2up_dwtil)/rho
  !ccccccccccccccccccccccccccccccccccccccccc---------checked
  aa = zeta
  !  bb = (rho*(grhoup-grhodw) - (rhoup-rhodw)*grho)**2 &
  !       /(4.0_DP*fac*rho**(14.0_DP/3.0_DP))
  bb = 0.0_DP
  DO ipol = 1, 3
     term(ipol) = rhodw*grhoup(ipol)-rhoup*grhodw(ipol)
     bb = bb + term(ipol)**2
  ENDDO
  ! vector
  term = term/(fac*rho**(14.0_DP/3.0_DP))
  bb = bb/(fac*rho**(14.0_DP/3.0_DP))
  ! bb = (rhodw*grhoup-rhoup*grhodw)**2/fac*rho**(-14.0_DP/3.0_DP)
  aa2 = aa*aa
  ca0 = 0.53_DP+aa2*(0.87_DP+aa2*(0.50_DP+aa2*2.26_DP))
  dca0da = aa*(1.74_DP+aa2*(2.0_DP+aa2*13.56_DP))
  !
  IF (ABS(aa) <= 1.0_DP-small) THEN
     term3 = (1.0_DP+aa)**(-p43) + (1.0_DP-aa)**(-p43)
     term1 = (1.0_DP+bb*0.50_DP*term3)
     term2 = (1.0_DP+aa)**(-7.0_DP/3.0_DP) + (1.0_DP-aa)**(-7.0_DP/3.0_DP)
     cab = ca0/term1**4
     dcabda = (dca0da/ca0 + 8.0_DP/3.0_DP*bb*term2/term1)*cab
     dcabdb = -2.0_DP*cab*term3/term1
  ELSE
     cab = 0.0_DP
     dcabda = 0.0_DP
     dcabdb = 0.0_DP
  ENDIF
  !
  da1up = 2.0_DP*rhodw/rho**2
  da1dw = -2.0_DP*rhoup/rho**2
  db1up = -2.0_DP*(grhodw(1)*term(1)+grhodw(2)*term(2)+grhodw(3)*term(3)) &
          -14.0_DP/3.0_DP*bb/rho
  db1dw =  2.0_DP*(grhoup(1)*term(1)+grhoup(2)*term(2)+grhoup(3)*term(3)) &
          -14.0_DP/3.0_DP*bb/rho
  !vector, not scalar
  db2up =  term*rhodw*2.0_DP
  db2dw = -term*rhoup*2.0_DP
  !
  dcab1up = dcabda*da1up + dcabdb*db1up
  dcab1dw = dcabda*da1dw + dcabdb*db1dw
  !vector, not scalar
  dcab2up = dcabdb*db2up
  dcab2dw = dcabdb*db2dw
  !cccccccccccccccccccccccccccccccccccccccccccccccccccccc------checked
  tauw = 0.1250_DP*grho2/rho
  z = tauw/tau
  z2 = z*z
  !
  term1 = 1.0_DP+cab*z2
  term2 = (1.0_DP+cab)*z2
  ec_rev = ec_pbe*term1-term2*sum
  !
  drev1up = v1up_pbe*term1 &
            + ec_pbe*(z2*dcab1up - 2.0_DP*cab*z2/rho) &
            + (2.0_DP*term2/rho - z2*dcab1up)*sum &
            - term2*dsum1up
  !
  drev1dw = v1dw_pbe*term1 &
            + ec_pbe*(z2*dcab1dw - 2.0_DP*cab*z2/rho)  &
            + (2.0_DP*term2/rho - z2*dcab1dw)*sum  &
            - term2*dsum1dw
  !
  ! vector, not scalar
  drev2up = v2up_pbe*term1 &
            + ec_pbe*(z2*dcab2up+0.5_DP*cab*z/(rho*tau)*grhovec) &
            - (term2*4.0_DP/grho2*grhovec + z2*dcab2up)*sum &
            - term2*dsum2up
  !
  drev2dw = v2dw_pbe*term1 &
            + ec_pbe*(z2*dcab2dw+0.5_DP*cab*z/(rho*tau)*grhovec) &
            - (term2*4.0_DP/grho2*grhovec + z2*dcab2dw)*sum  &
            - term2*dsum2dw
  !
  drev3 = ((1.0_DP+cab)*sum-ec_pbe*cab)*2.0_DP*z2/tau
  !ccccccccccccccccccccccccccccccccccccccccccccccccccc----checked
  term1 = ec_rev*(1.0_DP+2.8_DP*ec_rev*z2*z)
  term2 = (1.0_DP+5.6_DP*ec_rev*z2*z)*rho
  term3 = -8.4_DP*ec_rev*ec_rev*z2*z
  !
  v1up = term1 + term2*drev1up + term3
  v1dw = term1 + term2*drev1dw + term3
  !
  term3 = term3*rho
  v3 = term2*drev3 + term3/tau
  !
  term3 = -2.0_DP*term3/grho2    !grho/|grho|^2 = 1/grho
  v2up = term2*drev2up + term3*grhovec
  v2dw = term2*drev2dw + term3*grhovec
  !
  !  call pw_spin((pi34/rho)**third,zeta,ec_u,vcup_u,vcdw_u)
  sc = rho*ec_rev*(1.0_DP+2.8_DP*ec_rev*z2*z) !-rho*ec_u
  !  v1up=v1up-vcup_u
  !  v1dw=v1dw-vcdw_u
  !
  RETURN
  !
END SUBROUTINE metac_spin
!
!                          END TPSSS
!=========================================================================
!
!                           --- M06L ---
!
!           input:  - rho
!                   - grho2=|\nabla rho|^2
!                   - tau = the kinetic energy density
!                           It is defined as summ_i( |nabla phi_i|**2 )
!
!           definition:  E_x = \int ex dr
!
!           output:     ex (rho, grho, tau)
!                       v1x= D(E_x)/D(rho)
!                       v2x= D(E_x)/D( D rho/D r_alpha ) / |\nabla rho|
!                            ( v2x = 1/|grho| * dsx / d|grho| = 2 *  dsx / dgrho2 )
!                       v3x= D(E_x)/D(tau)
!
!                       ec, v1c, v2c, v3c as above for correlation
!
!-------------------------------------------------------------------------
SUBROUTINE m06lxc( rho, grho2, tau, ex, ec, v1x, v2x, v3x, v1c, v2c, v3c )       !<GPU:DEVICE>
  !-----------------------------------------------------------------------
  !
  USE kinds,        ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the total charge
  REAL(DP), INTENT(IN) :: grho2
  !! square of gradient of rho
  REAL(DP), INTENT(IN) :: tau
  !! the total kinetic energy density
  REAL(DP), INTENT(OUT) :: ex
  !! exchange energy
  REAL(DP), INTENT(OUT) :: ec
  !! correlation energy
  REAL(DP), INTENT(OUT) :: v1x
  !! derivatives of exchange wr. rho
  REAL(DP), INTENT(OUT) :: v2x
  !! derivatives of exchange wr. grho
  REAL(DP), INTENT(OUT) :: v3x
  !! derivatives of exchange wr. tau
  REAL(DP), INTENT(OUT) :: v1c
  !! derivatives of correlation wr. rho
  REAL(DP), INTENT(OUT) :: v2c
  !! derivatives of correlation wr. grho
  REAL(DP), INTENT(OUT) :: v3c
  !! derivatives of correlation wr. tau
  !
  ! ... local variables
  !
  REAL(DP) :: rhoa, rhob, grho2a, grho2b, taua, taub, v1cb, v2cb, v3cb
  REAL(DP), PARAMETER :: zero = 0.0_dp, two = 2.0_dp, four = 4.0_dp
  !
  !
  rhoa = rho / two   ! one component only
  rhob = rhoa
  !
  grho2a = grho2 / four
  grho2b = grho2a
  !
  taua = tau * two * 0.5_dp ! Taua, which is Tau_sigma is half Tau
  taub = taua               ! Tau is defined as summ_i( |nabla phi_i|**2 )
                              ! in the M06L routine
  !
  CALL m06lx( rhoa, grho2a, taua, ex, v1x, v2x, v3x )   !<GPU:m06lx=>m06lx_d>
  !
  ex = two * ex  ! Add the two components up + dw
  !
  v2x = 0.5_dp * v2x
  !
  CALL m06lc( rhoa, rhob, grho2a, grho2b, taua, taub, ec, v1c, v2c, v3c, &   !<GPU:m06lc=>m06lc_d>
              v1cb, v2cb, v3cb )
  !
  v2c = 0.5_dp * v2c
  !
END SUBROUTINE m06lxc
!
!
!-------------------------------------------------------------------------
SUBROUTINE m06lxc_spin( rhoup, rhodw, grhoup2, grhodw2, tauup, taudw,      &       !<GPU:DEVICE>
                        ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw,  &
                        v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw )
  !-----------------------------------------------------------------------
  !
  USE kinds,        ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN)  :: rhoup, rhodw, grhoup2, grhodw2, tauup, taudw
  REAL(DP), INTENT(OUT) :: ex, ec, v1xup, v1xdw, v2xup, v2xdw, v3xup, v3xdw,  &
                           v1cup, v1cdw, v2cup, v2cdw, v3cup, v3cdw
  !
  REAL(DP) :: exup, exdw, taua, taub
  REAL(DP), PARAMETER :: zero = 0.0_dp, two = 2.0_dp
  !
  taua = tauup * two       ! Tau is defined as summ_i( |nabla phi_i|**2 )
  taub = taudw * two       ! in the rest of the routine
  !
  CALL m06lx( rhoup, grhoup2, taua, exup, v1xup, v2xup, v3xup )   !<GPU:m06lx=>m06lx_d>
  CALL m06lx( rhodw, grhodw2, taub, exdw, v1xdw, v2xdw, v3xdw )   !<GPU:m06lx=>m06lx_d>
  !
  ex = exup + exdw
  !
  CALL m06lc( rhoup, rhodw, grhoup2, grhodw2, taua, taub, &       !<GPU:m06lc=>m06lc_d>
              ec, v1cup, v2cup, v3cup, v1cdw, v2cdw, v3cdw )
  !
END SUBROUTINE m06lxc_spin
! !
!
!===============================  M06L exchange ==========================
!
!-------------------------------------------------------------------------------
SUBROUTINE m06lx( rho, grho2, tau, ex, v1x, v2x, v3x )       !<GPU:DEVICE>
  !---------------------------------------------------------------------------
  !! M06L exchange.
  !
  USE kinds,       ONLY : DP
  USE constants,   ONLY : pi
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! the total charge
  REAL(DP), INTENT(IN) :: grho2
  !! square of gradient of rho
  REAL(DP), INTENT(IN) :: tau
  !! the total kinetic energy density
  REAL(DP), INTENT(OUT) :: ex
  !! exchange energy
  REAL(DP), INTENT(OUT) :: v1x
  !! derivatives of exchange wr. rho
  REAL(DP), INTENT(OUT) :: v2x
  !! derivatives of exchange wr. grho
  REAL(DP), INTENT(OUT) :: v3x
  !! derivatives of exchange wr. tau
  !
  ! ... local variables
  !
  REAL(DP) :: v1x_unif, ex_unif, ex_pbe, sx_pbe, v1x_pbe, v2x_pbe
  ! ex_unif:   lda \epsilon_x(rho)
  ! v2x = 1/|grho| * dsx / d|grho| = 2 *  dsx / dgrho2
  !
  REAL(DP), PARAMETER :: zero = 0._dp,  one  = 1.0_dp, two = 2.0_dp, three = 3.0_dp,  &
                         four = 4.0_dp, five = 5.0_dp, six = 6.0_dp, eight = 8.0_dp,  &
                         f12 = one/two,    f13 = one/three,   f23 = two/three,  &
                         f53 = five/three, f83 = eight/three, f43 = four/three, &
                         pi34 = pi*three/four, pi2 = pi*pi, small = 1.d-10
  !
  REAL(DP) :: d0, d1, d2, d3, d4, d5, CF, CT, CX, alpha
  REAL(DP), DIMENSION(0:11) :: at
  INTEGER :: i
  !
  ! VSXC98 variables (LDA part)
  !
  REAL(DP) :: xs, xs2, grho, rhom83, rho13, rho43, zs, gh
  REAL(DP) :: hg, dhg_dxs2, dhg_dzs
  REAL(DP) :: dxs2_drho, dxs2_dgrho2, dzs_drho, dzs_dtau
  REAL(DP) :: ex_vs98, v1x_vs98, v2x_vs98, v3x_vs98, v2x_vs98_g
  !
  ! GGA and MGGA variables
  !
  REAL(DP) :: tau_unif, ts, ws, fws, dfws, dfws_drho, dfws_dtau, &
              dws_dts, dts_dtau, dts_drho
  !
  ! set parameters
  !
  at(0)  =    3.987756d-01
  at(1)  =    2.548219d-01
  at(2)  =    3.923994d-01
  at(3)  =   -2.103655d+00
  at(4)  =   -6.302147d+00
  at(5)  =    1.097615d+01
  at(6)  =    3.097273d+01
  at(7)  =   -2.318489d+01
  at(8)  =   -5.673480d+01
  at(9)  =    2.160364d+01
  at(10) =    3.421814d+01
  at(11) =   -9.049762d+00
  !
  d0     =    6.012244d-01
  d1     =    4.748822d-03
  d2     =   -8.635108d-03
  d3     =   -9.308062d-06
  d4     =    4.482811d-05
  d5     =    zero
  !
  alpha = 1.86726d-03
  !
  IF (rho < small .AND. tau < small) THEN
     ex = zero
     v1x = zero
     v2x = zero
     v3x = zero
     RETURN
  ENDIF
  !
  ! ... VSXC98 functional (LDA part)
  !
  ! set variables
  !
  CF =  (three/five) * (six*pi2)**f23
  CT =  CF / two
  CX = -(three/two) * (three/(four*pi))**f13  ! Cx LSDA
  !
  !  IF (rho >= small .AND. grho>=small) THEN
  !
  grho = SQRT(grho2)
  rho43 = rho**f43
  rho13 = rho**f13
  rhom83 = one / rho**f83
  !
  xs  = grho / rho43
  xs2 = xs * xs
  zs  = tau / rho**f53 - CF
  gh  = one + alpha * (xs2 + zs)
  !
  IF (gh >= small) THEN
    CALL gvt4( xs2, zs, d0, d1, d2, d3, d4, d5, alpha, hg, dhg_dxs2, dhg_dzs )   !<GPU:gvt4=>gvt4_d>
  ELSE
    hg = zero
    dhg_dxs2 = zero
    dhg_dzs  = zero
  ENDIF
  !
  dxs2_drho   = -f83*xs2/rho
  dxs2_dgrho2 =  rhom83
  dzs_drho = -f53*tau*rhom83
  dzs_dtau =  one/rho**f53
  !
  ex_unif  =  CX * rho43
  ex_vs98  =  ex_unif * hg
  v1x_vs98 =  CX * ( f43 * hg * rho**f13 ) + &
              ex_unif * ( dhg_dxs2*dxs2_drho + dhg_dzs*dzs_drho )
  v2x_vs98 =  two * ex_unif * dhg_dxs2 * dxs2_dgrho2
  v3x_vs98 =  ex_unif * dhg_dzs * dzs_dtau
  !
  ! ... mo6lx functional
  !
  tau_unif = CF * rho**f53  ! Tau is define as summ_i( |nabla phi_i|**2 )
  ts = tau_unif / tau
  ws = (ts - one)/(ts + one)
  !
  fws  = zero
  dfws = zero
  !
  DO i = 0, 11
    fws  =  fws + at(i)*ws**i
    dfws = dfws + i*at(i)*ws**(i-1)
  ENDDO
  !
  dws_dts  = two/((ts+1)**2)
  dts_drho = ( (six*pi*pi*rho)**f23 )/tau
  dts_dtau = -ts/tau
  dfws_drho = dfws*dws_dts*dts_drho
  dfws_dtau = dfws*dws_dts*dts_dtau
  !
  CALL pbex_m06l( two*rho, four*grho2, sx_pbe, v1x_pbe, v2x_pbe )   !<GPU:pbex_m06l=>pbex_m06l_d>
  !
  v1x_unif = f43 * CX * rho13
  !
  sx_pbe  = f12 * sx_pbe
  v1x_pbe = v1x_pbe  + v1x_unif
  v2x_pbe = two * v2x_pbe
  !
  ex_pbe  = sx_pbe + ex_unif
  !
  ! ... energy and potential
  !
  ex = ex_vs98  + ex_pbe*fws
  !
  v1x = v1x_vs98 + v1x_pbe*fws + ex_pbe*dfws_drho
  v2x = v2x_vs98 + v2x_pbe*fws
  v3X = v3x_vs98 + ex_pbe*dfws_dtau
  !
END SUBROUTINE m06lx
!
!
!-------------------------------------------------------------------
SUBROUTINE pbex_m06l( rho, grho2, sx, v1x, v2x )       !<GPU:DEVICE>
  !---------------------------------------------------------------
  !! PBE exchange (without Slater exchange):
  !! J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996).
  !
  !! v2x = 1/|grho| * dsx / d|grho| = 2 *  dsx / dgrho2
  !
  USE kinds
  USE constants,   ONLY : pi
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rho
  !! charge density
  REAL(DP), INTENT(IN) :: grho2
  !! squared gradient
  REAL(DP), INTENT(OUT) :: sx
  !! energy
  REAL(DP), INTENT(OUT) :: v1x
  !! potential w.r. rho
  REAL(DP), INTENT(OUT) :: v2x
  !! potential w.r. grho
  !
  ! ... local variables
  !
  INTEGER :: iflag
  REAL(DP) :: grho, rho43, xs, xs2, dxs2_drho, dxs2_dgrho2
  REAL(DP) :: CX, denom, C1, C2, ex, Fx, dFx_dxs2, dex_drho
  !
  REAL(DP), PARAMETER :: mu = 0.21951_dp, ka = 0.804_dp, &
                         one  = 1.0_dp, two = 2.0_dp, three = 3.0_dp, &
                         four = 4.0_dp, six = 6.0_dp, eight = 8.0_dp, &
                         f13 = one/three,  f23 = two/three,  f43 = four/three, &
                         f34 = three/four, f83 = eight/three
  !
  CX    =  f34 * (three/pi)**f13            ! Cx LDA
  denom =  four * (three*pi**two)**f23
  C1    =  mu / denom
  C2    =  mu / (ka * denom)
  !
  grho  = SQRT(grho2)
  rho43 = rho**f43
  xs    = grho / rho43
  xs2   = xs * xs
  !
  dxs2_drho = -f83 * xs2 / rho
  dxs2_dgrho2 = one /rho**f83
  !
  ex = - CX * rho43
  dex_drho = - f43 * CX * rho**f13
  !
  Fx = C1*xs2 / (one + C2*xs2)
  dFx_dxs2 = C1 / (one + C2*xs2)**2
  !
  !   Energy
  !
  sx = Fx * ex
  !
  !   Potential
  !
  v1x = dex_drho * Fx  +  ex * dFx_dxs2 * dxs2_drho
  v2x = two * ex * dFx_dxs2* dxs2_dgrho2
  !
END SUBROUTINE pbex_m06l
!
!
!===============================  M06L correlation ==========================
!
!---------------------------------------------------------------------------------
SUBROUTINE m06lc( rhoa, rhob, grho2a, grho2b, taua, taub, ec, v1c_up, v2c_up, &       !<GPU:DEVICE>
                  v3c_up, v1c_dw, v2c_dw, v3c_dw )
  !-------------------------------------------------------------------------------
  !! M06L correlation.
  !
  USE kinds,        ONLY : DP
  USE constants,    ONLY : pi
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: rhoa
  !! charge density up
  REAL(DP), INTENT(IN) :: rhob
  !! charge density down
  REAL(DP), INTENT(IN) :: grho2a
  !! squared gradient up
  REAL(DP), INTENT(IN) :: grho2b
  !! squared gradient down
  REAL(DP), INTENT(IN) :: taua
  !! kinetic energy density up
  REAL(DP), INTENT(IN) :: taub
  !! kinetic energyt density down
  REAL(DP), INTENT(OUT) :: ec
  !! correlation energy
  REAL(DP), INTENT(OUT) :: v1c_up
  !! corr. potential w.r. rho - up
  REAL(DP), INTENT(OUT) :: v2c_up
  !! corr. potential w.r. rho - up
  REAL(DP), INTENT(OUT) :: v3c_up
  !! corr. potential w.r. rho - up
  REAL(DP), INTENT(OUT) :: v1c_dw
  !! corr. potential w.r. rho - down
  REAL(DP), INTENT(OUT) :: v2c_dw
  !! corr. potential w.r. grho - down
  REAL(DP), INTENT(OUT) :: v3c_dw
  !! corr. potential w.r. tau - down
  !
  ! ... local variables
  !
  REAL(DP) :: rs, zeta
  REAL(DP) :: vc_v(2)
  !
  REAL(DP), PARAMETER :: zero = 0._dp,  one  = 1.0_dp, two = 2.0_dp, three = 3.0_dp, &
                         four = 4.0_dp, five = 5.0_dp, six = 6.0_dp, eight = 8.0_dp, &
                         f12 = one/two, f13 = one/three, f23 = two/three,            &
                         f53 = five/three, f83 = eight/three, f43 = four/three,      &
                         pi34 = three/(four*pi), pi2 = pi*pi, f35 = three/five,      &
                         small = 1.d-10
  !
  ! parameters of the MO6Lc functional
  !
  REAL(DP), DIMENSION(0:4):: cs, cab
  !
  REAL(DP) :: ds0, ds1, ds2, ds3, ds4, ds5, CF, alpha, Ds,         &
              dab0, dab1, dab2, dab3, dab4, dab5, gama_ab, gama_s, &
              alpha_s, alpha_ab
  !
  ! functions and variables
  !
  REAL(DP) :: ec_pw_a, ec_pw_b, ec_pw_ab
  !
  REAL(DP) :: vv, vc_pw_a, vc_pw_b, vc_pw_ab, vc_pw_up, vc_pw_dw, Ecaa, Ecbb, Ecab, &
              Ec_UEG_ab, Ec_UEG_aa, Ec_UEG_bb, decab_drhoa, decab_drhob,            &
              v1_ab_up, v1_ab_dw, v2_ab_up, v2_ab_dw, v3_ab_up, v3_ab_dw,           &
              v1_aa_up, v2_aa_up, v3_aa_up, v1_bb_dw, v2_bb_dw, v3_bb_dw
  !
  REAL(DP) :: xsa, xs2a, rsa, grhoa, xsb, xs2b, grhob, rsb, zsa, zsb, &
              xs2ab, zsab, rho,                                       &
              dxs2a_drhoa, dxs2b_drhob, dxs2a_dgrhoa2, dxs2b_dgrhob2, &
              dzsa_drhoa, dzsb_drhob, dzsa_dtaua, dzsb_dtaub
  !
  REAL(DP) :: hga, dhga_dxs2a, dhga_dzsa, hgb, dhgb_dxs2b, dhgb_dzsb,   &
              hgab, dhgab_dxs2ab, dhgab_dzsab,                          &
              Dsa, Dsb, dDsa_dxs2a, dDsa_dzsa, dDsb_dxs2b, dDsb_dzsb,   &
              gsa, gsb, gsab, dgsa_dxs2a, dgsb_dxs2b, dgsab_dxs2ab, num
  !
  INTEGER :: ifunc
  !
  !
  dab0 =  3.957626d-01
  dab1 = -5.614546d-01
  dab2 =  1.403963d-02
  dab3 =  9.831442d-04
  dab4 = -3.577176d-03
  dab5 =  zero
  !
  cab(0) =  6.042374d-01
  cab(1) =  1.776783d+02
  cab(2) = -2.513252d+02
  cab(3) =  7.635173d+01
  cab(4) = -1.255699d+01
  !
  gama_ab  = 0.0031_dp
  alpha_ab = 0.00304966_dp
  !
  ds0 =  4.650534d-01
  ds1 =  1.617589d-01
  ds2 =  1.833657d-01
  ds3 =  4.692100d-04
  ds4 = -4.990573d-03
  ds5 =  zero
  !
  cs(0) =  5.349466d-01
  cs(1) =  5.396620d-01
  cs(2) = -3.161217d+01
  cs(3) =  5.149592d+01
  cs(4) = -2.919613d+01
  !
  gama_s  = 0.06_dp
  alpha_s = 0.00515088_dp
  !
  CF = f35 * (six*pi2)**f23
  !
  ifunc = 1     ! iflag=1  J.P. Perdew and Y. Wang, PRB 45, 13244 (1992)
  !
  ! ... Ecaa
  !
  IF (rhoa < small .AND. taua < small) THEN
    !
    Ecaa = zero
    v1_aa_up = zero
    v2_aa_up = zero
    v3_aa_up = zero
    !
  ELSE
    !
    rsa   = (pi34/rhoa)**f13
    grhoa = SQRT(grho2a)
    xsa   = grhoa / rhoa**f43
    xs2a  = xsa * xsa
    zsa   = taua/rhoa**f53 - CF
    !
    dxs2a_drhoa   = -f83*xs2a/rhoa
    dxs2a_dgrhoa2 =  one/(rhoa**f83)
    !
    dzsa_drhoa   = -f53*taua/(rhoa**f83)
    dzsa_dtaua   =  one/rhoa**f53
    !
    Dsa        = one - xs2a/(four * (zsa + CF))
    dDsa_dxs2a = - one/(four * (zsa + CF))
    dDsa_dzsa  = xs2a/(four * (zsa + CF)**2)
    !
    ec_pw_a = zero
    vc_pw_a = zero
    !
    rs   = rsa
    zeta = one
    CALL pw_spin( rs, zeta, ec_pw_a, vc_v(1), vc_v(2) )    !<GPU:pw_spin=>pw_spin_d>
    vc_pw_a = vc_v(1)
    vv      = vc_v(2)
    !
    CALL gvt4( xs2a, zsa, ds0, ds1, ds2, ds3, ds4, ds5, alpha_s, hga, dhga_dxs2a, dhga_dzsa )   !<GPU:gvt4=>gvt4_d>
    CALL gfunc( cs, gama_s, xs2a, gsa, dgsa_dxs2a )   !<GPU:gfunc=>gfunc_d>
    !
    Ec_UEG_aa = rhoa*ec_pw_a
    num = (dgsa_dxs2a + dhga_dxs2a)*Dsa + (gsa + hga)*dDsa_dxs2a
    !
    !
    Ecaa = Ec_UEG_aa * (gsa + hga) * Dsa
    !
    v1_aa_up = vc_pw_a * (gsa + hga) * Dsa +                          &
               Ec_UEG_aa * num * dxs2a_drhoa +                        &
               Ec_UEG_aa * (dhga_dzsa*Dsa + (gsa + hga)*dDsa_dzsa) * dzsa_drhoa
    !
    v2_aa_up = two * Ec_UEG_aa * num * dxs2a_dgrhoa2
    !
    v3_aa_up = Ec_UEG_aa * (dhga_dzsa*Dsa + (gsa + hga)*dDsa_dzsa) * dzsa_dtaua
    !
  ENDIF
  !
  ! ... Ecbb
  !
  IF (rhob < small .AND. taub < small) THEN
    !
    Ecbb = zero
    v1_bb_dw = zero
    v2_bb_dw = zero
    v3_bb_dw = zero
    !
  ELSE
    !
    rsb   = (pi34/rhob)**f13
    grhob = SQRT(grho2b)
    xsb   = grhob / rhob**f43
    xs2b  = xsb * xsb
    zsb   = taub/rhob**f53 - CF

    dxs2b_drhob   = -f83*xs2b/rhob
    dxs2b_dgrhob2 =  one /rhob**f83

    dzsb_drhob = -f53*taub/(rhob**f83)
    dzsb_dtaub =  one/rhob**f53

    Dsb        = one - xs2b/(four * (zsb + CF))
    dDsb_dxs2b = - one/(four * (zsb + CF))
    dDsb_dzsb  =  xs2b/(four * (zsb + CF)**2)
    !
    zeta = one
    rs   = rsb
    CALL pw_spin( rs, zeta, ec_pw_b, vc_v(1), vc_v(2) )   !<GPU:pw_spin=>pw_spin_d>
    vc_pw_b = vc_v(1)
    vv      = vc_v(2)
    !
    CALL gvt4( xs2b, zsb, ds0, ds1, ds2, ds3, ds4, ds5, alpha_s, hgb, dhgb_dxs2b, dhgb_dzsb )   !<GPU:gvt4=>gvt4_d>
    CALL gfunc( cs, gama_s, xs2b, gsb, dgsb_dxs2b )   !<GPU:gfunc=>gfunc_d>
    !
    Ec_UEG_bb = rhob*ec_pw_b
    num = (dgsb_dxs2b + dhgb_dxs2b)*Dsb + (gsb + hgb)*dDsb_dxs2b
    !
    Ecbb = Ec_UEG_bb * (gsb + hgb) * Dsb
    !
    v1_bb_dw = vc_pw_b * (gsb + hgb) * Dsb +    &
               Ec_UEG_bb * num * dxs2b_drhob +  &
               Ec_UEG_bb * (dhgb_dzsb*Dsb + (gsb + hgb)*dDsb_dzsb)*dzsb_drhob
    !
    v2_bb_dw = two * Ec_UEG_bb * num * dxs2b_dgrhob2
    !
    v3_bb_dw = Ec_UEG_bb * (dhgb_dzsb*Dsb + (gsb + hgb)*dDsb_dzsb)*dzsb_dtaub
    !
  ENDIF
  !
  ! ... Ecab
  !
  IF (rhoa < small .AND. rhob < small) THEN
    !
    Ecab = zero
    v1_ab_up = zero
    v1_ab_dw = zero
    v2_ab_up = zero
    v2_ab_dw = zero
    v3_ab_up = zero
    v3_ab_dw = zero
    !
  ELSE
    !
    xs2ab = xs2a + xs2b
    zsab  = zsa + zsb
    rho   = rhoa + rhob
    zeta  = (rhoa - rhob)/rho
    rs    = (pi34/rho)**f13
    !
    CALL gvt4( xs2ab, zsab, dab0, dab1, dab2, dab3, dab4, dab5, alpha_ab, hgab, &   !<GPU:gvt4=>gvt4_d>
               dhgab_dxs2ab, dhgab_dzsab )
    !
    CALL pw_spin( rs, zeta, ec_pw_ab, vc_v(1), vc_v(2) )   !<GPU:pw_spin=>pw_spin_d>
    vc_pw_up=vc_v(1) ; vc_pw_dw=vc_v(2)
    !
    CALL gfunc( cab, gama_ab, xs2ab, gsab, dgsab_dxs2ab )   !<GPU:gfunc=>gfunc_d>
    !
    decab_drhoa = vc_pw_up - vc_pw_a
    decab_drhob = vc_pw_dw - vc_pw_b
    !
    Ec_UEG_ab = ec_pw_ab*rho - ec_pw_a*rhoa - ec_pw_b*rhob
    !
    Ecab = Ec_UEG_ab * (gsab + hgab)
    !
    v1_ab_up = decab_drhoa * (gsab + hgab) +                             &
               Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2a_drhoa + &
               Ec_UEG_ab * dhgab_dzsab * dzsa_drhoa
    !
    v1_ab_dw = decab_drhob * (gsab + hgab) +                             &
               Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2b_drhob + &
               Ec_UEG_ab * dhgab_dzsab * dzsb_drhob
    !
    v2_ab_up = two * Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2a_dgrhoa2
    v2_ab_dw = two * Ec_UEG_ab * (dgsab_dxs2ab + dhgab_dxs2ab) * dxs2b_dgrhob2

    v3_ab_up = Ec_UEG_ab * dhgab_dzsab * dzsa_dtaua
    v3_ab_dw = Ec_UEG_ab * dhgab_dzsab * dzsb_dtaub
    !
  ENDIF
  !
  ! ... ec and vc
  !
  ec = Ecaa + Ecbb + Ecab
  !
  v1c_up = v1_aa_up + v1_ab_up
  v2c_up = v2_aa_up + v2_ab_up
  v3c_up = v3_aa_up + v3_ab_up
  !
  v1c_dw = v1_bb_dw + v1_ab_dw
  v2c_dw = v2_bb_dw + v2_ab_dw
  v3c_dw = v3_bb_dw + v3_ab_dw
  !
END SUBROUTINE m06lc
  !
  !
  !-------------------------------------------------------------------
SUBROUTINE gfunc( cspin, gama, xspin, gs, dgs_dx )       !<GPU:DEVICE>
    !-----------------------------------------------------------------
    !
    USE kinds,   ONLY : DP
    !
    IMPLICIT NONE
    !
    REAL(DP), INTENT(IN)  :: cspin(0:4)
    REAL(DP), INTENT(IN)  :: xspin, gama
    REAL(DP), INTENT(OUT) :: gs, dgs_dx
    !
    REAL(DP) :: de, d2, x1, x2, x3, x4
    REAL(DP), PARAMETER :: one=1.0d0, two=2.0d0, &
                           three=3.0d0, four=4.0d0
    !
    de = one/(one + gama*xspin)
    d2 = de**2
    x1 = gama * xspin * de
    x2 = x1**2
    x3 = x1**3
    x4 = x1**4
    !
    gs = cspin(0) + cspin(1)*x1 + cspin(2)*x2 + cspin(3)*x3 + cspin(4)*x4
    dgs_dx = gama*d2*(cspin(1) + two*cspin(2)*x1 + three*cspin(3)*x2 + four*cspin(4)*x3)
    !
  END SUBROUTINE gfunc
  !
!
!
!-------------------------------------------------------------------------
SUBROUTINE gvt4( x, z, a, b, c, d, e, f, alpha, hg, dh_dx, dh_dz )       !<GPU:DEVICE>
  !----------------------------------------------------------------------
  !
  USE kinds,    ONLY : DP
  !
  IMPLICIT NONE
  !
  REAL(DP), INTENT(IN) :: X, z, a, b, c, d, e, f, alpha
  REAL(DP), INTENT(OUT) :: hg, dh_dx, dh_dz
  !
  REAL(DP) :: gamma, gamma2, gamma3
  REAL(DP), PARAMETER :: one=1.0_dp, two=2.0_dp, three=3.0_dp
  !
  gamma  = one + alpha*(x+z)
  gamma2 = gamma*gamma
  gamma3 = gamma2*gamma
  !
  hg = a/gamma + (b*x + c*z)/gamma2 + (d*x*x + e*x*z + f*z*z)/gamma3
  !
  dh_dx = ( -alpha*a + b + (two*x*(d - alpha*b) + z*(e - two*alpha*c))/ gamma &
          - three*alpha*(d*x*x + e*x*z + f*z*z)/gamma2  )/gamma2
  !
  dh_dz = ( -alpha*a + c + (two*z*(f - alpha*c) + x*(e -two*alpha*b))/ gamma  &
          - three*alpha*(d*x*x + e*x*z + f*z*z)/gamma2  )/gamma2
  !
  RETURN
  !
END SUBROUTINE gvt4
!
!                          END M06L
!=========================================================================
END MODULE