1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
|
!
! Copyright (C) 2002 FPMD group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
! ==================================================================
SUBROUTINE LSD_PADE(RHO,ETA,EC,VCA,VCB)
! ==--------------------------------------------------------------==
! == PADE APPROXIMATION ==
! ==--------------------------------------------------------------==
USE kinds, ONLY: DP
IMPLICIT NONE
! arguments
REAL(DP) :: RHO,ETA,EC,VCA,VCB
! locals
REAL(DP) :: RS,FS,DFS,DFSA,DFSB,A0P,A1P,A2P,A3P,B1P,B2P,B3P,B4P
REAL(DP) :: TOP,DTOP,TOPX,BOT,DBOT,BOTX,VC,DX
REAL(DP), PARAMETER :: A0=.4581652932831429d0, A1=2.217058676663745d0, &
A2=0.7405551735357053d0, A3=0.01968227878617998d0
REAL(DP), PARAMETER :: B1=1.0D0, B2=4.504130959426697d0, &
B3=1.110667363742916d0, B4=0.02359291751427506d0
REAL(DP), PARAMETER :: DA0=.119086804055547D0, DA1=.6157402568883345d0, &
DA2=.1574201515892867d0, DA3=.003532336663397157d0
REAL(DP), PARAMETER :: DB1=0.0d0, DB2=.2673612973836267d0, &
DB3=.2052004607777787d0, DB4=.004200005045691381d0
REAL(DP), PARAMETER :: RSFAC=.6203504908994000d0, FSFAC=1.92366105093153617d0
! ==--------------------------------------------------------------==
RS=RSFAC*RHO**(-1.d0/3.d0)
FS=FSFAC*((1.d0+ETA)**(4.d0/3.d0)+(1.d0-ETA)**(4.d0/3.d0)-2.d0)
DFS=FSFAC*4.d0/3.d0* ((1.d0+ETA)**(1.d0/3.d0)-(1.d0-ETA)**(1.d0/3.d0))
DFSA=DFS*(1.d0-ETA)
DFSB=DFS*(-1.d0-ETA)
A0P=A0+FS*DA0
A1P=A1+FS*DA1
A2P=A2+FS*DA2
A3P=A3+FS*DA3
B1P=B1+FS*DB1
B2P=B2+FS*DB2
B3P=B3+FS*DB3
B4P=B4+FS*DB4
TOP=A0P+RS*(A1P+RS*(A2P+RS*A3P))
DTOP=A1P+RS*(2.d0*A2P+RS*3.d0*A3P)
TOPX=DA0+RS*(DA1+RS*(DA2+RS*DA3))
BOT=RS*(B1P+RS*(B2P+RS*(B3P+RS*B4P)))
DBOT=B1P+RS*(2.d0*B2P+RS*(3.d0*B3P+RS*4.d0*B4P))
BOTX=RS*(DB1+RS*(DB2+RS*(DB3+RS*DB4)))
EC=-TOP/BOT
VC=EC+RS*(DTOP/BOT-TOP*DBOT/(BOT*BOT))/3.d0
DX=-(TOPX/BOT-TOP*BOTX/(BOT*BOT))
VCA=VC+DX*DFSA
VCB=VC+DX*DFSB
! ==--------------------------------------------------------------==
RETURN
END SUBROUTINE LSD_PADE
!______________________________________________________________________
subroutine ggablyp4(nnr,nspin,gradr,rhor,exc)
! _________________________________________________________________
! becke-lee-yang-parr gga
!
! exchange: becke, pra 38, 3098 (1988) but derived from
! pw91 exchange formula given in prb 48, 14944 (1993)
! by setting "b3" and "b4" to 0.0
! correlation: miehlich et al., cpl 157, 200 (1989)
! method by ja white & dm bird, prb 50, 4954 (1994)
!
! spin-polarized version by andras stirling 10/1998,
! using original gga program of alfredo pasquarello 22/09/1994
! and spin-unpolarized blyp routine of olivier parisel and
! alfredo pasquarello (02/1997)
!
USE kinds, ONLY : DP
USE constants, ONLY: pi, fpi
!
implicit none
! input
integer nspin, nnr
real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin)
! output
! on output: rhor contains the exchange-correlation potential
real(DP) exc
! local
integer isdw, isup, isign, ir
!
real(DP) abo, agdr, agdr2, agr, agr2, agur, agur2, arodw, &
arodw2, aroe, aroe2, aroup, aroup2, ax
real(DP) byagdr, byagr, byagur, cden, cf, cl1, cl11, cl2, &
cl21, cl22, cl23, cl24, cl25, cl26, cl27, clyp, csum
real(DP) dddn, dexcdg, dexcdgd, dexcdgu, df1d, df1u, df2d, &
df2u, dfd, dfnum1d, dfnum1u, dfnum2d, dfnum2u, dfs, dfu, &
dfxdd, dfxdg, dfxdgd, dfxdgu, dfxdu, dilta, dilta119, dl1dn, &
dl1dnd, dl1dnu, dl2dd, dl2dg, dl2dgd, dl2dgu, dl2dn, &
dl2dnd, dl2dnd1, dl2dnu, dl2dnu1, dl2do, dlt, dodn, &
disign, dwsign, dys, dysd, dysu
real(DP) ex, excupdt, exd, exu, fac1, fac2, factor1, factor2, &
fx, fxd, fxden, fxdend, fxdenu, fxnum, fxnumd, fxnumu, fxu
real(DP) gkf, gkfd, gkfu, grdx, grdy, grdz, grux, gruy, gruz, &
grx, gry, grz
real(DP) omiga, pd, pi2, pider2, piexch, pu
real(DP) rhodw, rhoup, roe, roedth, roeth, roeuth, rometh
real(DP) s, s2, sd, sd2, sddw, sdup, su, su2, sysl, sysld, syslu
real(DP) t113, upsign, usign
real(DP) x1124, x113, x118, x13, x143, x19, x23, x43, &
x4718, x53, x672, x718, x772, x83
real(DP) ys, ysd, ysl, ysld, yslu, ysr, ysrd, ysru, ysu
!===========================================================================
real(DP) bb1, bb2, bb5, aa, bb, cc, dd, delt, eps
parameter(bb1=0.19644797d0,bb2=0.2742931d0,bb5=7.79555418d0, &
aa=0.04918d0, &
bb=0.132d0,cc=0.2533d0,dd=0.349d0,delt=1.0d-12,eps=1.0d-14)
!
!
x13=1.0d0/3.0d0
x19=1.0d0/9.0d0
x23=2.0d0/3.0d0
x43=4.0d0/3.0d0
x53=5.0d0/3.0d0
x83=8.0d0/3.0d0
x113=11.0d0/3.0d0
x4718=47.0d0/18.0d0
x718=7.0d0/18.0d0
x118=1.0d0/18.0d0
x1124=11.0d0/24.0d0
x143=14.0d0/3.0d0
x772=7.0d0/72.0d0
x672=6.0d0/72.0d0
!
! _________________________________________________________________
! derived parameters from pi
!
pi2=pi*pi
ax=-0.75d0*(3.0d0/pi)**x13
piexch=-0.75d0/pi
pider2=(3.0d0*pi2)**x13
cf=0.3d0*pider2*pider2
! _________________________________________________________________
! other parameters
!
t113=2.0d0**x113
!
rhodw=0.0d0
grdx=0.0d0
grdy=0.0d0
grdz=0.0d0
!
fac1=1.0d0
! _________________________________________________________________
! main loop
!
isup=1
isdw=2
do ir=1,nnr
rhoup=rhor(ir,isup)
grux=gradr(ir,1,isup)
gruy=gradr(ir,2,isup)
gruz=gradr(ir,3,isup)
if(nspin.eq.2) then
rhodw=rhor(ir,isdw)
grdx=gradr(ir,1,isdw)
grdy=gradr(ir,2,isdw)
grdz=gradr(ir,3,isdw)
else
rhodw=0.0d0
grdx =0.0d0
grdy =0.0d0
grdz =0.0d0
endif
roe=rhoup+rhodw
if(roe.eq.0.0) goto 100
aroup=abs(rhoup)
arodw=abs(rhodw)
aroe=abs(roe)
grx=grux + grdx
gry=gruy + grdy
grz=gruz + grdz
agur2=grux*grux+gruy*gruy+gruz*gruz
agur=sqrt(agur2)
agdr2=grdx*grdx+grdy*grdy+grdz*grdz
agdr=sqrt(agdr2)
agr2=grx*grx+gry*gry+grz*grz
agr=sqrt(agr2)
roeth=aroe**x13
rometh=1.0d0/roeth
gkf=pider2*roeth
sd=1.0d0/(2.0d0*gkf*aroe)
s=agr*sd
s2=s*s
! _________________________________________________________________
! exchange
!
if(nspin.eq.1) then
!
!
ysr=sqrt(1.0d0+bb5*bb5*s2)
ys=bb5*s+ysr
ysl=log(ys)*bb1
sysl=s*ysl
fxnum=1.0d0+sysl+bb2*s2
fxden=1.0d0/(1.0d0+sysl)
fx=fxnum*fxden
!
ex=ax*fx*roeth*aroe
!
! ### potential contribution ###
!
dys=bb5*(1.0d0+bb5*s/ysr)/ys
dfs=-fxnum*(ysl+bb1*s*dys)*fxden*fxden &
& +(ysl+bb1*s*dys+2.0d0*s*bb2)*fxden
dfxdu=(ax*roeth*x43)*(fx-dfs*s)
dfxdg=ax*roeth*dfs*sd
!
! ### end of potential contribution ###
!
else
!
roeuth=(2.0d0*aroup)**x13
roedth=(2.0d0*arodw)**x13
gkfu=pider2*roeuth*aroup
gkfd=pider2*roedth*arodw
upsign=sign(1.d0,gkfu-eps)
dwsign=sign(1.d0,gkfd-eps)
factor1=0.5d0*(1+upsign)/(gkfu+(1-upsign)*eps)
fac1=gkfu*factor1
factor2=0.5d0*(1+dwsign)/(gkfd+(1-dwsign)*eps)
fac2=gkfd*factor2
sdup=1.0d0/2.0d0*factor1
sddw=1.0d0/2.0d0*factor2
su=agur*sdup
su2=su*su
sd=agdr*sddw
sd2=sd*sd
!
ysru=sqrt(1.0d0+bb5*bb5*su2)
ysu=bb5*su+ysru
yslu=log(ysu)*bb1
syslu=su*yslu
fxnumu=1.0d0+syslu+bb2*su2
fxdenu=1.0d0/(1.0d0+syslu)
fxu=fxnumu*fxdenu
exu=piexch*2.0d0*gkfu*fxu*fac1
!
ysrd=sqrt(1.0d0+bb5*bb5*sd2)
ysd=bb5*sd+ysrd
ysld=log(ysd)*bb1
sysld=sd*ysld
fxnumd=1.0d0+sysld+bb2*sd2
fxdend=1.0d0/(1.0d0+sysld)
fxd=fxnumd*fxdend
exd=piexch*2.0d0*gkfd*fxd*fac2
!
ex=0.5d0*(exu+exd)
!
! ### potential contribution ###
!
dysu=bb5*(1.0d0+bb5*su/ysru)/ysu
pu=2.0d0*su*bb2
dfnum1u=yslu+bb1*su*dysu+pu
df1u=dfnum1u*fxdenu
dfnum2u=fxnumu*(yslu+bb1*su*dysu)
df2u=dfnum2u*fxdenu*fxdenu
dfu=df1u-df2u
dfxdu=ax*roeuth*x43*1.0d0*(fxu-dfu*su)*fac1
dfxdgu=ax*aroup*roeuth*dfu*sdup*fac1
!
dysd=bb5*(1.0d0+bb5*sd/ysrd)/ysd
pd=2.0d0*sd*bb2
dfnum1d=ysld+bb1*sd*dysd+pd
df1d=dfnum1d*fxdend
dfnum2d=fxnumd*(ysld+bb1*sd*dysd)
df2d=dfnum2d*fxdend*fxdend
dfd=df1d-df2d
dfxdd=ax*roedth*x43*1.0d0*(fxd-dfd*sd)*fac2
dfxdgd=ax*arodw*roedth*dfd*sddw*fac2
!
! ### end of potential contribution ###
!
endif
! _________________________________________________________________
! correlation lyp(aroe,aroup,arodw,agr,agur,agdr)
!
cden=1.0d0+dd*rometh
cl1=-aa/cden
!
omiga=exp(-cc*rometh)/cden/aroe**x113
dilta=rometh*(cc+dd/cden)
aroe2=aroe*aroe
abo=aa*bb*omiga
!
dodn=x13*omiga/aroe*(dilta-11.0d0)
dddn=x13*(dd*dd*aroe**(-x53)/cden/cden-dilta/aroe)
!
if(nspin.eq.1) then
!
cl1=cl1*aroe
!
cl21=4.0d0*cf*aroe**x83
cl22=(x4718-x718*dilta)*agr2
cl23=(2.5d0-x118*dilta)*agr2/2.0d0
cl24=(dilta-11.0d0)/9.0d0*agr2/4.0d0
cl25=x1124*agr2
!
cl2=-abo*aroe2*(0.25d0*(cl21+cl22-cl23-cl24)-cl25)
!
! ### potential contribution ###
!
dl1dnu=-aa*(1/cden+x13*dd*rometh/cden/cden)
!
dlt=x672+2.0d0*x772*dilta
dl2dn=-abo*aroe*(cf*x143*aroe**x83-dlt*agr2)
dl2do=cl2/omiga
dl2dd=abo*aroe2*x772*agr2
dl2dnu=dl2dn+dl2do*dodn+dl2dd*dddn
!
dl2dg=abo*aroe2*agr*dlt
!
! ### end of potential contribution ###
!
else
!
cl11=cl1*4.0d0/aroe
cl1=cl11*aroup*arodw
!
aroup2=aroup*aroup
arodw2=arodw*arodw
!
cl21=t113*cf*(aroup**x83+arodw**x83)
cl22=(x4718-x718*dilta)*agr2
cl23=(2.5d0-x118*dilta)*(agur2+agdr2)
dilta119=(dilta-11.0d0)/9.0d0
cl24=dilta119/aroe*(aroup*agur2+arodw*agdr2)
cl25=x23*aroe2*agr2
cl26=(x23*aroe2-aroup2)*agdr2
cl27=(x23*aroe2-arodw2)*agur2
!
csum=cl21+cl22-cl23-cl24
cl2=-abo*(aroup*arodw*csum-cl25+cl26+cl27)
!
! ### potential contribution ###
!
! *** cl1 has changed its form! ***
!
dl1dn=cl1/aroe*(x13*dd/cden*rometh-1.0d0)
dl1dnu=dl1dn+cl11*arodw
dl1dnd=dl1dn+cl11*aroup
!
dl2dnu1=arodw*csum+ &
& arodw*aroup*(t113*cf*x83*aroup**x53- &
& dilta119*arodw/aroe2*(agur2-agdr2))-x43*aroe*agr2+ &
& x23*agdr2*(2.0d0*arodw-aroup)+x43*aroe*agur2
dl2dnd1=aroup*csum+ &
& aroup*arodw*(t113*cf*x83*arodw**x53+ &
& dilta119*aroup/aroe2*(agur2-agdr2))-x43*aroe*agr2+ &
& x23*agur2*(2.0d0*aroup-arodw)+x43*aroe*agdr2
!
dl2do=cl2/omiga
dl2dd=-abo*aroup*arodw* &
& (-x718*agr2+x118*(agur2+agdr2)- &
& x19*(aroup*agur2+arodw*agdr2)/aroe)
!
dl2dnu=-abo*dl2dnu1+dl2do*dodn+dl2dd*dddn
dl2dnd=-abo*dl2dnd1+dl2do*dodn+dl2dd*dddn
!
dl2dg=-abo* &
& (aroup*arodw*2.0d0*(x4718-x718*dilta)*agr- &
& x43*aroe2*agr)
dl2dgu=-2.0d0*abo*agur*((x118*dilta-2.5d0- &
& dilta119*aroup/aroe)*aroup*arodw &
& +x23*aroe2-arodw2)
dl2dgd=-2.0d0*abo*agdr*((x118*dilta-2.5d0- &
& dilta119*arodw/aroe)*aroup*arodw &
& +x23*aroe2-aroup2)
!
endif
!
clyp=cl1+cl2
! _________________________________________________________________
! updating of xc-energy
!
excupdt=ex+clyp
!
exc=exc+excupdt
!
! _________________________________________________________________
! first part xc-potential construction
!
!
rhor(ir,isup)=dfxdu+(dl1dnu+dl2dnu)*fac1
isign=sign(1.d0,agr-delt)
byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt)
!
if(nspin.eq.1) then
!
dexcdg=(dfxdg*aroe+dl2dg)*byagr
gradr(ir,1,isup)=grx*dexcdg
gradr(ir,2,isup)=gry*dexcdg
gradr(ir,3,isup)=grz*dexcdg
!
else
!
rhor(ir,isdw)=dfxdd+(dl1dnd+dl2dnd)*fac2
!
usign =sign(1.d0,agur-delt)
disign=sign(1.d0,agdr-delt)
byagur=0.5d0*(1+ usign)/(agur+(1- usign)*delt)
byagdr=0.5d0*(1+disign)/(agdr+(1-disign)*delt)
!
dexcdgu=(dfxdgu+dl2dgu)*byagur
dexcdgd=(dfxdgd+dl2dgd)*byagdr
dexcdg=dl2dg*byagr
!
gradr(ir,1,isup)=(dexcdgu*grux+dexcdg*grx)*fac1
gradr(ir,2,isup)=(dexcdgu*gruy+dexcdg*gry)*fac1
gradr(ir,3,isup)=(dexcdgu*gruz+dexcdg*grz)*fac1
gradr(ir,1,isdw)=(dexcdgd*grdx+dexcdg*grx)*fac2
gradr(ir,2,isdw)=(dexcdgd*grdy+dexcdg*gry)*fac2
gradr(ir,3,isdw)=(dexcdgd*grdz+dexcdg*grz)*fac2
!
endif
!
100 continue
end do
!
return
end subroutine ggablyp4
!
!______________________________________________________________________
subroutine ggapbe(nnr,nspin,gradr,rhor,excrho)
! _________________________________________________________________
! Perdew-Burke-Ernzerhof gga
! Perdew, et al. PRL 77, 3865, 1996
!
USE kinds, ONLY: DP
use constants, only: pi, fpi
!
implicit none
! input
integer nspin, nnr
real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin)
! output: excrho: exc * rho ; E_xc = \int excrho(r) d_r
! output: rhor: contains the exchange-correlation potential
real(DP) excrho
! local
integer ir, icar, iss, isup, isdw, nspinx
real(DP) lim1, lim2
parameter ( lim1=1.d-8, lim2=1.d-8, nspinx=2 )
real(DP) zet, arho(nspinx), grad(3,nspinx), agrad(nspinx), &
arhotot, gradtot(3), agradtot, &
scl, scl1, wrkup, wrkdw, &
exrho(nspinx), dexdrho(nspinx), dexdg(nspinx), &
ecrho, decdrho(nspinx), decdg
!
! main loop
!
isup=1
isdw=2
do ir=1,nnr
!
arho(isup) = abs(rhor(ir,isup))
arhotot = arho(isup)
zet = 0.d0
do icar = 1, 3
grad(icar,isup) = gradr(ir,icar,isup)
gradtot(icar) = gradr(ir,icar,isup)
enddo
!
if (nspin.eq.2) then
arho(isdw) = abs(rhor(ir,isdw))
arhotot = abs(rhor(ir,isup)+rhor(ir,isdw))
do icar = 1, 3
grad(icar,isdw) = gradr(ir,icar,isdw)
gradtot(icar) = gradr(ir,icar,isup)+gradr(ir,icar,isdw)
enddo
zet = (rhor(ir,isup) - rhor(ir,isdw)) / arhotot
if (zet.ge. 1.d0) zet = 1.d0
if (zet.le.-1.d0) zet = -1.d0
endif
!
do iss = 1, nspin
agrad(iss) = sqrt( grad(1,iss)*grad(1,iss) + &
& grad(2,iss)*grad(2,iss) + &
& grad(3,iss)*grad(3,iss) )
agradtot = sqrt( gradtot(1)*gradtot(1) + &
& gradtot(2)*gradtot(2) + &
& gradtot(3)*gradtot(3) )
enddo
!
! _________________________________________________________________
! First it calculates the energy density excrho
! exrho: exchange term
! ecrho: correlation term
!
if ( nspin.eq.2 ) then
scl = 2.d0
scl1 = 0.5d0
else
scl = 1.d0
scl1 = 1.d0
endif
do iss = 1, nspin
if ( arho(iss).gt.lim1) then
call exchpbe( scl*arho(iss), scl*agrad(iss), &
& exrho(iss),dexdrho(iss),dexdg(iss))
excrho = excrho + scl1*exrho(iss)
else
dexdrho(iss) = 0.d0
dexdg(iss) = 0.d0
endif
enddo
if ( arhotot.gt.lim1) then
call ecorpbe( arhotot, agradtot, zet, ecrho, &
& decdrho(1), decdrho(2), decdg, nspin )
excrho = excrho + ecrho
else
decdrho(isup) = 0.d0
decdrho(isdw) = 0.d0
decdg = 0.d0
endif
! _________________________________________________________________
! Now it calculates the potential and writes it in rhor
! it uses the following variables:
! dexdrho = d ( ex*rho ) / d (rho)
! decdrho = d ( ec*rho ) / d (rho)
! dexdg = (d ( ex*rho ) / d (grad(rho)_i)) * agrad / grad_i
! decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i
! gradr here is used as a working array
!
! _________________________________________________________________
! first part of the xc-potential : D(rho*exc)/D(rho)
!
do iss = 1, nspin
rhor(ir,iss) = dexdrho(iss) + decdrho(iss)
enddo
!
! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
do iss = 1, nspin
do icar = 1,3
wrkup =0.d0
wrkdw =0.d0
if (agrad(iss).gt.lim2) &
& wrkup = dexdg(iss)*grad(icar,iss)/agrad(iss)
if (agradtot.gt.lim2) &
& wrkdw = decdg*gradtot(icar)/agradtot
gradr(ir,icar,iss) = wrkup + wrkdw
enddo
enddo
!
end do
!
return
end subroutine ggapbe
!
!______________________________________________________________________
subroutine exchpbe(rho,agrad,ex,dexdrho,dexdg)
! _________________________________________________________________
!
! Perdew-Burke-Ernzerhof gga, Exchange term:
! Calculates the exchange energy density and the two functional derivative
! that will be used to calculate the potential
!
USE kinds, ONLY: DP
implicit none
! input
! input rho: charge density
! input agrad: abs(grad rho)
real(DP) rho, agrad
! ouput
! output ex: Ex[rho,grad_rho] = \int ex dr
! output dexdrho: d ex / d rho
! output dexdg: d ex / d grad_rho(i) = dexdg*grad_rho(i)/abs(grad_rho)
real(DP) ex, dexdrho, dexdg
! local
real(DP) thrd, thrd4, pi32td, ax, al, um, uk, ul
parameter(thrd=.33333333333333333333d0,thrd4=4.d0/3.d0)
parameter(pi32td=3.09366772628014d0) ! pi32td=(3.d0*pi*pi)**0.333d0
parameter(al=0.161620459673995d0) ! al=1.0/(2.0*(pi32)**0.333d0)
parameter(ax=-0.738558766382022405884230032680836d0)
parameter(um=0.2195149727645171d0,uk=0.8040d0,ul=um/uk)
!
real(DP) rhothrd, exunif, dexunif, kf, s, s2, p0, fxpbe, fs
!----------------------------------------------------------------------
! construct LDA exchange energy density
!
rhothrd = rho**thrd
dexunif = ax*rhothrd
exunif = rho*dexunif
!----------------------------------------------------------------------
! construct PBE enhancement factor
!
kf = pi32td*rhothrd
s = agrad/(2.d0*kf*rho)
s2 = s*s
p0 = 1.d0 + ul*s2
fxpbe = 1.d0 + uk - uk/p0
ex = exunif*fxpbe
!----------------------------------------------------------------------
! now calculates the potential terms
!
! fs=(1/s)*d fxPBE/ ds
!
fs=2.d0*uk*ul/(p0*p0)
dexdrho = dexunif*thrd4*(fxpbe-s2*fs)
dexdg = ax*al*s*fs
!
return
end subroutine exchpbe
!----------------------------------------------------------------------
subroutine ecorpbe(rho,agrad,zet,ectot,decup,decdn,decdg,nspin)
! -----------------------------------------------------------------
!
! Adapted from the Official PBE correlation code. K. Burke, May 14, 1996.
!
! input: rho = rho_up + rho_down; total charge density
! input: agrad = abs( grad(rho) )
! input: zet = (rho_up-rho_down)/rho
! input: nspin
! output: ectot = ec*rho ---correlation energy density---
! output: decup = d ( ec*rho ) / d (rho_up)
! output: decdn = d ( ec*rho ) / d (rho_down)
! output: decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! References:
! [a] J.P.~Perdew, K.~Burke, and M.~Ernzerhof,
! {\sl Generalized gradient approximation made simple}, sub.
! to Phys. Rev.Lett. May 1996.
! [b] J. P. Perdew, K. Burke, and Y. Wang, {\sl Real-space cutoff
! construction of a generalized gradient approximation: The PW91
! density functional}, submitted to Phys. Rev. B, Feb. 1996.
! [c] J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992).
!----------------------------------------------------------------------
!----------------------------------------------------------------------
USE kinds, ONLY: DP
USE constants, ONLY: pi
implicit none
real(DP) rho, agrad, zet, ectot, decup, decdn, decdg
integer nspin
real(DP) pi32, alpha, thrd, thrdm, thrd2, sixthm, thrd4, &
gam, fzz, gamma, bet, delt, eta
! thrd*=various multiples of 1/3
! numbers for use in LSD energy spin-interpolation formula, [c](9).
! gam= 2^(4/3)-2
! fzz=f''(0)= 8/(9*gam)
! numbers for construction of PBE
! gamma=(1-log(2))/pi^2
! bet=coefficient in gradient expansion for correlation, [a](4).
! eta=small number to stop d phi/ dzeta from blowing up at
! |zeta|=1.
parameter(pi32=29.608813203268075856503472999628d0)
parameter(alpha=1.91915829267751300662482032624669d0)
parameter(thrd=1.d0/3.d0,thrdm=-thrd,thrd2=2.d0*thrd)
parameter(sixthm=thrdm/2.d0)
parameter(thrd4=4.d0*thrd)
parameter(gam=0.5198420997897463295344212145565d0)
parameter(fzz=8.d0/(9.d0*gam))
parameter(gamma=0.03109069086965489503494086371273d0)
parameter(bet=0.06672455060314922d0,delt=bet/gamma)
parameter(eta=1.d-12)
real(DP) g, fk, rs, sk, twoksg, t
real(DP) rtrs, eu, eurs, ep, eprs, alfm, alfrsm, z4, f, ec
real(DP) ecrs, fz, eczet, comm, vcup, vcdn, g3, pon, b, b2, t2, t4
real(DP) q4, q5, h, g4, t6, rsthrd, gz, fac
real(DP) bg, bec, q8, q9, hb, hrs, hz, ht, pref
!----------------------------------------------------------------------
if (nspin.eq.1) then
g=1.d0
else
g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)*0.5d0
endif
fk=(pi32*rho)**thrd
rs=alpha/fk
sk=sqrt(4.d0*fk/pi)
twoksg=2.d0*sk*g
t=agrad/(twoksg*rho)
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! find LSD energy contributions, using [c](10) and Table I[c].
! eu=unpolarized LSD correlation energy
! eurs=deu/drs
! ep=fully polarized LSD correlation energy
! eprs=dep/drs
! alfm=-spin stiffness, [c](3).
! alfrsm=-dalpha/drs
! f=spin-scaling factor from [c](9).
! construct ec, using [c](8)
rtrs=dsqrt(rs)
call gcor2(0.0310907d0,0.21370d0,7.5957d0,3.5876d0,1.6382d0, &
& 0.49294d0,rtrs,eu,eurs)
if (nspin.eq.2) then
call gcor2(0.01554535d0,0.20548d0,14.1189d0,6.1977d0,3.3662d0, &
& 0.62517d0,rtrs,ep,eprs)
call gcor2(0.0168869d0,0.11125d0,10.357d0,3.6231d0,0.88026d0, &
& 0.49671d0,rtrs,alfm,alfrsm)
z4 = zet**4
f=((1.d0+zet)**thrd4+(1.d0-zet)**thrd4-2.d0)/gam
ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! LSD potential from [c](A1)
! ecrs = dec/drs [c](A2)
! eczet=dec/dzeta [c](A3)
! fz = df/dzeta [c](A4)
ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz
fz = thrd4*((1.d0+zet)**thrd-(1.d0-zet)**thrd)/gam
eczet = 4.d0*(zet**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu &
& -(1.d0-z4)*alfm/fzz)
comm = ec -rs*ecrs/3.d0-zet*eczet
vcup = comm + eczet
vcdn = comm - eczet
else
ecrs = eurs
ec = eu
vcup = ec -rs*ecrs/3.d0
endif
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! PBE correlation energy
! g=phi(zeta), given after [a](3)
! delt=bet/gamma
! b=a of [a](8)
! g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)/2.d0
g3 = g**3
pon=-ec/(g3*gamma)
b = delt/(dexp(pon)-1.d0)
b2 = b*b
t2 = t*t
t4 = t2*t2
q4 = 1.d0+b*t2
q5 = 1.d0+b*t2+b2*t4
h = g3*(bet/delt)*dlog(1.d0+delt*Q4*t2/Q5)
ectot = rho*(ec + h)
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! energy done. Now the potential, using appendix e of [b].
t6 = t4*t2
rsthrd = rs/3.d0
fac = delt/b+1.d0
bec = b2*fac/(bet*g3)
q8 = q5*q5+delt*q4*q5*t2
q9 = 1.d0+2.d0*b*t2
hb = -bet*g3*b*t6*(2.d0+b*t2)/q8
hrs = -rsthrd*hb*bec*ecrs
ht = 2.d0*bet*g3*q9/q8
comm = h+hrs-7.d0*t2*ht/6.d0
if (nspin.eq.2) then
g4 = g3*g
bg = -3.d0*b2*ec*fac/(bet*g4)
gz=(((1.d0+zet)**2+eta)**sixthm- &
& ((1.d0-zet)**2+eta)**sixthm)/3.d0
hz = 3.d0*gz*h/g + hb*(bg*gz+bec*eczet)
pref = hz-gz*t2*ht/g
decup = vcup + comm + pref*( 1.d0 - zet)
decdn = vcdn + comm + pref*( -1.d0 - zet)
else
decup = vcup + comm
endif
decdg = t*ht/twoksg
!
return
end subroutine ecorpbe
!______________________________________________________________________
subroutine gcor2(a,a1,b1,b2,b3,b4,rtrs,gg,ggrs)
! _________________________________________________________________
! slimmed down version of GCOR used in PW91 routines, to interpolate
! LSD correlation energy, as given by (10) of
! J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992).
! K. Burke, May 11, 1996.
!
USE kinds, ONLY : DP
implicit none
real(DP) a, a1, b1, b2, b3, b4, rtrs, gg, ggrs
real(DP) q0, q1, q2, q3
!
q0 = -2.d0*a*(1.d0+a1*rtrs*rtrs)
q1 = 2.d0*a*rtrs*(b1+rtrs*(b2+rtrs*(b3+b4*rtrs)))
q2 = dlog(1.d0+1.d0/q1)
gg = q0*q2
q3 = a*(b1/rtrs+2.d0*b2+rtrs*(3.d0*b3+4.d0*b4*rtrs))
ggrs = -2.d0*a*a1*q2-q0*q3/(q1*(1.d0+q1))
!
return
end subroutine gcor2
!
!______________________________________________________________________
subroutine ggapw(nnr,nspin,gradr,rhor,exc)
! _________________________________________________________________
! perdew-wang gga (PW91)
!
USE kinds, ONLY: DP
use constants, only: pi, fpi
!
implicit none
! input
integer nspin, nnr
real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin)
! output
real(DP) exc
! local
integer isup, isdw, ir
real(DP) rhoup, rhodw, roe, aroe, rs, zeta
real(DP) grxu, gryu, grzu, grhou, grxd, gryd, grzd, grhod, grho
real(DP) ex, ec,vc, sc, v1x, v2x, v1c, v2c
real(DP) ecrs, eczeta
real(DP) exup, vcup, v1xup, v2xup, v1cup
real(DP) exdw, vcdw, v1xdw, v2xdw, v1cdw
real(DP), parameter:: pi34 = 0.75d0/pi, third = 1.d0/3.d0, &
small = 1.d-10
!
! _________________________________________________________________
! main loop
!
isup=1
isdw=2
exc=0.0d0
do ir=1,nnr
rhoup=rhor(ir,isup)
if(nspin.eq.2) then
rhodw=rhor(ir,isdw)
else
rhodw=0.0d0
end if
roe=rhoup+rhodw
aroe=abs(roe)
if (aroe.lt.small) then
rhor(ir,isup) =0.0d0
gradr(ir,1,isup)=0.0d0
gradr(ir,2,isup)=0.0d0
gradr(ir,3,isup)=0.0d0
if(nspin.eq.2) then
rhor(ir,isdw) =0.0d0
gradr(ir,1,isdw)=0.0d0
gradr(ir,2,isdw)=0.0d0
gradr(ir,3,isdw)=0.0d0
end if
go to 100
end if
grxu =gradr(ir,1,isup)
gryu =gradr(ir,2,isup)
grzu =gradr(ir,3,isup)
grhou=sqrt(grxu**2+gryu**2+grzu**2)
if(nspin.eq.2) then
grxd =gradr(ir,1,isdw)
gryd =gradr(ir,2,isdw)
grzd =gradr(ir,3,isdw)
grhod=sqrt(grxd**2+gryd**2+grzd**2)
else
grxd =0.0d0
gryd =0.0d0
grzd =0.0d0
grhod=0.0d0
endif
grho=sqrt((grxu+grxd)**2+(gryu+gryd)**2+(grzu+grzd)**2)
!
rs=(pi34/aroe)**third
if (nspin.eq.1) then
call exchpw91(aroe,grho,ex,v1x,v2x)
call pwlda(rs,ec,vc,ecrs)
call corpw91ns(rs,grho,ec,ecrs,sc,v1c,v2c)
exc = exc + roe*(ex+ec) + sc
rhor(ir,isup) = vc + v1x + v1c
!
! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
gradr(ir,1,isup)=grxu*(v2x+v2c)
gradr(ir,2,isup)=gryu*(v2x+v2c)
gradr(ir,3,isup)=grzu*(v2x+v2c)
else
zeta=(rhoup-rhodw)/aroe
zeta=min(zeta, 1.d0)
zeta=max(zeta,-1.d0)
call exchpw91(2.d0*abs(rhoup),2.0d0*grhou,exup,v1xup,v2xup)
call exchpw91(2.d0*abs(rhodw),2.0d0*grhod,exdw,v1xdw,v2xdw)
call pwlsd(rs,zeta,ec,vcup,vcdw,ecrs,eczeta)
call corpw91(rs,zeta,grho,ec,ecrs,eczeta,sc,v1cup,v1cdw,v2c)
rhor(ir,isup) = vcup + v1xup + v1cup
rhor(ir,isdw) = vcdw + v1xdw + v1cdw
exc = exc+roe*(0.5d0*((1.d0+zeta)*exup+(1.d0-zeta)*exdw)+ec) &
+ sc
!
! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
gradr(ir,1,isup)=grxu*(2.0d0*v2xup+v2c)+grxd*v2c
gradr(ir,2,isup)=gryu*(2.0d0*v2xup+v2c)+gryd*v2c
gradr(ir,3,isup)=grzu*(2.0d0*v2xup+v2c)+grzd*v2c
gradr(ir,1,isdw)=grxd*(2.0d0*v2xdw+v2c)+grxu*v2c
gradr(ir,2,isdw)=gryd*(2.0d0*v2xdw+v2c)+gryu*v2c
gradr(ir,3,isdw)=grzd*(2.0d0*v2xdw+v2c)+grzu*v2c
end if
100 continue
end do
!
return
end subroutine ggapw
!
!----------------------------------------------------------------------
subroutine exchpw91(rho,grho,ex,v1x,v2x)
!----------------------------------------------------------------------
!
! PW91 exchange for a spin-unpolarized electronic system
! Modified from the "official" PBE code of Perdew, Burke et al.
! input rho : density
! input grho: abs(grad rho)
! output: exchange energy per electron (ex) and potentials
! v1x = d(rho*exc)/drho
! v2x = d(rho*exc)/d|grho| * (1/|grho|)
!
USE kinds, ONLY : DP
USE constants, ONLY : pi
implicit none
! input
real(DP) rho, grho
! output
real(DP) ex, v1x, v2x
! local
real(DP) ex0, kf, s, s2, s4, f, fs, p0,p1,p2,p3,p4,p5,p6,p7
! parameters
real(DP) a1, a2, a3, a4, a, b1, bx, pi34, thrd, thrd4
parameter(a1=0.19645d0,a2=0.27430d0,a=7.7956d0,a4=100.d0)
! for becke exchange, set a3=b1=0
parameter(a3=0.15084d0,b1=0.004d0)
! pi34=3/(4pi) , bx=(3pi^2)^(1/3)
parameter(pi34=0.75d0/pi, bx=3.093667726d0, thrd=0.333333333333d0, &
thrd4=4.d0*thrd)
!
if (rho.lt.1.d-10) then
ex =0.0d0
v1x=0.0d0
v2x=0.0d0
end if
!
! kf=k_Fermi, ex0=Slater exchange energy
!
kf = bx*(rho**thrd)
ex0=-pi34*kf
if (grho.lt.1.d-10) then
ex =ex0
v1x=ex0*thrd4
v2x=0.0d0
end if
s = grho/(2.d0*kf*rho)
s2 = s*s
s4 = s2*s2
p0 = 1.d0/sqrt(1.d0+a*a*s2)
p1 = log(a*s+1.d0/p0)
p2 = exp(-a4*s2)
p3 = 1.d0/(1.d0+a1*s*p1+b1*s4)
p4 = 1.d0+a1*s*p1+(a2-a3*p2)*s2
! f is the enhancement factor
f = p3*p4
ex = ex0*f
! energy done. now the potential:
p5 = b1*s2-(a2-a3*p2)
p6 = a1*s*(p1+a*s*p0)
p7 = 2.d0*(a2-a3*p2)+2.d0*a3*a4*s2*p2-4.d0*b1*s2*f
! fs = (1/s) dF(s)/ds
fs = p3*(p3*p5*p6+p7)
v1x = ex0*thrd4*(f-s2*fs)
v2x = 0.5d0*ex0/kf*s*fs/grho
!
return
end subroutine exchpw91
!
!----------------------------------------------------------------------
subroutine corpw91ns(rs,grho,ec,ecrs,h,v1c,v2c)
!----------------------------------------------------------------------
!
! PW91 correlation (gradient correction term) - no spin case
! Modified from the "official" PBE code of Perdew, Burke et al.
!
! input rs: seitz radius
! input zeta: relative spin polarization
! input grho: abs(grad rho)
! input ec: Perdew-Wang correlation energy
! input ecrs: d(rho*ec)/d r_s
! output h : nonlocal part of correlation energy per electron
! output v1c: nonlocal parts of correlation potential
! v1c = d(rho*exc)/drho
! v2c = d(rho*exc)/d|grho|*(1/|grho|)
!
USE kinds, ONLY : DP
USE constants, ONLY : pi
implicit none
! input
real(DP) rs, grho, ec, ecrs
! output
real(DP) h, v1c, v2c
! local
real(DP) rho, t, ks, bet, delt, pon, b, b2, t2, t4, t6
real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3
real(DP) ccrs, rsthrd, fac, bec, coeff, cc
real(DP) h0, h0b, h0rs, h0t, h1, h1t, h1rs, hrs, ht
! parameters
real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4, ax, pi34
parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0)
parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0)
parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0)
! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2)
parameter(ax=1.5631853d0, pi34 = 0.75d0/pi)
!
!
rs2 = rs*rs
rs3 = rs2*rs
rho=pi34/rs3
! k_s=(4k_F/pi)^(1/2)
ks=ax/sqrt(rs)
! t=abs(grad rho)/(rho*2.*ks)
t=grho/(2.d0*rho*ks)
bet = nu*cc0
delt = 2.d0*alf/bet
pon = -delt*ec/bet
b = delt/(exp(pon)-1.d0)
b2 = b*b
t2 = t*t
t4 = t2*t2
t6 = t4*t2
q4 = 1.d0+b*t2
q5 = 1.d0+b*t2+b2*t4
q6 = c1+c2*rs+c3*rs2
q7 = 1.d0+c4*rs+c5*rs2+c6*rs3
cc = -cx + q6/q7
r0 = 0.663436444d0*rs
r1 = a4*r0
coeff = cc-cc0-3.d0*cx/7.d0
r2 = nu*coeff
r3 = exp(-r1*t2)
h0 = (bet/delt)*log(1.d0+delt*q4*t2/q5)
h1 = r3*r2*t2
h = (h0+h1)*rho
! energy done. now the potential:
ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2
rsthrd = rs/3.d0
r4 = rsthrd*ccrs/coeff
fac = delt/b+1.d0
bec = b2*fac/bet
q8 = q5*q5+delt*q4*q5*t2
q9 = 1.d0+2.d0*b*t2
h0b = -bet*b*t6*(2.d0+b*t2)/q8
h0rs = -rsthrd*h0b*bec*ecrs
h0t = 2.d0*bet*q9/q8
h1rs = r3*r2*t2*(-r4+r1*t2/3.d0)
h1t = 2.d0*r3*r2*(1.d0-r1*t2)
hrs = h0rs+h1rs
ht = h0t+h1t
v1c = h0+h1+hrs-7.d0*t2*ht/6.d0
v2c = t*ht/(2.d0*ks*grho)
!
return
end subroutine corpw91ns
!
!----------------------------------------------------------------------
subroutine corpw91(rs,zeta,grho,ec,ecrs,eczeta,h,v1cup,v1cdn,v2c)
!----------------------------------------------------------------------
!
! PW91 correlation (gradient correction term)
! Modified from the "official" PBE code of Perdew, Burke et al.
!
! input rs: seitz radius
! input zeta: relative spin polarization
! input grho: abs(grad rho)
! input ec: Perdew-Wang correlation energy
! input ecrs: d(rho*ec)/d r_s ?
! input eczeta: d(rho*ec)/d zeta ?
! output h: nonlocal part of correlation energy per electron
! output v1cup,v1cdn: nonlocal parts of correlation potentials
! v1c** = d(rho*exc)/drho (up and down components)
! v2c = d(rho*exc)/d|grho|*(1/|grho|) (same for up and down)
!
USE kinds, ONLY : DP
USE constants, ONLY : pi
implicit none
! input
real(DP) rs, zeta, grho, ec, ecrs, eczeta
! output
real(DP) h, v1cup, v1cdn, v2c
! local
real(DP) rho, g, t, ks, gz, bet, delt, g3, g4, pon, b, b2, t2, t4, t6
real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3
real(DP) ccrs, rsthrd, fac, bg, bec, coeff, cc
real(DP) h0, h0b, h0rs, h0z, h0t, h1, h1t, h1rs, h1z
real(DP) hz, hrs, ht, comm, pref
! parameters
real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4
real(DP) thrdm, thrd2, ax, eta, pi34
parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0)
parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0)
parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0)
parameter(thrdm=-0.333333333333d0,thrd2=0.666666666667d0)
! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2)
parameter(ax=1.5631853d0, eta=1.d-12, pi34 = 0.75d0/pi )
!
!
if (grho.lt.1.d-10) then
h=0.0d0
v1cup=0.0d0
v1cdn=0.0d0
v2c=0.0d0
end if
rs2 = rs*rs
rs3 = rs2*rs
rho=pi34/rs3
g=((1.d0+zeta)**thrd2+(1.d0-zeta)**thrd2)/2.d0
! k_s=(4k_F/pi)^(1/2)
ks=ax/sqrt(rs)
! t=abs(grad rho)/(rho*2.*ks*g)
t=grho/(2.d0*rho*g*ks)
bet = nu*cc0
delt = 2.d0*alf/bet
g3 = g**3
g4 = g3*g
pon = -delt*ec/(g3*bet)
b = delt/(exp(pon)-1.d0)
b2 = b*b
t2 = t*t
t4 = t2*t2
t6 = t4*t2
q4 = 1.d0+b*t2
q5 = 1.d0+b*t2+b2*t4
q6 = c1+c2*rs+c3*rs2
q7 = 1.d0+c4*rs+c5*rs2+c6*rs3
cc = -cx + q6/q7
r0 = 0.663436444d0*rs
r1 = a4*r0*g4
coeff = cc-cc0-3.d0*cx/7.d0
r2 = nu*coeff*g3
r3 = dexp(-r1*t2)
h0 = g3*(bet/delt)*log(1.d0+delt*q4*t2/q5)
h1 = r3*r2*t2
h = (h0+h1)*rho
! energy done. now the potential:
ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2
rsthrd = rs/3.d0
r4 = rsthrd*ccrs/coeff
! eta is a small quantity that avoids trouble if zeta=+1 or -1
gz = ((1.d0+zeta+eta)**thrdm - (1.d0-zeta+eta)**thrdm)/3.d0
fac = delt/b+1.d0
bg = -3.d0*b2*ec*fac/(bet*g4)
bec = b2*fac/(bet*g3)
q8 = q5*q5+delt*q4*q5*t2
q9 = 1.d0+2.d0*b*t2
h0b = -bet*g3*b*t6*(2.d0+b*t2)/q8
h0rs = -rsthrd*h0b*bec*ecrs
h0z = 3.d0*gz*h0/g + h0b*(bg*gz+bec*eczeta)
h0t = 2.d0*bet*g3*q9/q8
h1rs = r3*r2*t2*(-r4+r1*t2/3.d0)
h1z = gz*r3*r2*t2*(3.d0-4.d0*r1*t2)/g
h1t = 2.d0*r3*r2*(1.d0-r1*t2)
hrs = h0rs+h1rs
ht = h0t+h1t
hz = h0z+h1z
comm = h0+h1+hrs-7.d0*t2*ht/6.d0
pref = hz-gz*t2*ht/g
comm = comm-pref*zeta
v1cup = comm + pref
v1cdn = comm - pref
v2c = t*ht/(2.d0*ks*g*grho)
!
return
end subroutine corpw91
!----------------------------------------------------------------------
subroutine pwlda(rs,ec,vc,ecrs)
!----------------------------------------------------------------------
!
! uniform-gas, spin-unpolarised correlation of perdew and wang 1991
! input: rs seitz radius
! output: ec correlation energy per electron
! vc potential
! ecrs derivatives of ec wrt rs
!
USE kinds, ONLY : DP
implicit none
! input
real(DP) rs
! output
real(DP) ec, vc, ecrs
! local
real(DP) q0, rs12, q1, q2, q3
! parameters
real(DP) a, a1, b1, b2, b3, b4
parameter(a =0.0310907d0, a1=0.21370d0, b1=7.5957d0, &
b2=3.5876d0, b3=1.6382d0, b4=0.49294d0)
!
q0 = -2.d0*a*(1.d0+a1*rs)
rs12 = sqrt(rs)
q1 = 2.d0*a*rs12*(b1+rs12*(b2+rs12*(b3+b4*rs12)))
q2 = log(1.d0+1.d0/q1)
ec = q0*q2
q3 = a*(b1/rs12+2.d0*b2+3.d0*b3*rs12+2.d0*b4*2.d0*rs)
ecrs = -2.d0*a*a1*q2-q0*q3/(q1**2+q1)
vc = ec - rs*ecrs/3.d0
!
return
end subroutine pwlda
!----------------------------------------------------------------------
subroutine pwlsd(rs,zeta,ec,vcup,vcdn,ecrs,eczeta)
!----------------------------------------------------------------------
!
! uniform-gas correlation of perdew and wang 1991
! Modified from the "official" PBE code of Perdew, Burke et al.
! input: seitz radius (rs), relative spin polarization (zeta)
! output: correlation energy per electron (ec)
! up- and down-spin potentials (vcup,vcdn)
! derivatives of ec wrt rs (ecrs) & zeta (eczeta)
!
USE kinds, ONLY : DP
implicit none
! input
real(DP) rs, zeta
! output
real(DP) ec, vcup, vcdn, ecrs, eczeta
! local
real(DP) f, eu, ep, eurs, eprs, alfm, alfrsm, z4, fz, comm
real(DP) rs12, q0, q1, q2, q3
! parameters
real(DP) gam, fzz, thrd, thrd4
parameter(gam=0.5198421d0,fzz=1.709921d0)
parameter(thrd=0.333333333333d0,thrd4=1.333333333333d0)
!
real(DP) au, au1, bu1, bu2, bu3, bu4
parameter(au =0.0310907d0, au1=0.21370d0, bu1=7.5957d0, &
bu2=3.5876d0, bu3=1.6382d0, bu4=0.49294d0)
real(DP) ap, ap1, bp1, bp2, bp3, bp4
parameter(ap =0.01554535d0,ap1=0.20548d0, bp1=14.1189d0, &
bp2=6.1977d0, bp3=3.3662d0, bp4=0.62517d0 )
real(DP) am, am1, bm1, bm2, bm3, bm4
parameter(am =0.0168869d0, am1=0.11125d0, bm1=10.357d0, &
bm2=3.6231d0, bm3=0.88026d0, bm4=0.49671d0 )
!
rs12 = sqrt(rs)
!
q0 = -2.d0*au*(1.d0+au1*rs)
q1 = 2.d0*au*rs12*(bu1+rs12*(bu2+rs12*(bu3+bu4*rs12)))
q2 = log(1.d0+1.d0/q1)
eu = q0*q2
q3 = au*(bu1/rs12+2.d0*bu2+3.d0*bu3*rs12+2.d0*bu4*2.d0*rs)
eurs = -2.d0*au*au1*q2-q0*q3/(q1**2+q1)
!
q0 = -2.d0*ap*(1.d0+ap1*rs)
q1 = 2.d0*ap*rs12*(bp1+rs12*(bp2+rs12*(bp3+bp4*rs12)))
q2 = log(1.d0+1.d0/q1)
ep = q0*q2
q3 = ap*(bp1/rs12+2.d0*bp2+3.d0*bp3*rs12+2.d0*bp4*2.d0*rs)
eprs = -2.d0*ap*ap1*q2-q0*q3/(q1**2+q1)
!
q0 = -2.d0*am*(1.d0+am1*rs)
q1 = 2.d0*am*rs12*(bm1+rs12*(bm2+rs12*(bm3+bm4*rs12)))
q2 = log(1.d0+1.d0/q1)
! alfm is minus the spin stiffness alfc
alfm=q0*q2
q3 = am*(bm1/rs12+2.d0*bm2+3.d0*bm3*rs12+2.d0*bm4*2.d0*rs)
alfrsm=-2.d0*am*am1*q2-q0*q3/(q1**2+q1)
!
f = ((1.d0+zeta)**thrd4+(1.d0-zeta)**thrd4-2.d0)/gam
z4 = zeta**4
ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz
! energy done. now the potential:
ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz
fz = thrd4*((1.d0+zeta)**thrd-(1.d0-zeta)**thrd)/gam
eczeta = 4.d0*(zeta**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu &
& -(1.d0-z4)*alfm/fzz)
comm = ec -rs*ecrs/3.d0-zeta*eczeta
vcup = comm + eczeta
vcdn = comm - eczeta
!
return
end subroutine pwlsd
!
!______________________________________________________________________
subroutine ggapwold(nnr,nspin,gradr,rhor,exc)
! _________________________________________________________________
! perdew-wang gga
! as given in y-m juan & e kaxiras, prb 48, 14944 (1993)
! method by ja white & dm bird, prb 50, 4954 (1994)
! non-spin polarized case only
! _________________________________________________________________
! by alfredo pasquarello 22/09/1994
!
USE kinds, ONLY: DP
use constants, only: pi, fpi
!
implicit none
!
integer nspin, nnr
real(DP) gradr(nnr,3), rhor(nnr), exc
!
real(DP) bb1, bb2, bb3, bb4, bb5, alfa, beta, cc0, cc1, delt, &
c1, c2, c3, c4, c5, c6, c7, a, alfa1, bt1, bt2, bt3, bt4
parameter(bb1=0.19645d0,bb2=0.27430d0,bb3=-0.15084d0,bb4=0.004d0, &
bb5=7.7956d0,alfa=0.09d0,beta=0.0667263212d0,cc0=15.75592d0, &
cc1=0.003521d0,c1=0.001667d0,c2=0.002568d0,c3=0.023266d0,c4=7.389d-6, &
c5=8.723d0,c6=0.472d0,c7=7.389d-2,a=0.0621814d0,alfa1=0.2137d0, &
bt1=7.5957d0,bt2=3.5876d0,bt3=1.6382d0,bt4=0.49294d0,delt=1.0d-12)
real(DP) x13, x43, x76, pi2, ax, pider1, pider2, pider3, &
abder1, abder2, abder3
integer isign, ir
real(DP) &
aexp, abig, abig2, agr, aroe, byagr, ccr, ccrnum, ccrden, &
dfxd, dfxdg, dys, dfs, dh1ds, dh1dg, dh1d, dh1dt, dexcdg, &
dexcd, dh1drs, dh0da, dadec, decdrs, decd, dh0dg, dcdrs, &
dh0d, dh0dt, eclog, ecr, ecden, fx, fxnum, fxden, fxexp, &
gkf, grx, gry, grz, h0, h1, h0den, h0arg, h0num, &
roeth, roe, rs, rs12, rs2, rs3, rs32, s, sd, s2, s3, s4, &
sysl, t, td, t2, t3, t4, xchge, ys, ysl, ysr
!
!
if (nspin.ne.1) call errore('ggapw','spin not implemented',nspin)
!
x13=1.0d0/3.0d0
x43=4.0d0/3.0d0
x76=7.0d0/6.0d0
! _________________________________________________________________
! derived parameters from pi
!
pi2=pi*pi
ax=-0.75d0*(3.0d0/pi)**x13
pider1=(0.75d0/pi)**x13
pider2=(3.0d0*pi2)**x13
pider3=(3.0d0*pi2/16.0d0)**x13
! _________________________________________________________________
! derived parameters from alfa and beta
!
abder1=beta*beta/(2.0d0*alfa)
abder2=1.0d0/abder1
abder3=2.0d0*alfa/beta
! _________________________________________________________________
! main loop
!
do ir=1,nnr
roe=rhor(ir)
if(roe.eq.0.0) goto 100
aroe=abs(roe)
grx=gradr(ir,1)
gry=gradr(ir,2)
grz=gradr(ir,3)
agr=sqrt(grx*grx+gry*gry+grz*grz)
roeth=aroe**x13
rs= pider1/roeth
gkf=pider2*roeth
sd=1.0d0/(2.0d0*gkf*aroe)
s=agr*sd
s2=s*s
s3=s*s2
s4=s2*s2
! _________________________________________________________________
! exchange
!
ysr=sqrt(1.0d0+bb5*bb5*s2)
ys=bb5*s+ysr
ysl=log(ys)*bb1
sysl=s*ysl
fxexp=exp(-100.0d0*s2)
fxnum=1.0d0+sysl+(bb2+bb3*fxexp)*s2
fxden=1.0d0/(1.0d0+sysl+bb4*s4)
fx=fxnum*fxden
xchge=ax*fx*roeth
! _________________________________________________________________
! correlation ecr=ec(rho)
!
rs12=sqrt(rs)
rs32=rs12*rs
rs2=rs*rs
rs3=rs*rs2
ecden=a*(bt1*rs12+bt2*rs+bt3*rs32+bt4*rs2)
eclog=log(1.0d0+(1.0d0/ecden))
ecr=-a*(1.0d0+alfa1*rs)*eclog
! _________________________________________________________________
! correlation h0(t,ecr)
!
td=pider3*sd/rs12
t=agr*td
t2=t*t
t3=t*t2
t4=t2*t2
aexp=exp(-abder2*ecr)-1.0d0
abig=abder3/aexp
abig2=abig*abig
h0num=t2+abig*t4
h0den=1.0d0/(1.0d0+abig*t2+abig2*t4)
h0arg=1.0d0+abder3*h0num*h0den
h0=abder1*log(h0arg)
! _________________________________________________________________
! correlation h1(t,s,aroe)
!
ccrnum=c2+c3*rs+c4*rs2
ccrden=1.0d0/(1.0d0+c5*rs+c6*rs2+c7*rs3)
ccr=c1+ccrnum*ccrden
h1=cc0*(ccr-cc1)*t2*fxexp
! _________________________________________________________________
! updating of xc-energy
!
exc=exc+(xchge+ecr+h0+h1)*aroe
! _________________________________________________________________
! first part xc-potential from exchange
!
dys=bb5*(1.0d0+bb5*s/ysr)/ys
dfs=-fxnum*(ysl+bb1*s*dys+4.0d0*bb4*s3)*fxden*fxden &
& +(ysl+bb1*s*dys+2.0d0*s*(bb2+bb3*fxexp) &
& -200.0d0*s3*bb3*fxexp)*fxden
dfxd=(ax*roeth*x43)*(fx-dfs*s)
dfxdg=ax*roeth*dfs*sd
! _________________________________________________________________
! first part xc-potential from ecr
!
decdrs=-a*alfa1*eclog*rs + a*(1+alfa1*rs) &
& *a*(0.5d0*bt1*rs12+bt2*rs+1.5d0*bt3*rs32+2.0d0*bt4*rs2) &
& /(ecden*ecden+ecden)
decd=-x13*decdrs
! _________________________________________________________________
! first part xc-potential from h0
!
dh0da=abder1/h0arg*abder3*h0den* &
& (t4-h0num*h0den*(t2+2.0d0*abig*t4))
dadec=abder3*abder2*(aexp+1.0d0)/(aexp*aexp)
dh0d=dh0da*dadec*decd
dh0dt=abder1/h0arg*abder3*h0den &
& *(2.0d0*t+4.0d0*abig*t3-h0num*h0den*(2.0d0*abig*t+4.0d0*abig2*t3))
dh0d=dh0d-x76*t*dh0dt
dh0dg=dh0dt*td
! _________________________________________________________________
! first part xc-potential from h1
!
dcdrs=(c3+2.0d0*c4*rs-ccrnum*ccrden*(c5+2.0d0*c6*rs+3.0d0*c7*rs2)) &
& *ccrden
dh1drs=cc0*t2*fxexp*dcdrs
dh1d=-x13*rs*dh1drs
dh1dt=2.0d0*t*cc0*(ccr-cc1)*fxexp
dh1d=dh1d-x76*t*dh1dt
dh1ds=-200.0d0*s*cc0*(ccr-cc1)*t2*fxexp
dh1d=dh1d-x43*s*dh1ds
dh1dg=dh1dt*td+dh1ds*sd
! _________________________________________________________________
! first part of xc-potential: D(rho*exc)/D(rho)
!
dexcd=dfxd+decd+dh0d+dh1d+ecr+h0+h1
isign=sign(1.d0,agr-delt)
byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt)
rhor(ir)=dexcd
!
! gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
dexcdg=(dfxdg+dh0dg+dh1dg)*aroe*byagr
gradr(ir,1)=gradr(ir,1)*dexcdg
gradr(ir,2)=gradr(ir,2)*dexcdg
gradr(ir,3)=gradr(ir,3)*dexcdg
100 continue
end do
!
return
end subroutine ggapwold
!-------------------------------------------------------------------------
subroutine expxc(nnr,nspin,rhor,exc)
!----------------------------------------------------------------------
!
! ceperley & alder's correlation energy
! after j.p. perdew & a. zunger prb 23, 5048 (1981)
!
! rhor contains rho(r) on input, vxc(r) on output
!
USE kinds, ONLY : DP
use constants, only: pi, fpi
!
implicit none
!
integer nnr, nspin
real(DP) rhor(nnr,nspin), exc
! local variables
integer ir, iflg, isup, isdw
real(DP) roe, aroe, rs, rsl, rsq, ecca, vcca, eccp, vccp, &
zeta, onemz, zp, zm, fz, dfzdz, exc1, vxc1, vxc2
! constants
real(DP) x76, x43, x13
parameter(x76=7.d0/6.d0, x43=4.d0/3.d0, x13=1.d0/3.d0)
real(DP) ax
parameter (ax = -0.916330586d0)
! Perdew and Zunger parameters
real(DP) ap, bp, cp, dp0, af, bf, cf, df, &
bp1, cp1, dp1, bf1, cf1, df1
parameter &
( ap=0.03110d0*2.0d0, bp=-0.0480d0*2.0d0, cp=0.0020d0*2.0d0, dp0=-0.0116d0*2.0d0 &
, af=0.01555d0*2.0d0, bf=-0.0269d0*2.0d0, cf=0.0007d0*2.0d0, df=-0.0048d0*2.0d0 &
, bp1=bp-ap/3.0d0, cp1=2.0d0*cp/3.0d0, dp1=(2.0d0*dp0-cp)/3.0d0 &
, bf1=bf-af/3.0d0, cf1=2.0d0*cf/3.0d0, df1=(2.0d0*df-cf)/3.0d0 )
real(DP) va(2), vb(2), vc(2), vd(2), vbt1(2), vbt2(2)
real(DP) a(2), b(2), c(2), d(2), g(2), b1(2), b2(2)
data va/ap ,af /, vb/bp1,bf1/, vc/cp1,cf1/, vd/dp1,df1/, &
vbt1/1.0529d0,1.3981d0/, vbt2/0.3334d0,0.2611d0/
data a/0.0622d0,0.0311d0/, b/-0.096d0,-0.0538d0/, c/0.0040d0,0.0014d0/, &
d/-0.0232d0,-0.0096d0/, b1/1.0529d0,1.3981d0/, b2/0.3334d0,0.2611d0/, &
g/-0.2846d0,-0.1686d0/
!
if (nspin.eq.1) then
!
! iflg=1: paramagnetic (unpolarised) results
!
iflg=1
do ir=1,nnr
roe=rhor(ir,1)
if(roe.lt.1.0d-30) goto 10
aroe=abs(roe)
rs= (3.d0/aroe/fpi)**x13
if(rs.le.1.d0) then
rsl=log(rs)
ecca= a(iflg)*rsl+ b(iflg)+ c(iflg)*rs*rsl+ d(iflg)*rs
vcca=va(iflg)*rsl+vb(iflg)+vc(iflg)*rs*rsl+vd(iflg)*rs
else
rsq=sqrt(rs)
ecca=g(iflg)/(1.d0+b1(iflg)*rsq+b2(iflg)*rs)
vcca=ecca*(1.d0+x76*vbt1(iflg)*rsq+x43*vbt2(iflg)*rs)/ &
& (1.d0+ vbt1(iflg)*rsq+ vbt2(iflg)*rs)
end if
exc1 = ( ax/rs + ecca )/2.d0
exc = exc + exc1*roe
rhor(ir,1)= ( x43*ax/rs + vcca )/2.d0
10 continue
end do
else
isup=1
isdw=2
do ir=1,nnr
roe=rhor(ir,isup)+rhor(ir,isdw)
if(roe.lt.1.0d-30) goto 20
aroe=abs(roe)
rs= (3.d0/aroe/fpi)**x13
zeta=abs(rhor(ir,isup)-rhor(ir,isdw))/aroe
zp = (1.d0+zeta)**x13
onemz=max(0.d0,1.d0-zeta)
zm = onemz**x13
fz= ((1.d0+zeta)*zp + onemz*zm - 2.d0)/ &
& (2.d0**x43 -2.d0)
dfzdz= x43*(zp - zm)/(2.d0**x43-2.d0)
!
! iflg=1: paramagnetic (unpolarised) results
! iflg=2: ferromagnetic ( polarised) results
!
if(rs.le.1.d0) then
rsl=log(rs)
ecca= a(1)*rsl+ b(1)+ c(1)*rs*rsl+ d(1)*rs
vcca=va(1)*rsl+vb(1)+vc(1)*rs*rsl+vd(1)*rs
eccp= a(2)*rsl+ b(2)+ c(2)*rs*rsl+ d(2)*rs
vccp=va(2)*rsl+vb(2)+vc(2)*rs*rsl+vd(2)*rs
else
rsq=sqrt(rs)
ecca=g(1)/(1.d0+b1(1)*rsq+b2(1)*rs)
vcca=ecca*(1.d0+x76*vbt1(1)*rsq+x43*vbt2(1)*rs)/ &
& (1.d0+ vbt1(1)*rsq+ vbt2(1)*rs)
eccp=g(2)/(1.d0+b1(2)*rsq+b2(2)*rs)
vccp=eccp*(1.d0+x76*vbt1(2)*rsq+x43*vbt2(2)*rs)/ &
& (1.d0+ vbt1(2)*rsq+ vbt2(2)*rs)
end if
! exchange part
exc1 = ax/rs*((1.d0+zeta)*zp+(1.d0-zeta)*zm)/2.d0
vxc1 = x43*ax/rs*zp
vxc2 = x43*ax/rs*zm
! correlation part
vxc1 = vxc1 + vcca + fz*(vccp-vcca) &
& + dfzdz*(eccp-ecca)*( 1.d0-zeta)
vxc2 = vxc2 + vcca + fz*(vccp-vcca) &
& + dfzdz*(eccp-ecca)*(-1.d0-zeta)
exc = exc + (exc1 + ecca+fz*(eccp-ecca))*roe/2.d0
rhor(ir,isup)=vxc1/2.d0
rhor(ir,isdw)=vxc2/2.d0
20 continue
end do
end if
return
end subroutine expxc
SUBROUTINE wrap_b88( rho, grho, sx, v1x, v2x )
USE kinds, ONLY: DP
IMPLICIT NONE
REAL(DP) :: rho, grho, sx, v1x, v2x
REAL(DP) :: b1 = 0.0042d0
REAL(DP) :: RHOA,RHOB,GRHOA,GRHOB, V1XA,V2XA,V1XB,V2XB
rhoa = 0.5d0 * rho
rhob = 0.5d0 * rho
grhoa = 0.25d0 * grho
grhob = 0.25d0 * grho
CALL LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB)
v1x = V1XA
v2x = V2XA
END SUBROUTINE wrap_b88
SUBROUTINE wrap_glyp( rho, grho, sc, v1c, v2c )
USE kinds, ONLY: DP
USE corr_gga, ONLY: lsd_glyp
IMPLICIT NONE
REAL(DP) :: rho, grho, sc, v1c, v2c
REAL(DP) :: RA,RB,GRHOAA,GRHOAB,GRHOBB
REAL(DP) :: V1CA,V2CA,V1CB,V2CB,V2CAB
ra = rho * 0.5d0
rb = rho * 0.5d0
grhoaa = 0.25d0 * grho
grhobb = 0.25d0 * grho
grhoab = 0.25d0 * grho
CALL LSD_GLYP(RA,RB,GRHOAA,GRHOAB,GRHOBB,SC, &
V1CA,V2CA,V1CB,V2CB,V2CAB)
v1c = V1CA
v2c = 2.0d0*(v2ca+v2cb+v2cab*2.d0)*0.25d0
END SUBROUTINE wrap_glyp
! ==================================================================
SUBROUTINE LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB)
! ==--------------------------------------------------------------==
! BECKE EXCHANGE: PRA 38, 3098 (1988)
USE kinds, ONLY: DP
IMPLICIT NONE
REAL(DP),PARAMETER :: OB3=1.D0/3.D0, SMALL=1.D-20
REAL(DP) :: xs, xs2, sa2b8, br1, br2, br4, ddd, gf, dgf, shm1, dd
REAL(DP) :: dd2, grhoa, grhob, sx, b1, rhoa, rhob, v2xb, aa, a
REAL(DP) :: v1xa, v2xa, v1xb
! ==--------------------------------------------------------------==
sx=0.0D0
V1XA=0.0D0
V2XA=0.0D0
V1XB=0.0D0
V2XB=0.0D0
IF(ABS(RHOA).GT.SMALL) THEN
AA = GRHOA
A = SQRT(AA)
BR1 = RHOA**OB3
BR2 = BR1*BR1
BR4 = BR2*BR2
XS = A/BR4
XS2 = XS*XS
SA2B8 = SQRT(1.0D0+XS2)
SHM1 = LOG(XS+SA2B8)
DD = 1.0D0 + 6.0D0*B1*XS*SHM1
DD2 = DD*DD
DDD = 6.0D0*B1*(SHM1+XS/SA2B8)
GF = -B1*XS2/DD
DGF = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2
sx = GF*BR4
V1XA = 4.d0/3.d0*BR1*(GF-XS*DGF)
V2XA = DGF/A
ENDIF
IF(ABS(RHOB).GT.SMALL) THEN
AA = GRHOB
A = SQRT(AA)
BR1 = RHOB**OB3
BR2 = BR1*BR1
BR4 = BR2*BR2
XS = A/BR4
XS2 = XS*XS
SA2B8 = SQRT(1.0D0+XS2)
SHM1 = LOG(XS+SA2B8)
DD = 1.0D0 + 6.0D0*B1*XS*SHM1
DD2 = DD*DD
DDD = 6.0D0*B1*(SHM1+XS/SA2B8)
GF = -B1*XS2/DD
DGF = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2
sx = sx+GF*BR4
V1XB = 4.d0/3.d0*BR1*(GF-XS*DGF)
V2XB = DGF/A
ENDIF
! ==--------------------------------------------------------------==
RETURN
END SUBROUTINE LSD_B88
|