File: more_functionals.f90

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (1666 lines) | stat: -rw-r--r-- 58,929 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
!
! Copyright (C) 2002 FPMD group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!     ==================================================================
      SUBROUTINE LSD_PADE(RHO,ETA,EC,VCA,VCB)
!     ==--------------------------------------------------------------==
!     ==  PADE APPROXIMATION                                          ==
!     ==--------------------------------------------------------------==
      USE kinds, ONLY: DP
      IMPLICIT NONE
!     arguments
      REAL(DP) :: RHO,ETA,EC,VCA,VCB
!     locals
      REAL(DP) :: RS,FS,DFS,DFSA,DFSB,A0P,A1P,A2P,A3P,B1P,B2P,B3P,B4P
      REAL(DP) :: TOP,DTOP,TOPX,BOT,DBOT,BOTX,VC,DX
      REAL(DP), PARAMETER :: A0=.4581652932831429d0, A1=2.217058676663745d0, &
                A2=0.7405551735357053d0, A3=0.01968227878617998d0
      REAL(DP), PARAMETER :: B1=1.0D0, B2=4.504130959426697d0, &
                 B3=1.110667363742916d0, B4=0.02359291751427506d0
      REAL(DP), PARAMETER :: DA0=.119086804055547D0, DA1=.6157402568883345d0, &
                 DA2=.1574201515892867d0, DA3=.003532336663397157d0
      REAL(DP), PARAMETER :: DB1=0.0d0, DB2=.2673612973836267d0,  &
                 DB3=.2052004607777787d0, DB4=.004200005045691381d0
      REAL(DP), PARAMETER :: RSFAC=.6203504908994000d0, FSFAC=1.92366105093153617d0
!     ==--------------------------------------------------------------==
      RS=RSFAC*RHO**(-1.d0/3.d0)
      FS=FSFAC*((1.d0+ETA)**(4.d0/3.d0)+(1.d0-ETA)**(4.d0/3.d0)-2.d0)
      DFS=FSFAC*4.d0/3.d0* ((1.d0+ETA)**(1.d0/3.d0)-(1.d0-ETA)**(1.d0/3.d0))
      DFSA=DFS*(1.d0-ETA)
      DFSB=DFS*(-1.d0-ETA)
      A0P=A0+FS*DA0
      A1P=A1+FS*DA1
      A2P=A2+FS*DA2
      A3P=A3+FS*DA3
      B1P=B1+FS*DB1
      B2P=B2+FS*DB2
      B3P=B3+FS*DB3
      B4P=B4+FS*DB4
      TOP=A0P+RS*(A1P+RS*(A2P+RS*A3P))
      DTOP=A1P+RS*(2.d0*A2P+RS*3.d0*A3P)
      TOPX=DA0+RS*(DA1+RS*(DA2+RS*DA3))
      BOT=RS*(B1P+RS*(B2P+RS*(B3P+RS*B4P)))
      DBOT=B1P+RS*(2.d0*B2P+RS*(3.d0*B3P+RS*4.d0*B4P))
      BOTX=RS*(DB1+RS*(DB2+RS*(DB3+RS*DB4)))
      EC=-TOP/BOT
      VC=EC+RS*(DTOP/BOT-TOP*DBOT/(BOT*BOT))/3.d0
      DX=-(TOPX/BOT-TOP*BOTX/(BOT*BOT))
      VCA=VC+DX*DFSA
      VCB=VC+DX*DFSB
!     ==--------------------------------------------------------------==
      RETURN
      END SUBROUTINE LSD_PADE


!______________________________________________________________________
      subroutine ggablyp4(nnr,nspin,gradr,rhor,exc)
!     _________________________________________________________________
!     becke-lee-yang-parr gga
!     
!     exchange: becke, pra 38, 3098 (1988) but derived from
!        pw91 exchange formula given in prb 48, 14944 (1993)
!        by setting "b3" and "b4" to 0.0
!     correlation: miehlich et al., cpl 157, 200 (1989) 
!     method by ja white & dm bird, prb 50, 4954 (1994) 
!
!     spin-polarized version by andras stirling 10/1998,
!     using original gga program of alfredo pasquarello 22/09/1994
!     and spin-unpolarized blyp routine of olivier parisel and 
!     alfredo pasquarello (02/1997)  
!
      USE kinds, ONLY : DP
      USE constants, ONLY: pi, fpi
!
      implicit none
! input
      integer nspin, nnr
      real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin)
! output
! on output: rhor contains the exchange-correlation potential
      real(DP)  exc
! local
      integer isdw, isup, isign, ir
!
      real(DP) abo, agdr, agdr2, agr, agr2, agur, agur2, arodw,     &
           arodw2, aroe, aroe2, aroup, aroup2, ax
      real(DP) byagdr, byagr, byagur, cden, cf, cl1, cl11, cl2,     &
           cl21, cl22, cl23, cl24, cl25, cl26, cl27, clyp, csum
      real(DP) dddn, dexcdg, dexcdgd, dexcdgu, df1d, df1u, df2d,    &
          df2u, dfd, dfnum1d, dfnum1u, dfnum2d, dfnum2u, dfs, dfu,     &
          dfxdd, dfxdg, dfxdgd, dfxdgu, dfxdu, dilta, dilta119, dl1dn, &
          dl1dnd, dl1dnu, dl2dd, dl2dg, dl2dgd, dl2dgu, dl2dn,         &
          dl2dnd, dl2dnd1, dl2dnu, dl2dnu1, dl2do, dlt, dodn,          &
          disign, dwsign, dys, dysd, dysu
      real(DP) ex, excupdt, exd, exu, fac1, fac2, factor1, factor2, &
          fx, fxd, fxden, fxdend, fxdenu, fxnum, fxnumd, fxnumu, fxu
      real(DP) gkf, gkfd, gkfu, grdx, grdy, grdz, grux, gruy, gruz, &
          grx, gry, grz
      real(DP) omiga, pd, pi2, pider2, piexch, pu
      real(DP) rhodw, rhoup, roe, roedth, roeth, roeuth, rometh
      real(DP) s, s2, sd, sd2, sddw, sdup, su, su2, sysl, sysld, syslu
      real(DP) t113, upsign, usign
      real(DP) x1124, x113, x118, x13, x143, x19, x23, x43,         &
          x4718, x53, x672, x718, x772, x83
      real(DP) ys, ysd, ysl, ysld, yslu, ysr, ysrd, ysru, ysu   
!===========================================================================
      real(DP) bb1, bb2, bb5, aa, bb, cc, dd, delt, eps
      parameter(bb1=0.19644797d0,bb2=0.2742931d0,bb5=7.79555418d0,            &
          aa=0.04918d0,                                                  &
          bb=0.132d0,cc=0.2533d0,dd=0.349d0,delt=1.0d-12,eps=1.0d-14)
!
!
      x13=1.0d0/3.0d0
      x19=1.0d0/9.0d0
      x23=2.0d0/3.0d0
      x43=4.0d0/3.0d0
      x53=5.0d0/3.0d0
      x83=8.0d0/3.0d0
      x113=11.0d0/3.0d0
      x4718=47.0d0/18.0d0
      x718=7.0d0/18.0d0
      x118=1.0d0/18.0d0
      x1124=11.0d0/24.0d0
      x143=14.0d0/3.0d0
      x772=7.0d0/72.0d0
      x672=6.0d0/72.0d0
!     
!     _________________________________________________________________
!     derived parameters from pi
!
      pi2=pi*pi
      ax=-0.75d0*(3.0d0/pi)**x13
      piexch=-0.75d0/pi 
      pider2=(3.0d0*pi2)**x13
      cf=0.3d0*pider2*pider2
!     _________________________________________________________________
!     other parameters
!
      t113=2.0d0**x113
!
      rhodw=0.0d0
      grdx=0.0d0
      grdy=0.0d0
      grdz=0.0d0
!
      fac1=1.0d0
!     _________________________________________________________________
!     main loop
!
      isup=1
      isdw=2
      do ir=1,nnr
         rhoup=rhor(ir,isup)
         grux=gradr(ir,1,isup)
         gruy=gradr(ir,2,isup)
         gruz=gradr(ir,3,isup)
         if(nspin.eq.2) then
            rhodw=rhor(ir,isdw)
            grdx=gradr(ir,1,isdw)
            grdy=gradr(ir,2,isdw)
            grdz=gradr(ir,3,isdw)
         else
            rhodw=0.0d0
            grdx =0.0d0
            grdy =0.0d0
            grdz =0.0d0
         endif
         roe=rhoup+rhodw
         if(roe.eq.0.0) goto 100
         aroup=abs(rhoup)
         arodw=abs(rhodw)
         aroe=abs(roe)
         grx=grux + grdx
         gry=gruy + grdy
         grz=gruz + grdz
         agur2=grux*grux+gruy*gruy+gruz*gruz
         agur=sqrt(agur2)
         agdr2=grdx*grdx+grdy*grdy+grdz*grdz
         agdr=sqrt(agdr2)
         agr2=grx*grx+gry*gry+grz*grz
         agr=sqrt(agr2)
         roeth=aroe**x13
         rometh=1.0d0/roeth
         gkf=pider2*roeth
         sd=1.0d0/(2.0d0*gkf*aroe)
         s=agr*sd
         s2=s*s
!     _________________________________________________________________
!     exchange 
!
         if(nspin.eq.1) then
!
!
            ysr=sqrt(1.0d0+bb5*bb5*s2)
            ys=bb5*s+ysr
            ysl=log(ys)*bb1
            sysl=s*ysl
            fxnum=1.0d0+sysl+bb2*s2
            fxden=1.0d0/(1.0d0+sysl)
            fx=fxnum*fxden
!
            ex=ax*fx*roeth*aroe
!
!     ### potential contribution ###
!
            dys=bb5*(1.0d0+bb5*s/ysr)/ys
            dfs=-fxnum*(ysl+bb1*s*dys)*fxden*fxden                      &
     &           +(ysl+bb1*s*dys+2.0d0*s*bb2)*fxden
            dfxdu=(ax*roeth*x43)*(fx-dfs*s)
            dfxdg=ax*roeth*dfs*sd
!
!     ### end of potential contribution ###
!     
         else
!
            roeuth=(2.0d0*aroup)**x13
            roedth=(2.0d0*arodw)**x13
            gkfu=pider2*roeuth*aroup
            gkfd=pider2*roedth*arodw
            upsign=sign(1.d0,gkfu-eps)
            dwsign=sign(1.d0,gkfd-eps)
            factor1=0.5d0*(1+upsign)/(gkfu+(1-upsign)*eps)
            fac1=gkfu*factor1
            factor2=0.5d0*(1+dwsign)/(gkfd+(1-dwsign)*eps)
            fac2=gkfd*factor2
            sdup=1.0d0/2.0d0*factor1
            sddw=1.0d0/2.0d0*factor2
            su=agur*sdup
            su2=su*su
            sd=agdr*sddw
            sd2=sd*sd
!
            ysru=sqrt(1.0d0+bb5*bb5*su2)
            ysu=bb5*su+ysru
            yslu=log(ysu)*bb1
            syslu=su*yslu
            fxnumu=1.0d0+syslu+bb2*su2
            fxdenu=1.0d0/(1.0d0+syslu)
            fxu=fxnumu*fxdenu
            exu=piexch*2.0d0*gkfu*fxu*fac1
!
            ysrd=sqrt(1.0d0+bb5*bb5*sd2)
            ysd=bb5*sd+ysrd
            ysld=log(ysd)*bb1
            sysld=sd*ysld
            fxnumd=1.0d0+sysld+bb2*sd2
            fxdend=1.0d0/(1.0d0+sysld)
            fxd=fxnumd*fxdend
            exd=piexch*2.0d0*gkfd*fxd*fac2
!
            ex=0.5d0*(exu+exd)
!
!     ### potential contribution ###
!
            dysu=bb5*(1.0d0+bb5*su/ysru)/ysu
            pu=2.0d0*su*bb2
            dfnum1u=yslu+bb1*su*dysu+pu
            df1u=dfnum1u*fxdenu
            dfnum2u=fxnumu*(yslu+bb1*su*dysu)
            df2u=dfnum2u*fxdenu*fxdenu
            dfu=df1u-df2u
            dfxdu=ax*roeuth*x43*1.0d0*(fxu-dfu*su)*fac1
            dfxdgu=ax*aroup*roeuth*dfu*sdup*fac1
!
            dysd=bb5*(1.0d0+bb5*sd/ysrd)/ysd
            pd=2.0d0*sd*bb2
            dfnum1d=ysld+bb1*sd*dysd+pd
            df1d=dfnum1d*fxdend
            dfnum2d=fxnumd*(ysld+bb1*sd*dysd)
            df2d=dfnum2d*fxdend*fxdend
            dfd=df1d-df2d
            dfxdd=ax*roedth*x43*1.0d0*(fxd-dfd*sd)*fac2
            dfxdgd=ax*arodw*roedth*dfd*sddw*fac2
!     
!     ### end of potential contribution ###
!
         endif
!     _________________________________________________________________
!     correlation lyp(aroe,aroup,arodw,agr,agur,agdr)
!
         cden=1.0d0+dd*rometh
         cl1=-aa/cden
!
         omiga=exp(-cc*rometh)/cden/aroe**x113
         dilta=rometh*(cc+dd/cden)
         aroe2=aroe*aroe
         abo=aa*bb*omiga
!
         dodn=x13*omiga/aroe*(dilta-11.0d0)
         dddn=x13*(dd*dd*aroe**(-x53)/cden/cden-dilta/aroe)
!
         if(nspin.eq.1) then
!
            cl1=cl1*aroe
!
            cl21=4.0d0*cf*aroe**x83
            cl22=(x4718-x718*dilta)*agr2
            cl23=(2.5d0-x118*dilta)*agr2/2.0d0
            cl24=(dilta-11.0d0)/9.0d0*agr2/4.0d0
            cl25=x1124*agr2
!
            cl2=-abo*aroe2*(0.25d0*(cl21+cl22-cl23-cl24)-cl25)
!
!     ### potential contribution ###
!
            dl1dnu=-aa*(1/cden+x13*dd*rometh/cden/cden)
!
            dlt=x672+2.0d0*x772*dilta
            dl2dn=-abo*aroe*(cf*x143*aroe**x83-dlt*agr2)
            dl2do=cl2/omiga
            dl2dd=abo*aroe2*x772*agr2
            dl2dnu=dl2dn+dl2do*dodn+dl2dd*dddn
!     
            dl2dg=abo*aroe2*agr*dlt
!
!     ### end of potential contribution ###
!
         else
!
            cl11=cl1*4.0d0/aroe
            cl1=cl11*aroup*arodw
!
            aroup2=aroup*aroup
            arodw2=arodw*arodw
!
            cl21=t113*cf*(aroup**x83+arodw**x83)
            cl22=(x4718-x718*dilta)*agr2
            cl23=(2.5d0-x118*dilta)*(agur2+agdr2)
            dilta119=(dilta-11.0d0)/9.0d0
            cl24=dilta119/aroe*(aroup*agur2+arodw*agdr2)
            cl25=x23*aroe2*agr2
            cl26=(x23*aroe2-aroup2)*agdr2
            cl27=(x23*aroe2-arodw2)*agur2
!
            csum=cl21+cl22-cl23-cl24
            cl2=-abo*(aroup*arodw*csum-cl25+cl26+cl27)
!
!     ### potential contribution ###
!
!     *** cl1 has changed its form! ***
!
            dl1dn=cl1/aroe*(x13*dd/cden*rometh-1.0d0)
            dl1dnu=dl1dn+cl11*arodw
            dl1dnd=dl1dn+cl11*aroup
!     
            dl2dnu1=arodw*csum+                                         &
     &           arodw*aroup*(t113*cf*x83*aroup**x53-                   &
     &           dilta119*arodw/aroe2*(agur2-agdr2))-x43*aroe*agr2+     &
     &           x23*agdr2*(2.0d0*arodw-aroup)+x43*aroe*agur2
            dl2dnd1=aroup*csum+                                         &
     &           aroup*arodw*(t113*cf*x83*arodw**x53+                   &
     &           dilta119*aroup/aroe2*(agur2-agdr2))-x43*aroe*agr2+     &
     &           x23*agur2*(2.0d0*aroup-arodw)+x43*aroe*agdr2
!
            dl2do=cl2/omiga
            dl2dd=-abo*aroup*arodw*                                     &
     &           (-x718*agr2+x118*(agur2+agdr2)-                        &
     &           x19*(aroup*agur2+arodw*agdr2)/aroe)
!
            dl2dnu=-abo*dl2dnu1+dl2do*dodn+dl2dd*dddn
            dl2dnd=-abo*dl2dnd1+dl2do*dodn+dl2dd*dddn
!
            dl2dg=-abo*                                                 &
     &           (aroup*arodw*2.0d0*(x4718-x718*dilta)*agr-               &
     &           x43*aroe2*agr) 
            dl2dgu=-2.0d0*abo*agur*((x118*dilta-2.5d0-                      &
     &           dilta119*aroup/aroe)*aroup*arodw                       &
     &           +x23*aroe2-arodw2)
            dl2dgd=-2.0d0*abo*agdr*((x118*dilta-2.5d0-                      &
     &           dilta119*arodw/aroe)*aroup*arodw                       &
     &           +x23*aroe2-aroup2)
!
         endif
!
         clyp=cl1+cl2
!     _________________________________________________________________
!     updating of xc-energy
!
         excupdt=ex+clyp
!
         exc=exc+excupdt
!
!     _________________________________________________________________
!     first part xc-potential construction
!
!
         rhor(ir,isup)=dfxdu+(dl1dnu+dl2dnu)*fac1
         isign=sign(1.d0,agr-delt)
         byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt)
!
         if(nspin.eq.1) then
!
            dexcdg=(dfxdg*aroe+dl2dg)*byagr
            gradr(ir,1,isup)=grx*dexcdg
            gradr(ir,2,isup)=gry*dexcdg
            gradr(ir,3,isup)=grz*dexcdg
!
         else
!
            rhor(ir,isdw)=dfxdd+(dl1dnd+dl2dnd)*fac2
!
            usign =sign(1.d0,agur-delt)
            disign=sign(1.d0,agdr-delt)
            byagur=0.5d0*(1+ usign)/(agur+(1- usign)*delt)
            byagdr=0.5d0*(1+disign)/(agdr+(1-disign)*delt)
!
            dexcdgu=(dfxdgu+dl2dgu)*byagur
            dexcdgd=(dfxdgd+dl2dgd)*byagdr
            dexcdg=dl2dg*byagr
!
            gradr(ir,1,isup)=(dexcdgu*grux+dexcdg*grx)*fac1
            gradr(ir,2,isup)=(dexcdgu*gruy+dexcdg*gry)*fac1
            gradr(ir,3,isup)=(dexcdgu*gruz+dexcdg*grz)*fac1
            gradr(ir,1,isdw)=(dexcdgd*grdx+dexcdg*grx)*fac2
            gradr(ir,2,isdw)=(dexcdgd*grdy+dexcdg*gry)*fac2
            gradr(ir,3,isdw)=(dexcdgd*grdz+dexcdg*grz)*fac2
!
         endif
!          
 100     continue
      end do
!
      return
      end subroutine ggablyp4
!
!______________________________________________________________________
      subroutine ggapbe(nnr,nspin,gradr,rhor,excrho)
!     _________________________________________________________________
!     Perdew-Burke-Ernzerhof gga
!     Perdew, et al. PRL 77, 3865, 1996
!
      USE kinds, ONLY: DP
      use constants, only: pi, fpi
!
      implicit none
! input
      integer nspin, nnr
      real(DP)  gradr(nnr,3,nspin), rhor(nnr,nspin)
! output: excrho: exc * rho ;  E_xc = \int excrho(r) d_r
! output: rhor:   contains the exchange-correlation potential
      real(DP)  excrho
! local
      integer ir, icar, iss, isup, isdw, nspinx
      real(DP) lim1, lim2
      parameter ( lim1=1.d-8, lim2=1.d-8, nspinx=2 )
      real(DP) zet, arho(nspinx), grad(3,nspinx), agrad(nspinx),    &
          arhotot, gradtot(3), agradtot,                               &
          scl, scl1, wrkup, wrkdw,                                     &
          exrho(nspinx), dexdrho(nspinx), dexdg(nspinx),               &
          ecrho, decdrho(nspinx), decdg
!
!     main loop
!
      isup=1
      isdw=2
      do ir=1,nnr
!
         arho(isup) = abs(rhor(ir,isup))
         arhotot = arho(isup)
         zet = 0.d0
         do icar = 1, 3
            grad(icar,isup) = gradr(ir,icar,isup)
            gradtot(icar) = gradr(ir,icar,isup)
         enddo
!
         if (nspin.eq.2) then
            arho(isdw) = abs(rhor(ir,isdw))
            arhotot = abs(rhor(ir,isup)+rhor(ir,isdw))
            do icar = 1, 3
               grad(icar,isdw) = gradr(ir,icar,isdw)
               gradtot(icar) = gradr(ir,icar,isup)+gradr(ir,icar,isdw)
            enddo
            zet = (rhor(ir,isup) - rhor(ir,isdw)) / arhotot
            if (zet.ge. 1.d0) zet =  1.d0
            if (zet.le.-1.d0) zet = -1.d0
         endif
!
         do iss = 1, nspin
            agrad(iss) = sqrt( grad(1,iss)*grad(1,iss) +                &
     &                         grad(2,iss)*grad(2,iss) +                &
     &                         grad(3,iss)*grad(3,iss) )
            agradtot = sqrt( gradtot(1)*gradtot(1) +                    &
     &                       gradtot(2)*gradtot(2) +                    &
     &                       gradtot(3)*gradtot(3) )
         enddo
!
!     _________________________________________________________________
!     First it calculates the energy density excrho
!     exrho:  exchange term
!     ecrho:  correlation term
!
         if ( nspin.eq.2 ) then
            scl = 2.d0
            scl1 = 0.5d0
         else
            scl = 1.d0
            scl1 = 1.d0
         endif
         do iss = 1, nspin
            if ( arho(iss).gt.lim1) then
               call exchpbe( scl*arho(iss), scl*agrad(iss),             &
     &                       exrho(iss),dexdrho(iss),dexdg(iss))
               excrho = excrho + scl1*exrho(iss)
            else
               dexdrho(iss) = 0.d0
               dexdg(iss) = 0.d0
            endif
         enddo
         if ( arhotot.gt.lim1) then
            call ecorpbe( arhotot, agradtot, zet, ecrho,                &
     &                    decdrho(1), decdrho(2), decdg, nspin )
            excrho = excrho + ecrho
         else
            decdrho(isup) = 0.d0
            decdrho(isdw) = 0.d0
            decdg = 0.d0
         endif
!     _________________________________________________________________
!     Now it calculates the potential and writes it in rhor
!     it uses the following variables:
!     dexdrho = d ( ex*rho ) / d (rho)
!     decdrho = d ( ec*rho ) / d (rho)
!     dexdg   = (d ( ex*rho ) / d (grad(rho)_i)) * agrad / grad_i
!     decdg   = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i
!     gradr  here is used as a working array
!
!     _________________________________________________________________
!    first part of the xc-potential : D(rho*exc)/D(rho)
!
         do iss = 1, nspin
            rhor(ir,iss) = dexdrho(iss) + decdrho(iss)
         enddo
!
!     gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
         do iss = 1, nspin
            do icar = 1,3
               wrkup =0.d0
               wrkdw =0.d0
               if (agrad(iss).gt.lim2)                                  &
     &                    wrkup = dexdg(iss)*grad(icar,iss)/agrad(iss)
               if (agradtot.gt.lim2)                                    &
     &                    wrkdw = decdg*gradtot(icar)/agradtot
               gradr(ir,icar,iss) = wrkup + wrkdw
            enddo
         enddo
!
      end do
!
      return
      end subroutine ggapbe
!
!______________________________________________________________________
      subroutine exchpbe(rho,agrad,ex,dexdrho,dexdg)
!     _________________________________________________________________
!
! Perdew-Burke-Ernzerhof gga, Exchange term:
! Calculates the exchange energy density and the two functional derivative
! that will be used to calculate the potential
!
      USE kinds, ONLY: DP
      implicit none
! input
! input rho:     charge density
! input agrad:   abs(grad rho)
      real(DP) rho, agrad
! ouput
! output ex: Ex[rho,grad_rho] = \int ex dr
! output dexdrho: d ex / d rho
! output dexdg:   d ex / d grad_rho(i) = dexdg*grad_rho(i)/abs(grad_rho)
      real(DP) ex, dexdrho, dexdg
! local
      real(DP) thrd, thrd4, pi32td, ax, al, um, uk, ul
      parameter(thrd=.33333333333333333333d0,thrd4=4.d0/3.d0)
      parameter(pi32td=3.09366772628014d0) ! pi32td=(3.d0*pi*pi)**0.333d0
      parameter(al=0.161620459673995d0)    ! al=1.0/(2.0*(pi32)**0.333d0)
      parameter(ax=-0.738558766382022405884230032680836d0)
      parameter(um=0.2195149727645171d0,uk=0.8040d0,ul=um/uk)
!
      real(DP) rhothrd, exunif, dexunif, kf, s, s2, p0, fxpbe, fs
!----------------------------------------------------------------------
! construct LDA exchange energy density
!
      rhothrd = rho**thrd
      dexunif = ax*rhothrd
      exunif  = rho*dexunif
!----------------------------------------------------------------------
! construct PBE enhancement factor
!
      kf = pi32td*rhothrd
      s = agrad/(2.d0*kf*rho)
      s2 = s*s
      p0 = 1.d0 + ul*s2
      fxpbe = 1.d0 + uk - uk/p0
      ex = exunif*fxpbe
!----------------------------------------------------------------------
! now calculates the potential terms
!
!  fs=(1/s)*d fxPBE/ ds
!
      fs=2.d0*uk*ul/(p0*p0)
      dexdrho = dexunif*thrd4*(fxpbe-s2*fs)
      dexdg = ax*al*s*fs
!
      return
      end subroutine exchpbe

!----------------------------------------------------------------------
      subroutine ecorpbe(rho,agrad,zet,ectot,decup,decdn,decdg,nspin)
!     -----------------------------------------------------------------
!
!  Adapted from the Official PBE correlation code. K. Burke, May 14, 1996.
!
!   input: rho   = rho_up + rho_down; total  charge density
!   input: agrad = abs( grad(rho) )
!   input: zet   = (rho_up-rho_down)/rho
!   input: nspin
!  output: ectot = ec*rho       ---correlation energy density---
!  output: decup = d ( ec*rho ) / d (rho_up)
!  output: decdn = d ( ec*rho ) / d (rho_down)
!  output: decdg = (d ( ec*rho ) / d (grad(rho)_i)) * agrad / grad_i
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! References:
! [a] J.P.~Perdew, K.~Burke, and M.~Ernzerhof, 
!     {\sl Generalized gradient approximation made simple}, sub.
!     to Phys. Rev.Lett. May 1996.
! [b] J. P. Perdew, K. Burke, and Y. Wang, {\sl Real-space cutoff
!     construction of a generalized gradient approximation:  The PW91
!     density functional}, submitted to Phys. Rev. B, Feb. 1996.
! [c] J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992).
!----------------------------------------------------------------------
!----------------------------------------------------------------------
      USE kinds, ONLY: DP
      USE constants, ONLY: pi
      implicit none
      real(DP) rho, agrad, zet, ectot, decup, decdn, decdg
      integer nspin
      real(DP) pi32, alpha, thrd, thrdm, thrd2, sixthm, thrd4,  &
          gam, fzz, gamma, bet, delt, eta
! thrd*=various multiples of 1/3
! numbers for use in LSD energy spin-interpolation formula, [c](9).
!      gam= 2^(4/3)-2
!      fzz=f''(0)= 8/(9*gam)
! numbers for construction of PBE
!      gamma=(1-log(2))/pi^2
!      bet=coefficient in gradient expansion for correlation, [a](4).
!      eta=small number to stop d phi/ dzeta from blowing up at 
!          |zeta|=1.
      parameter(pi32=29.608813203268075856503472999628d0)
      parameter(alpha=1.91915829267751300662482032624669d0)
      parameter(thrd=1.d0/3.d0,thrdm=-thrd,thrd2=2.d0*thrd)
      parameter(sixthm=thrdm/2.d0)
      parameter(thrd4=4.d0*thrd)
      parameter(gam=0.5198420997897463295344212145565d0)
      parameter(fzz=8.d0/(9.d0*gam))
      parameter(gamma=0.03109069086965489503494086371273d0)
      parameter(bet=0.06672455060314922d0,delt=bet/gamma)
      parameter(eta=1.d-12)
      real(DP) g, fk, rs, sk, twoksg, t
      real(DP) rtrs, eu, eurs, ep, eprs, alfm, alfrsm, z4, f, ec
      real(DP) ecrs, fz, eczet, comm, vcup, vcdn, g3, pon, b, b2, t2, t4
      real(DP) q4, q5, h, g4, t6, rsthrd, gz, fac
      real(DP) bg, bec, q8, q9, hb, hrs, hz, ht, pref
!----------------------------------------------------------------------
      if (nspin.eq.1) then
         g=1.d0
      else
         g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)*0.5d0
      endif
      fk=(pi32*rho)**thrd
      rs=alpha/fk
      sk=sqrt(4.d0*fk/pi)
      twoksg=2.d0*sk*g
      t=agrad/(twoksg*rho)
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! find LSD energy contributions, using [c](10) and Table I[c].
! eu=unpolarized LSD correlation energy
! eurs=deu/drs
! ep=fully polarized LSD correlation energy
! eprs=dep/drs
! alfm=-spin stiffness, [c](3).
! alfrsm=-dalpha/drs
! f=spin-scaling factor from [c](9).
! construct ec, using [c](8)
      rtrs=dsqrt(rs)
      call gcor2(0.0310907d0,0.21370d0,7.5957d0,3.5876d0,1.6382d0,      &
     &    0.49294d0,rtrs,eu,eurs)
      if (nspin.eq.2) then
         call gcor2(0.01554535d0,0.20548d0,14.1189d0,6.1977d0,3.3662d0, &
     &       0.62517d0,rtrs,ep,eprs)
         call gcor2(0.0168869d0,0.11125d0,10.357d0,3.6231d0,0.88026d0,  &
     &       0.49671d0,rtrs,alfm,alfrsm)
         z4 = zet**4
         f=((1.d0+zet)**thrd4+(1.d0-zet)**thrd4-2.d0)/gam
         ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! LSD potential from [c](A1)
! ecrs = dec/drs [c](A2)
! eczet=dec/dzeta [c](A3)
! fz = df/dzeta [c](A4)
         ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz
         fz = thrd4*((1.d0+zet)**thrd-(1.d0-zet)**thrd)/gam
         eczet = 4.d0*(zet**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu       &
     &           -(1.d0-z4)*alfm/fzz)
         comm = ec -rs*ecrs/3.d0-zet*eczet
         vcup = comm + eczet
         vcdn = comm - eczet
      else
         ecrs = eurs
         ec = eu
         vcup = ec -rs*ecrs/3.d0
      endif
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! PBE correlation energy
! g=phi(zeta), given after [a](3)
! delt=bet/gamma
! b=a of [a](8)
!      g=((1.d0+zet)**thrd2+(1.d0-zet)**thrd2)/2.d0
      g3 = g**3
      pon=-ec/(g3*gamma)
      b = delt/(dexp(pon)-1.d0)
      b2 = b*b
      t2 = t*t
      t4 = t2*t2
      q4 = 1.d0+b*t2
      q5 = 1.d0+b*t2+b2*t4
      h = g3*(bet/delt)*dlog(1.d0+delt*Q4*t2/Q5)
      ectot = rho*(ec + h)
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! energy done. Now the potential, using appendix e of [b].
      t6 = t4*t2
      rsthrd = rs/3.d0
      fac = delt/b+1.d0
      bec = b2*fac/(bet*g3)
      q8 = q5*q5+delt*q4*q5*t2
      q9 = 1.d0+2.d0*b*t2
      hb = -bet*g3*b*t6*(2.d0+b*t2)/q8
      hrs = -rsthrd*hb*bec*ecrs
      ht = 2.d0*bet*g3*q9/q8
      comm = h+hrs-7.d0*t2*ht/6.d0
      if (nspin.eq.2) then
         g4 = g3*g
         bg = -3.d0*b2*ec*fac/(bet*g4)
         gz=(((1.d0+zet)**2+eta)**sixthm-                               &
     &   ((1.d0-zet)**2+eta)**sixthm)/3.d0
         hz = 3.d0*gz*h/g + hb*(bg*gz+bec*eczet)
         pref = hz-gz*t2*ht/g
         decup = vcup + comm + pref*(  1.d0 - zet)
         decdn = vcdn + comm + pref*( -1.d0 - zet)
      else
         decup = vcup + comm
      endif
      decdg = t*ht/twoksg
!
      return
      end subroutine ecorpbe
!______________________________________________________________________
      subroutine gcor2(a,a1,b1,b2,b3,b4,rtrs,gg,ggrs)
!     _________________________________________________________________
! slimmed down version of GCOR used in PW91 routines, to interpolate
! LSD correlation energy, as given by (10) of
! J. P. Perdew and Y. Wang, Phys. Rev. B {\bf 45}, 13244 (1992).
! K. Burke, May 11, 1996.
!
      USE kinds, ONLY : DP
      implicit none
      real(DP) a, a1, b1, b2, b3, b4, rtrs, gg, ggrs
      real(DP) q0, q1, q2, q3
!
      q0 = -2.d0*a*(1.d0+a1*rtrs*rtrs)
      q1 = 2.d0*a*rtrs*(b1+rtrs*(b2+rtrs*(b3+b4*rtrs)))
      q2 = dlog(1.d0+1.d0/q1)
      gg = q0*q2
      q3 = a*(b1/rtrs+2.d0*b2+rtrs*(3.d0*b3+4.d0*b4*rtrs))
      ggrs = -2.d0*a*a1*q2-q0*q3/(q1*(1.d0+q1))
!
      return
      end subroutine gcor2
!
!______________________________________________________________________
      subroutine ggapw(nnr,nspin,gradr,rhor,exc)
!     _________________________________________________________________
!     perdew-wang gga (PW91)
!
      USE kinds, ONLY: DP
      use constants, only: pi, fpi
!
      implicit none
! input
      integer nspin, nnr
      real(DP) gradr(nnr,3,nspin), rhor(nnr,nspin)
! output
      real(DP) exc
! local
      integer isup, isdw, ir
      real(DP) rhoup, rhodw, roe, aroe, rs, zeta
      real(DP) grxu, gryu, grzu, grhou, grxd, gryd, grzd, grhod, grho
      real(DP) ex, ec,vc, sc, v1x, v2x, v1c, v2c
      real(DP) ecrs, eczeta
      real(DP) exup, vcup, v1xup, v2xup, v1cup
      real(DP) exdw, vcdw, v1xdw, v2xdw, v1cdw
      real(DP), parameter:: pi34 = 0.75d0/pi, third = 1.d0/3.d0, &
                small = 1.d-10
!
!     _________________________________________________________________
!     main loop
!
      isup=1
      isdw=2
      exc=0.0d0
      do ir=1,nnr
         rhoup=rhor(ir,isup)
         if(nspin.eq.2) then
            rhodw=rhor(ir,isdw)
         else
            rhodw=0.0d0
         end if
         roe=rhoup+rhodw
         aroe=abs(roe)
         if (aroe.lt.small) then
            rhor(ir,isup)   =0.0d0
            gradr(ir,1,isup)=0.0d0
            gradr(ir,2,isup)=0.0d0
            gradr(ir,3,isup)=0.0d0
            if(nspin.eq.2) then
               rhor(ir,isdw)   =0.0d0
               gradr(ir,1,isdw)=0.0d0
               gradr(ir,2,isdw)=0.0d0
               gradr(ir,3,isdw)=0.0d0
            end if
            go to 100
         end if
         grxu =gradr(ir,1,isup)
         gryu =gradr(ir,2,isup)
         grzu =gradr(ir,3,isup)
         grhou=sqrt(grxu**2+gryu**2+grzu**2)
         if(nspin.eq.2) then
            grxd =gradr(ir,1,isdw)
            gryd =gradr(ir,2,isdw)
            grzd =gradr(ir,3,isdw)
            grhod=sqrt(grxd**2+gryd**2+grzd**2)
         else
            grxd =0.0d0
            gryd =0.0d0
            grzd =0.0d0
            grhod=0.0d0
         endif
         grho=sqrt((grxu+grxd)**2+(gryu+gryd)**2+(grzu+grzd)**2)
!
         rs=(pi34/aroe)**third
         if (nspin.eq.1) then
            call exchpw91(aroe,grho,ex,v1x,v2x)
            call pwlda(rs,ec,vc,ecrs)
            call corpw91ns(rs,grho,ec,ecrs,sc,v1c,v2c)
            exc = exc + roe*(ex+ec) + sc
            rhor(ir,isup) = vc + v1x + v1c
!
!     gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
            gradr(ir,1,isup)=grxu*(v2x+v2c)
            gradr(ir,2,isup)=gryu*(v2x+v2c)
            gradr(ir,3,isup)=grzu*(v2x+v2c)
         else
            zeta=(rhoup-rhodw)/aroe        
            zeta=min(zeta, 1.d0)
            zeta=max(zeta,-1.d0)
            call exchpw91(2.d0*abs(rhoup),2.0d0*grhou,exup,v1xup,v2xup)
            call exchpw91(2.d0*abs(rhodw),2.0d0*grhod,exdw,v1xdw,v2xdw)
            call pwlsd(rs,zeta,ec,vcup,vcdw,ecrs,eczeta)
            call corpw91(rs,zeta,grho,ec,ecrs,eczeta,sc,v1cup,v1cdw,v2c)
            rhor(ir,isup) = vcup + v1xup + v1cup
            rhor(ir,isdw) = vcdw + v1xdw + v1cdw
            exc = exc+roe*(0.5d0*((1.d0+zeta)*exup+(1.d0-zeta)*exdw)+ec) &
                 + sc
!
!     gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
            gradr(ir,1,isup)=grxu*(2.0d0*v2xup+v2c)+grxd*v2c
            gradr(ir,2,isup)=gryu*(2.0d0*v2xup+v2c)+gryd*v2c
            gradr(ir,3,isup)=grzu*(2.0d0*v2xup+v2c)+grzd*v2c
            gradr(ir,1,isdw)=grxd*(2.0d0*v2xdw+v2c)+grxu*v2c
            gradr(ir,2,isdw)=gryd*(2.0d0*v2xdw+v2c)+gryu*v2c
            gradr(ir,3,isdw)=grzd*(2.0d0*v2xdw+v2c)+grzu*v2c
         end if
 100     continue
      end do
!
      return
      end subroutine ggapw
!
!----------------------------------------------------------------------
      subroutine exchpw91(rho,grho,ex,v1x,v2x)
!----------------------------------------------------------------------
!
!  PW91 exchange for a spin-unpolarized electronic system
!  Modified from the "official" PBE code of Perdew, Burke et al.
!  input rho   : density
!  input grho:  abs(grad rho)
!  output:  exchange energy per electron (ex) and potentials
!          v1x = d(rho*exc)/drho
!          v2x = d(rho*exc)/d|grho| * (1/|grho|)
!
      USE kinds, ONLY : DP
      USE constants, ONLY : pi
      implicit none
!  input
      real(DP) rho, grho
!  output
      real(DP) ex, v1x, v2x
! local
      real(DP) ex0, kf, s, s2, s4, f, fs, p0,p1,p2,p3,p4,p5,p6,p7
! parameters
      real(DP) a1, a2, a3, a4, a, b1, bx, pi34, thrd, thrd4
      parameter(a1=0.19645d0,a2=0.27430d0,a=7.7956d0,a4=100.d0)
! for becke exchange, set a3=b1=0
      parameter(a3=0.15084d0,b1=0.004d0)
! pi34=3/(4pi) ,  bx=(3pi^2)^(1/3)
      parameter(pi34=0.75d0/pi, bx=3.093667726d0, thrd=0.333333333333d0, &
                thrd4=4.d0*thrd)
!
      if (rho.lt.1.d-10) then
         ex =0.0d0
         v1x=0.0d0
         v2x=0.0d0
      end if
!
!  kf=k_Fermi, ex0=Slater exchange energy
!
      kf = bx*(rho**thrd)
      ex0=-pi34*kf
      if (grho.lt.1.d-10) then
         ex =ex0
         v1x=ex0*thrd4
         v2x=0.0d0
      end if
      s  = grho/(2.d0*kf*rho)
      s2 = s*s
      s4 = s2*s2
      p0 = 1.d0/sqrt(1.d0+a*a*s2)
      p1 = log(a*s+1.d0/p0)
      p2 = exp(-a4*s2)
      p3 = 1.d0/(1.d0+a1*s*p1+b1*s4)
      p4 = 1.d0+a1*s*p1+(a2-a3*p2)*s2
!  f is the enhancement factor
      f = p3*p4
      ex = ex0*f
!  energy done. now the potential:
      p5 = b1*s2-(a2-a3*p2)
      p6 = a1*s*(p1+a*s*p0)
      p7 = 2.d0*(a2-a3*p2)+2.d0*a3*a4*s2*p2-4.d0*b1*s2*f
! fs = (1/s) dF(s)/ds
      fs = p3*(p3*p5*p6+p7)
      v1x = ex0*thrd4*(f-s2*fs)
      v2x = 0.5d0*ex0/kf*s*fs/grho
!
      return
      end subroutine exchpw91
!
!----------------------------------------------------------------------
      subroutine corpw91ns(rs,grho,ec,ecrs,h,v1c,v2c)
!----------------------------------------------------------------------
!
!  PW91 correlation (gradient correction term) - no spin case
!  Modified from the "official" PBE code of Perdew, Burke et al.
!
!  input rs:   seitz radius
!  input zeta:  relative spin polarization
!  input grho: abs(grad rho)
!  input ec:   Perdew-Wang correlation energy
!  input ecrs:  d(rho*ec)/d r_s

!  output h  :  nonlocal part of correlation energy per electron
!  output v1c:  nonlocal parts of correlation potential
!         v1c = d(rho*exc)/drho
!         v2c = d(rho*exc)/d|grho|*(1/|grho|)
!
      USE kinds, ONLY : DP
      USE constants, ONLY : pi
      implicit none
! input
      real(DP) rs, grho, ec, ecrs
! output
      real(DP) h, v1c, v2c
! local
      real(DP) rho, t, ks,  bet, delt, pon, b, b2, t2, t4, t6
      real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3
      real(DP) ccrs, rsthrd, fac, bec, coeff, cc
      real(DP) h0, h0b, h0rs, h0t, h1, h1t, h1rs, hrs, ht
! parameters
      real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4, ax, pi34
      parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0)
      parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0)
      parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0)
! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2)
      parameter(ax=1.5631853d0, pi34 = 0.75d0/pi)
!
!
      rs2 = rs*rs
      rs3 = rs2*rs
      rho=pi34/rs3
!  k_s=(4k_F/pi)^(1/2)
      ks=ax/sqrt(rs)
!  t=abs(grad rho)/(rho*2.*ks)
      t=grho/(2.d0*rho*ks)
      bet = nu*cc0
      delt = 2.d0*alf/bet
      pon = -delt*ec/bet
      b = delt/(exp(pon)-1.d0)
      b2 = b*b
      t2 = t*t
      t4 = t2*t2
      t6 = t4*t2
      q4 = 1.d0+b*t2
      q5 = 1.d0+b*t2+b2*t4
      q6 = c1+c2*rs+c3*rs2
      q7 = 1.d0+c4*rs+c5*rs2+c6*rs3
      cc = -cx + q6/q7
      r0 = 0.663436444d0*rs
      r1 = a4*r0
      coeff = cc-cc0-3.d0*cx/7.d0
      r2 = nu*coeff
      r3 = exp(-r1*t2)
      h0 = (bet/delt)*log(1.d0+delt*q4*t2/q5)
      h1 = r3*r2*t2
      h = (h0+h1)*rho
!  energy done. now the potential:
      ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2
      rsthrd = rs/3.d0
      r4 = rsthrd*ccrs/coeff
      fac = delt/b+1.d0
      bec = b2*fac/bet
      q8 = q5*q5+delt*q4*q5*t2
      q9 = 1.d0+2.d0*b*t2
      h0b = -bet*b*t6*(2.d0+b*t2)/q8
      h0rs = -rsthrd*h0b*bec*ecrs
      h0t = 2.d0*bet*q9/q8
      h1rs = r3*r2*t2*(-r4+r1*t2/3.d0)
      h1t = 2.d0*r3*r2*(1.d0-r1*t2)
      hrs = h0rs+h1rs
      ht = h0t+h1t
      v1c = h0+h1+hrs-7.d0*t2*ht/6.d0
      v2c = t*ht/(2.d0*ks*grho)
!
      return
      end subroutine corpw91ns
!
!----------------------------------------------------------------------
      subroutine corpw91(rs,zeta,grho,ec,ecrs,eczeta,h,v1cup,v1cdn,v2c)
!----------------------------------------------------------------------
!
!  PW91 correlation (gradient correction term)
!  Modified from the "official" PBE code of Perdew, Burke et al.
!
!  input rs:   seitz radius
!  input zeta:  relative spin polarization
!  input grho: abs(grad rho)
!  input ec:   Perdew-Wang correlation energy
!  input ecrs:  d(rho*ec)/d r_s ?
!  input eczeta: d(rho*ec)/d zeta ?

!  output h: nonlocal part of correlation energy per electron
!  output v1cup,v1cdn:  nonlocal parts of correlation potentials
!         v1c** = d(rho*exc)/drho               (up and down components)
!         v2c   = d(rho*exc)/d|grho|*(1/|grho|) (same for up and down)
!
      USE kinds, ONLY : DP
      USE constants, ONLY : pi
      implicit none
! input
      real(DP) rs, zeta, grho, ec, ecrs, eczeta
! output
      real(DP) h, v1cup, v1cdn, v2c
! local
      real(DP) rho, g, t, ks, gz, bet, delt, g3, g4, pon, b, b2, t2, t4, t6
      real(DP) q4, q5, q6, q7, q8, q9, r0, r1, r2, r3, r4, rs2, rs3
      real(DP) ccrs, rsthrd, fac, bg, bec, coeff, cc
      real(DP) h0, h0b, h0rs, h0z, h0t, h1, h1t, h1rs, h1z
      real(DP) hz, hrs, ht, comm, pref
! parameters
      real(DP) nu, cc0, cx, alf, c1, c2, c3, c4, c5, c6, a4
      real(DP) thrdm, thrd2, ax, eta, pi34
      parameter(nu=15.75592d0,cc0=0.004235d0,cx=-0.001667212d0)
      parameter(c1=0.002568d0,c2=0.023266d0,c3=7.389d-6,c4=8.723d0)
      parameter(c5=0.472d0,c6=7.389d-2,a4=100.d0, alf=0.09d0)
      parameter(thrdm=-0.333333333333d0,thrd2=0.666666666667d0)
! ax=(4*1.9191583/pi)^(1/2), where k_F=1.9191583/r_s, k_s=boh*r_s^(1/2)
      parameter(ax=1.5631853d0, eta=1.d-12, pi34 = 0.75d0/pi )
!
!
      if (grho.lt.1.d-10) then
         h=0.0d0
         v1cup=0.0d0
         v1cdn=0.0d0
         v2c=0.0d0
      end if
      rs2 = rs*rs
      rs3 = rs2*rs
      rho=pi34/rs3
      g=((1.d0+zeta)**thrd2+(1.d0-zeta)**thrd2)/2.d0
!  k_s=(4k_F/pi)^(1/2)
      ks=ax/sqrt(rs)
!  t=abs(grad rho)/(rho*2.*ks*g)
      t=grho/(2.d0*rho*g*ks)
      bet = nu*cc0
      delt = 2.d0*alf/bet
      g3 = g**3
      g4 = g3*g
      pon = -delt*ec/(g3*bet)
      b = delt/(exp(pon)-1.d0)
      b2 = b*b
      t2 = t*t
      t4 = t2*t2
      t6 = t4*t2
      q4 = 1.d0+b*t2
      q5 = 1.d0+b*t2+b2*t4
      q6 = c1+c2*rs+c3*rs2
      q7 = 1.d0+c4*rs+c5*rs2+c6*rs3
      cc = -cx + q6/q7
      r0 = 0.663436444d0*rs
      r1 = a4*r0*g4
      coeff = cc-cc0-3.d0*cx/7.d0
      r2 = nu*coeff*g3
      r3 = dexp(-r1*t2)
      h0 = g3*(bet/delt)*log(1.d0+delt*q4*t2/q5)
      h1 = r3*r2*t2
      h = (h0+h1)*rho
!  energy done. now the potential:
      ccrs = (c2+2.d0*c3*rs)/q7 - q6*(c4+2.d0*c5*rs+3.d0*c6*rs2)/q7**2
      rsthrd = rs/3.d0
      r4 = rsthrd*ccrs/coeff
!  eta is a small quantity that avoids trouble if zeta=+1 or -1
      gz = ((1.d0+zeta+eta)**thrdm - (1.d0-zeta+eta)**thrdm)/3.d0
      fac = delt/b+1.d0
      bg = -3.d0*b2*ec*fac/(bet*g4)
      bec = b2*fac/(bet*g3)
      q8 = q5*q5+delt*q4*q5*t2
      q9 = 1.d0+2.d0*b*t2
      h0b = -bet*g3*b*t6*(2.d0+b*t2)/q8
      h0rs = -rsthrd*h0b*bec*ecrs
      h0z = 3.d0*gz*h0/g + h0b*(bg*gz+bec*eczeta)
      h0t = 2.d0*bet*g3*q9/q8
      h1rs = r3*r2*t2*(-r4+r1*t2/3.d0)
      h1z = gz*r3*r2*t2*(3.d0-4.d0*r1*t2)/g
      h1t = 2.d0*r3*r2*(1.d0-r1*t2)
      hrs = h0rs+h1rs
      ht = h0t+h1t
      hz = h0z+h1z
      comm = h0+h1+hrs-7.d0*t2*ht/6.d0
      pref = hz-gz*t2*ht/g
      comm = comm-pref*zeta
      v1cup = comm + pref 
      v1cdn = comm - pref
      v2c   = t*ht/(2.d0*ks*g*grho)
!
      return
      end subroutine corpw91
!----------------------------------------------------------------------
      subroutine pwlda(rs,ec,vc,ecrs)
!----------------------------------------------------------------------
!
!  uniform-gas, spin-unpolarised correlation of perdew and wang 1991
!  input:  rs   seitz radius
!  output: ec   correlation energy per electron
!          vc   potential
!          ecrs derivatives of ec wrt rs
!
      USE kinds, ONLY : DP
      implicit none
! input
      real(DP) rs
! output
      real(DP) ec, vc, ecrs
!  local
      real(DP) q0, rs12, q1, q2, q3
! parameters
      real(DP) a, a1, b1, b2, b3, b4
      parameter(a =0.0310907d0, a1=0.21370d0, b1=7.5957d0,              &
                b2=3.5876d0,    b3=1.6382d0,  b4=0.49294d0)
!
      q0 = -2.d0*a*(1.d0+a1*rs)
      rs12 = sqrt(rs)
      q1 = 2.d0*a*rs12*(b1+rs12*(b2+rs12*(b3+b4*rs12)))
      q2 = log(1.d0+1.d0/q1)
      ec = q0*q2
      q3 = a*(b1/rs12+2.d0*b2+3.d0*b3*rs12+2.d0*b4*2.d0*rs)
      ecrs = -2.d0*a*a1*q2-q0*q3/(q1**2+q1)
      vc = ec - rs*ecrs/3.d0
!
      return
      end subroutine pwlda
!----------------------------------------------------------------------
      subroutine pwlsd(rs,zeta,ec,vcup,vcdn,ecrs,eczeta)
!----------------------------------------------------------------------
!
!  uniform-gas correlation of perdew and wang 1991
!  Modified from the "official" PBE code of Perdew, Burke et al.
!  input: seitz radius (rs), relative spin polarization (zeta)
!  output: correlation energy per electron (ec)
!          up- and down-spin potentials (vcup,vcdn)
!          derivatives of ec wrt rs (ecrs) & zeta (eczeta)
!
      USE kinds, ONLY : DP
      implicit none
! input
      real(DP) rs, zeta
! output
      real(DP) ec, vcup, vcdn, ecrs, eczeta
! local
      real(DP) f, eu, ep, eurs, eprs, alfm, alfrsm, z4, fz, comm
      real(DP) rs12, q0, q1, q2, q3
! parameters
      real(DP) gam, fzz, thrd, thrd4
      parameter(gam=0.5198421d0,fzz=1.709921d0)
      parameter(thrd=0.333333333333d0,thrd4=1.333333333333d0)
!
      real(DP) au, au1, bu1, bu2, bu3, bu4
      parameter(au =0.0310907d0, au1=0.21370d0, bu1=7.5957d0,           &
                bu2=3.5876d0,    bu3=1.6382d0,  bu4=0.49294d0)
      real(DP) ap, ap1, bp1, bp2, bp3, bp4
      parameter(ap =0.01554535d0,ap1=0.20548d0, bp1=14.1189d0,          &
                bp2=6.1977d0,    bp3=3.3662d0,  bp4=0.62517d0 )
      real(DP) am, am1, bm1, bm2, bm3, bm4
      parameter(am =0.0168869d0, am1=0.11125d0, bm1=10.357d0,           &
                bm2=3.6231d0,    bm3=0.88026d0, bm4=0.49671d0 )
!
      rs12 = sqrt(rs)
!
      q0 = -2.d0*au*(1.d0+au1*rs)
      q1 = 2.d0*au*rs12*(bu1+rs12*(bu2+rs12*(bu3+bu4*rs12)))
      q2 = log(1.d0+1.d0/q1)
      eu = q0*q2
      q3 = au*(bu1/rs12+2.d0*bu2+3.d0*bu3*rs12+2.d0*bu4*2.d0*rs)
      eurs = -2.d0*au*au1*q2-q0*q3/(q1**2+q1)
!
      q0 = -2.d0*ap*(1.d0+ap1*rs)
      q1 = 2.d0*ap*rs12*(bp1+rs12*(bp2+rs12*(bp3+bp4*rs12)))
      q2 = log(1.d0+1.d0/q1)
      ep = q0*q2
      q3 = ap*(bp1/rs12+2.d0*bp2+3.d0*bp3*rs12+2.d0*bp4*2.d0*rs)
      eprs = -2.d0*ap*ap1*q2-q0*q3/(q1**2+q1)
!
      q0 = -2.d0*am*(1.d0+am1*rs)
      q1 = 2.d0*am*rs12*(bm1+rs12*(bm2+rs12*(bm3+bm4*rs12)))
      q2 = log(1.d0+1.d0/q1)
!  alfm is minus the spin stiffness alfc
      alfm=q0*q2
      q3 = am*(bm1/rs12+2.d0*bm2+3.d0*bm3*rs12+2.d0*bm4*2.d0*rs)
      alfrsm=-2.d0*am*am1*q2-q0*q3/(q1**2+q1)
!
      f = ((1.d0+zeta)**thrd4+(1.d0-zeta)**thrd4-2.d0)/gam
      z4 = zeta**4
      ec = eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz
!  energy done. now the potential:
      ecrs = eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz
      fz = thrd4*((1.d0+zeta)**thrd-(1.d0-zeta)**thrd)/gam
      eczeta = 4.d0*(zeta**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu        &
     &        -(1.d0-z4)*alfm/fzz)
      comm = ec -rs*ecrs/3.d0-zeta*eczeta
      vcup = comm + eczeta
      vcdn = comm - eczeta
!
      return
      end subroutine pwlsd
!
!______________________________________________________________________
      subroutine ggapwold(nnr,nspin,gradr,rhor,exc)
!     _________________________________________________________________
!     perdew-wang gga 
!     as given in y-m juan & e kaxiras, prb 48, 14944 (1993) 
!     method by ja white & dm bird, prb 50, 4954 (1994) 
!     non-spin polarized case only
!     _________________________________________________________________
!     by alfredo pasquarello 22/09/1994
!
      USE kinds, ONLY: DP
      use constants, only: pi, fpi
!
      implicit none
!
      integer nspin, nnr
      real(DP) gradr(nnr,3), rhor(nnr), exc
!
      real(DP) bb1, bb2, bb3, bb4, bb5, alfa, beta, cc0, cc1, delt, &
           c1, c2, c3, c4, c5, c6, c7, a, alfa1, bt1, bt2, bt3, bt4
      parameter(bb1=0.19645d0,bb2=0.27430d0,bb3=-0.15084d0,bb4=0.004d0,         &
       bb5=7.7956d0,alfa=0.09d0,beta=0.0667263212d0,cc0=15.75592d0,             &
       cc1=0.003521d0,c1=0.001667d0,c2=0.002568d0,c3=0.023266d0,c4=7.389d-6,    &
       c5=8.723d0,c6=0.472d0,c7=7.389d-2,a=0.0621814d0,alfa1=0.2137d0,          &
       bt1=7.5957d0,bt2=3.5876d0,bt3=1.6382d0,bt4=0.49294d0,delt=1.0d-12) 
      real(DP) x13, x43, x76, pi2, ax, pider1, pider2, pider3,      &
           abder1, abder2, abder3
      integer isign, ir
      real(DP)                                                      &
           aexp, abig, abig2, agr, aroe, byagr, ccr, ccrnum, ccrden,    &
           dfxd, dfxdg, dys, dfs, dh1ds, dh1dg, dh1d, dh1dt, dexcdg,    &
           dexcd, dh1drs, dh0da, dadec, decdrs, decd, dh0dg, dcdrs,     &
           dh0d, dh0dt, eclog, ecr, ecden, fx, fxnum, fxden, fxexp,     &
           gkf, grx, gry, grz, h0, h1, h0den, h0arg, h0num,             &
           roeth, roe, rs, rs12, rs2, rs3, rs32, s, sd, s2, s3, s4,     &
           sysl, t, td, t2, t3, t4, xchge, ys, ysl, ysr
!
!
      if (nspin.ne.1) call errore('ggapw','spin not implemented',nspin)
!
      x13=1.0d0/3.0d0
      x43=4.0d0/3.0d0
      x76=7.0d0/6.0d0
!     _________________________________________________________________
!     derived parameters from pi
!
      pi2=pi*pi
      ax=-0.75d0*(3.0d0/pi)**x13
      pider1=(0.75d0/pi)**x13
      pider2=(3.0d0*pi2)**x13
      pider3=(3.0d0*pi2/16.0d0)**x13
!     _________________________________________________________________
!     derived parameters from alfa and beta 
!
      abder1=beta*beta/(2.0d0*alfa)
      abder2=1.0d0/abder1
      abder3=2.0d0*alfa/beta
!     _________________________________________________________________
!     main loop
!
      do ir=1,nnr
         roe=rhor(ir)
         if(roe.eq.0.0) goto 100
         aroe=abs(roe)
         grx=gradr(ir,1)
         gry=gradr(ir,2)
         grz=gradr(ir,3)
         agr=sqrt(grx*grx+gry*gry+grz*grz)
         roeth=aroe**x13 
         rs= pider1/roeth
         gkf=pider2*roeth
         sd=1.0d0/(2.0d0*gkf*aroe)
         s=agr*sd
         s2=s*s
         s3=s*s2
         s4=s2*s2
!     _________________________________________________________________
!     exchange 
!
         ysr=sqrt(1.0d0+bb5*bb5*s2)
         ys=bb5*s+ysr
         ysl=log(ys)*bb1
         sysl=s*ysl
         fxexp=exp(-100.0d0*s2)
         fxnum=1.0d0+sysl+(bb2+bb3*fxexp)*s2
         fxden=1.0d0/(1.0d0+sysl+bb4*s4)
         fx=fxnum*fxden
         xchge=ax*fx*roeth
!     _________________________________________________________________
!     correlation ecr=ec(rho) 
!
         rs12=sqrt(rs)
         rs32=rs12*rs
         rs2=rs*rs
         rs3=rs*rs2
         ecden=a*(bt1*rs12+bt2*rs+bt3*rs32+bt4*rs2) 
         eclog=log(1.0d0+(1.0d0/ecden))
         ecr=-a*(1.0d0+alfa1*rs)*eclog
!     _________________________________________________________________
!     correlation h0(t,ecr)
!
         td=pider3*sd/rs12
         t=agr*td
         t2=t*t
         t3=t*t2
         t4=t2*t2
         aexp=exp(-abder2*ecr)-1.0d0
         abig=abder3/aexp
         abig2=abig*abig
         h0num=t2+abig*t4
         h0den=1.0d0/(1.0d0+abig*t2+abig2*t4)
         h0arg=1.0d0+abder3*h0num*h0den
         h0=abder1*log(h0arg)
!     _________________________________________________________________
!     correlation h1(t,s,aroe)
!
         ccrnum=c2+c3*rs+c4*rs2
         ccrden=1.0d0/(1.0d0+c5*rs+c6*rs2+c7*rs3)
         ccr=c1+ccrnum*ccrden
         h1=cc0*(ccr-cc1)*t2*fxexp
!     _________________________________________________________________
!     updating of xc-energy
!
         exc=exc+(xchge+ecr+h0+h1)*aroe
!     _________________________________________________________________
!     first part xc-potential from exchange  
!     
         dys=bb5*(1.0d0+bb5*s/ysr)/ys
         dfs=-fxnum*(ysl+bb1*s*dys+4.0d0*bb4*s3)*fxden*fxden              &
     &        +(ysl+bb1*s*dys+2.0d0*s*(bb2+bb3*fxexp)                     &
     &        -200.0d0*s3*bb3*fxexp)*fxden
         dfxd=(ax*roeth*x43)*(fx-dfs*s)
         dfxdg=ax*roeth*dfs*sd
!     _________________________________________________________________
!     first part xc-potential from ecr 
!
         decdrs=-a*alfa1*eclog*rs + a*(1+alfa1*rs)                      &
     &        *a*(0.5d0*bt1*rs12+bt2*rs+1.5d0*bt3*rs32+2.0d0*bt4*rs2)         &
     &        /(ecden*ecden+ecden)
         decd=-x13*decdrs
!     _________________________________________________________________
!     first part xc-potential from h0 
!     
         dh0da=abder1/h0arg*abder3*h0den*                               &
     &        (t4-h0num*h0den*(t2+2.0d0*abig*t4))
         dadec=abder3*abder2*(aexp+1.0d0)/(aexp*aexp)
         dh0d=dh0da*dadec*decd 
         dh0dt=abder1/h0arg*abder3*h0den                                &
     &        *(2.0d0*t+4.0d0*abig*t3-h0num*h0den*(2.0d0*abig*t+4.0d0*abig2*t3))
         dh0d=dh0d-x76*t*dh0dt
         dh0dg=dh0dt*td
!     _________________________________________________________________
!     first part xc-potential from h1 
!
         dcdrs=(c3+2.0d0*c4*rs-ccrnum*ccrden*(c5+2.0d0*c6*rs+3.0d0*c7*rs2))   &
     &        *ccrden
         dh1drs=cc0*t2*fxexp*dcdrs
         dh1d=-x13*rs*dh1drs
         dh1dt=2.0d0*t*cc0*(ccr-cc1)*fxexp
         dh1d=dh1d-x76*t*dh1dt
         dh1ds=-200.0d0*s*cc0*(ccr-cc1)*t2*fxexp
         dh1d=dh1d-x43*s*dh1ds
         dh1dg=dh1dt*td+dh1ds*sd
!     _________________________________________________________________
!     first part of xc-potential: D(rho*exc)/D(rho)
!
         dexcd=dfxd+decd+dh0d+dh1d+ecr+h0+h1
         isign=sign(1.d0,agr-delt)
         byagr=0.5d0*(1+isign)/(agr+(1-isign)*delt)
         rhor(ir)=dexcd
!
!     gradr = D(rho*exc)/D(|grad rho|) * (grad rho) / |grad rho|
!
         dexcdg=(dfxdg+dh0dg+dh1dg)*aroe*byagr
         gradr(ir,1)=gradr(ir,1)*dexcdg
         gradr(ir,2)=gradr(ir,2)*dexcdg
         gradr(ir,3)=gradr(ir,3)*dexcdg
 100     continue
      end do
!
      return
      end subroutine ggapwold

!-------------------------------------------------------------------------
      subroutine expxc(nnr,nspin,rhor,exc)
!----------------------------------------------------------------------
!
!       ceperley & alder's correlation energy
!       after j.p. perdew & a. zunger prb 23, 5048 (1981)
!
!       rhor contains rho(r) on input, vxc(r) on output
!
      USE kinds, ONLY : DP
      use constants, only: pi, fpi
!
      implicit none
!
      integer nnr, nspin
      real(DP) rhor(nnr,nspin), exc
! local variables
      integer ir, iflg, isup, isdw
      real(DP) roe, aroe, rs, rsl, rsq, ecca, vcca, eccp, vccp,    &
          zeta, onemz, zp, zm, fz, dfzdz, exc1, vxc1, vxc2
! constants
      real(DP) x76, x43, x13
      parameter(x76=7.d0/6.d0, x43=4.d0/3.d0, x13=1.d0/3.d0)
      real(DP) ax
      parameter (ax = -0.916330586d0)
! Perdew and Zunger parameters
      real(DP) ap, bp, cp, dp0, af, bf, cf, df,                      &
          bp1, cp1, dp1, bf1, cf1, df1
      parameter                                                         &
      ( ap=0.03110d0*2.0d0, bp=-0.0480d0*2.0d0, cp=0.0020d0*2.0d0, dp0=-0.0116d0*2.0d0   &
      , af=0.01555d0*2.0d0, bf=-0.0269d0*2.0d0, cf=0.0007d0*2.0d0, df=-0.0048d0*2.0d0   &
      , bp1=bp-ap/3.0d0, cp1=2.0d0*cp/3.0d0, dp1=(2.0d0*dp0-cp)/3.0d0              &
      , bf1=bf-af/3.0d0, cf1=2.0d0*cf/3.0d0, df1=(2.0d0*df-cf)/3.0d0 )
      real(DP) va(2), vb(2), vc(2), vd(2), vbt1(2), vbt2(2)
      real(DP)  a(2), b(2), c(2), d(2), g(2), b1(2), b2(2)
      data va/ap ,af /, vb/bp1,bf1/, vc/cp1,cf1/, vd/dp1,df1/,          &
          vbt1/1.0529d0,1.3981d0/, vbt2/0.3334d0,0.2611d0/
      data a/0.0622d0,0.0311d0/, b/-0.096d0,-0.0538d0/, c/0.0040d0,0.0014d0/,       &
          d/-0.0232d0,-0.0096d0/, b1/1.0529d0,1.3981d0/, b2/0.3334d0,0.2611d0/,    &
          g/-0.2846d0,-0.1686d0/
!
      if (nspin.eq.1) then
!
! iflg=1: paramagnetic (unpolarised) results
!
         iflg=1
         do ir=1,nnr
            roe=rhor(ir,1)
            if(roe.lt.1.0d-30) goto 10
            aroe=abs(roe)
            rs= (3.d0/aroe/fpi)**x13
            if(rs.le.1.d0) then
               rsl=log(rs)
               ecca= a(iflg)*rsl+ b(iflg)+ c(iflg)*rs*rsl+ d(iflg)*rs
               vcca=va(iflg)*rsl+vb(iflg)+vc(iflg)*rs*rsl+vd(iflg)*rs
            else
               rsq=sqrt(rs)
               ecca=g(iflg)/(1.d0+b1(iflg)*rsq+b2(iflg)*rs)
               vcca=ecca*(1.d0+x76*vbt1(iflg)*rsq+x43*vbt2(iflg)*rs)/   &
     &                   (1.d0+    vbt1(iflg)*rsq+    vbt2(iflg)*rs)
            end if
            exc1 = ( ax/rs + ecca )/2.d0
            exc = exc + exc1*roe
            rhor(ir,1)= ( x43*ax/rs + vcca )/2.d0
 10         continue
         end do
      else
         isup=1
         isdw=2
         do ir=1,nnr
            roe=rhor(ir,isup)+rhor(ir,isdw)
            if(roe.lt.1.0d-30) goto 20
            aroe=abs(roe)
            rs= (3.d0/aroe/fpi)**x13
            zeta=abs(rhor(ir,isup)-rhor(ir,isdw))/aroe
            zp = (1.d0+zeta)**x13
            onemz=max(0.d0,1.d0-zeta)
            zm = onemz**x13
            fz= ((1.d0+zeta)*zp + onemz*zm - 2.d0)/                     &
     &           (2.d0**x43 -2.d0)
            dfzdz= x43*(zp - zm)/(2.d0**x43-2.d0)
!
! iflg=1:  paramagnetic (unpolarised) results
! iflg=2: ferromagnetic (  polarised) results
!
            if(rs.le.1.d0) then
               rsl=log(rs)
               ecca= a(1)*rsl+ b(1)+ c(1)*rs*rsl+ d(1)*rs
               vcca=va(1)*rsl+vb(1)+vc(1)*rs*rsl+vd(1)*rs
               eccp= a(2)*rsl+ b(2)+ c(2)*rs*rsl+ d(2)*rs
               vccp=va(2)*rsl+vb(2)+vc(2)*rs*rsl+vd(2)*rs
            else
               rsq=sqrt(rs)
               ecca=g(1)/(1.d0+b1(1)*rsq+b2(1)*rs)
               vcca=ecca*(1.d0+x76*vbt1(1)*rsq+x43*vbt2(1)*rs)/         &
     &                   (1.d0+    vbt1(1)*rsq+    vbt2(1)*rs)
               eccp=g(2)/(1.d0+b1(2)*rsq+b2(2)*rs)
               vccp=eccp*(1.d0+x76*vbt1(2)*rsq+x43*vbt2(2)*rs)/         &
     &                   (1.d0+    vbt1(2)*rsq+    vbt2(2)*rs)
            end if
! exchange part
            exc1 = ax/rs*((1.d0+zeta)*zp+(1.d0-zeta)*zm)/2.d0
            vxc1 = x43*ax/rs*zp
            vxc2 = x43*ax/rs*zm
! correlation part
            vxc1 = vxc1 + vcca + fz*(vccp-vcca)                         &
     &           + dfzdz*(eccp-ecca)*( 1.d0-zeta)
            vxc2 = vxc2 + vcca + fz*(vccp-vcca)                         &
     &           + dfzdz*(eccp-ecca)*(-1.d0-zeta)
            exc  = exc + (exc1 + ecca+fz*(eccp-ecca))*roe/2.d0
            rhor(ir,isup)=vxc1/2.d0
            rhor(ir,isdw)=vxc2/2.d0
 20         continue
         end do
      end if

      return
      end subroutine expxc

      SUBROUTINE wrap_b88( rho, grho, sx, v1x, v2x )
        USE kinds, ONLY: DP
        IMPLICIT NONE
        REAL(DP) ::  rho, grho, sx, v1x, v2x 
        REAL(DP) :: b1 = 0.0042d0
        REAL(DP) :: RHOA,RHOB,GRHOA,GRHOB, V1XA,V2XA,V1XB,V2XB
        rhoa = 0.5d0 * rho
        rhob = 0.5d0 * rho
        grhoa = 0.25d0 * grho
        grhob = 0.25d0 * grho
        CALL LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB)
        v1x = V1XA
        v2x = V2XA
      END SUBROUTINE wrap_b88

      SUBROUTINE wrap_glyp( rho, grho, sc, v1c, v2c )
        USE kinds, ONLY: DP
        USE corr_gga, ONLY: lsd_glyp
        IMPLICIT NONE
        REAL(DP) :: rho, grho, sc, v1c, v2c
        REAL(DP) :: RA,RB,GRHOAA,GRHOAB,GRHOBB
        REAL(DP) :: V1CA,V2CA,V1CB,V2CB,V2CAB
        ra = rho * 0.5d0
        rb = rho * 0.5d0
        grhoaa = 0.25d0 * grho
        grhobb = 0.25d0 * grho
        grhoab = 0.25d0 * grho
        CALL LSD_GLYP(RA,RB,GRHOAA,GRHOAB,GRHOBB,SC,  &
                      V1CA,V2CA,V1CB,V2CB,V2CAB)
        v1c = V1CA
        v2c = 2.0d0*(v2ca+v2cb+v2cab*2.d0)*0.25d0
      END SUBROUTINE wrap_glyp

!     ==================================================================
      SUBROUTINE LSD_B88(B1,RHOA,RHOB,GRHOA,GRHOB,sx,V1XA,V2XA,V1XB,V2XB)
!     ==--------------------------------------------------------------==
! BECKE EXCHANGE: PRA 38, 3098 (1988)
      USE kinds, ONLY: DP
      IMPLICIT NONE
      REAL(DP),PARAMETER :: OB3=1.D0/3.D0, SMALL=1.D-20
      REAL(DP) :: xs, xs2, sa2b8, br1, br2, br4, ddd, gf, dgf, shm1, dd
      REAL(DP) :: dd2, grhoa, grhob, sx, b1, rhoa, rhob, v2xb, aa, a 
      REAL(DP) :: v1xa, v2xa, v1xb

!     ==--------------------------------------------------------------==
      sx=0.0D0
      V1XA=0.0D0
      V2XA=0.0D0
      V1XB=0.0D0
      V2XB=0.0D0
      IF(ABS(RHOA).GT.SMALL) THEN
        AA    = GRHOA
        A     = SQRT(AA)
        BR1   = RHOA**OB3
        BR2   = BR1*BR1
        BR4   = BR2*BR2
        XS    = A/BR4
        XS2   = XS*XS
        SA2B8 = SQRT(1.0D0+XS2)
        SHM1  = LOG(XS+SA2B8)
        DD    = 1.0D0 + 6.0D0*B1*XS*SHM1
        DD2   = DD*DD
        DDD   = 6.0D0*B1*(SHM1+XS/SA2B8)
        GF    = -B1*XS2/DD
        DGF   = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2
        sx    = GF*BR4
        V1XA  = 4.d0/3.d0*BR1*(GF-XS*DGF)
        V2XA  = DGF/A
      ENDIF
      IF(ABS(RHOB).GT.SMALL) THEN
        AA    = GRHOB
        A     = SQRT(AA)
        BR1   = RHOB**OB3
        BR2   = BR1*BR1
        BR4   = BR2*BR2
        XS    = A/BR4
        XS2   = XS*XS
        SA2B8 = SQRT(1.0D0+XS2)
        SHM1  = LOG(XS+SA2B8)
        DD    = 1.0D0 + 6.0D0*B1*XS*SHM1
        DD2   = DD*DD
        DDD   = 6.0D0*B1*(SHM1+XS/SA2B8)
        GF    = -B1*XS2/DD
        DGF   = (-2.0D0*B1*XS*DD + B1*XS2*DDD)/DD2
        sx    = sx+GF*BR4
        V1XB  = 4.d0/3.d0*BR1*(GF-XS*DGF)
        V2XB  = DGF/A
      ENDIF
!     ==--------------------------------------------------------------==
      RETURN
      END SUBROUTINE LSD_B88