1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
|
! Copyright (C) 2019 Quantum ESPRESSO foundation
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE qexsd_init
!----------------------------------------------------------------------------
!
! This module contains some common subroutines used to copy data used by
! the Quantum ESPRESSO package into XML format
!
! Written by Paolo Giannozzi, building upon pre-existing code qexsd.f90
!
!
USE kinds, ONLY : DP
!
USE qes_types_module
USE qes_reset_module, ONLY: qes_reset
USE qes_init_module, ONLY: qes_init
! FIXME: none of the following modules should be used here
USE constants, ONLY : e2
USE mp_world, ONLY : nproc
USE mp_images, ONLY : nimage,nproc_image
USE mp_pools, ONLY : npool
USE mp_bands, ONLY : ntask_groups, nproc_bgrp, nbgrp
!
IMPLICIT NONE
!
PRIVATE
SAVE
!
! type of objects
!
TYPE (berryPhaseOutput_type), TARGET :: qexsd_bp_obj
TYPE (k_points_IBZ_type) :: qexsd_start_k_obj
TYPE (occupations_type) :: qexsd_occ_obj
!
PUBLIC :: qexsd_bp_obj, qexsd_start_k_obj, qexsd_occ_obj
!
! public subroutines. They all work in the same way:
! call qexsd_init_*( xml object, list of QE variables)
! copies QE variables into the xml object
!
PUBLIC :: qexsd_init_convergence_info, qexsd_init_algorithmic_info, &
qexsd_init_atomic_species, qexsd_init_atomic_structure, &
qexsd_init_symmetries, qexsd_init_basis_set, qexsd_init_dft, &
qexsd_init_magnetization, qexsd_init_band_structure, &
qexsd_init_total_energy, qexsd_init_forces, qexsd_init_stress, &
qexsd_init_dipole_info, qexsd_init_outputElectricField, &
qexsd_init_outputPBC, qexsd_init_gate_info, qexsd_init_hybrid, &
qexsd_init_dftU, qexsd_init_vdw, qexsd_init_berryPhaseOutput
!
CONTAINS
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_convergence_info(obj, n_scf_steps, scf_has_converged, scf_error, &
optimization_has_converged, n_opt_steps, grad_norm )
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(convergence_info_type) :: obj
INTEGER, INTENT(IN) :: n_scf_steps
LOGICAL, INTENT(IN) :: scf_has_converged
REAL(DP), INTENT(IN) :: scf_error
LOGICAL, OPTIONAL, INTENT(IN) :: optimization_has_converged
INTEGER, OPTIONAL, INTENT(in) :: n_opt_steps
REAL(DP),OPTIONAL, INTENT(IN) :: grad_norm
!
CHARACTER(27) :: subname="qexsd_init_convergence_info"
TYPE(scf_conv_type) :: scf_conv
TYPE(opt_conv_type),POINTER :: opt_conv
!
NULLIFY(opt_conv)
call qes_init (scf_conv, "scf_conv", scf_has_converged, n_scf_steps, scf_error)
!
IF ( PRESENT(optimization_has_converged )) THEN
!
IF ( .NOT. PRESENT(n_opt_steps) ) CALL errore(subname,"n_opt_steps not present",10)
IF ( .NOT. PRESENT(grad_norm) ) CALL errore(subname,"grad_norm not present",10)
ALLOCATE ( opt_conv)
!
call qes_init (opt_conv, "opt_conv", optimization_has_converged, n_opt_steps, grad_norm)
ENDIF
!
call qes_init (obj, "convergence_info", scf_conv, opt_conv)
!
call qes_reset (scf_conv)
IF (ASSOCIATED(opt_conv)) THEN
CALL qes_reset (opt_conv)
NULLIFY ( opt_conv)
END IF
!
END SUBROUTINE qexsd_init_convergence_info
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_algorithmic_info(obj, real_space_beta, real_space_q, uspp, paw )
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(algorithmic_info_type) :: obj
LOGICAL, INTENT(IN) :: real_space_beta, real_space_q, uspp, paw
!
CALL qes_init (obj, "algorithmic_info", REAL_SPACE_Q = real_space_q, &
REAL_SPACE_BETA = real_space_beta, USPP = uspp, PAW = paw)
!
END SUBROUTINE qexsd_init_algorithmic_info
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_atomic_species(obj, nsp, atm, psfile, amass, starting_magnetization,&
angle1,angle2)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(atomic_species_type) :: obj
INTEGER, INTENT(IN) :: nsp
CHARACTER(len=*), INTENT(IN) :: atm(:)
CHARACTER(len=*), INTENT(IN) :: psfile(:)
REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: amass(:)
REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: starting_magnetization(:)
REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: angle1(:),angle2(:)
!
TYPE(species_type), ALLOCATABLE :: species(:)
REAL(DP),POINTER :: amass_
REAL(DP),POINTER :: start_mag_
REAL(DP),POINTER :: spin_teta
REAL(DP),POINTER :: spin_phi
INTEGER :: i
ALLOCATE(species(nsp))
NULLIFY ( amass_, start_mag_, spin_teta, spin_phi)
!
DO i = 1, nsp
!
IF ( PRESENT(amass) ) THEN
IF (amass(i) .GT. 0._DP) amass_=>amass(i)
END IF
IF ( PRESENT(starting_magnetization) ) THEN
IF (ANY( starting_magnetization(1:nsp) /= 0.0_DP)) start_mag_ => starting_magnetization(i)
END IF
IF ( PRESENT( angle1 ) ) THEN
IF (ANY ( angle1(1:nsp) /= 0.0_DP)) spin_teta => angle1(i)
END IF
IF ( PRESENT( angle2 ) ) THEN
IF (ANY(angle2(1:nsp) /= 0.0_DP)) spin_phi => angle2(i)
END IF
!
CALL qes_init ( species(i), "species", NAME = TRIM(atm(i)), PSEUDO_FILE = TRIM(psfile(i)), MASS = amass_, &
STARTING_MAGNETIZATION = start_mag_, SPIN_TETA = spin_teta, SPIN_PHI = spin_phi )
ENDDO
!
CALL qes_init (obj, "atomic_species", nsp, species)
!
DO i = 1, nsp
CALL qes_reset (species(i))
ENDDO
DEALLOCATE(species)
!
END SUBROUTINE qexsd_init_atomic_species
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_atomic_structure(obj, nsp, atm, ityp, nat, tau, &
alat, a1, a2, a3, ibrav)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(atomic_structure_type) :: obj
INTEGER, INTENT(IN) :: nsp, nat
INTEGER, INTENT(in) :: ityp(:)
CHARACTER(LEN=*), INTENT(in) :: atm(:)
REAL(DP), INTENT(IN) :: tau(3,*)! cartesian atomic positions, a.u.
REAL(DP), INTENT(IN) :: alat
REAL(DP), INTENT(IN) :: a1(:), a2(:), a3(:)
INTEGER, INTENT(IN) :: ibrav
!
INTEGER :: ia
TYPE(atom_type), ALLOCATABLE :: atom(:)
TYPE(cell_type) :: cell
TYPE(atomic_positions_type) :: atomic_pos
TYPE(wyckoff_positions_type) :: wyckoff_pos
REAL(DP) :: new_alat
INTEGER,TARGET :: ibrav_tgt
INTEGER,POINTER :: ibrav_ptr
CHARACTER(LEN=256),POINTER :: use_alt_axes_
CHARACTER(LEN=256),TARGET :: use_alt_axes
!
! atomic positions
!
NULLIFY(use_alt_axes_, ibrav_ptr)
IF ( ibrav .ne. 0 ) THEN
ibrav_tgt = abs(ibrav)
ibrav_ptr => ibrav_tgt
use_alt_axes_ => use_alt_axes
SELECT CASE(ibrav)
CASE(-3)
use_alt_axes="b:a-b+c:-c"
CASE(-5)
use_alt_axes="3fold-111"
CASE(-9)
use_alt_axes="-b:a:c"
CASE (91)
ibrav_tgt = 9
use_alt_axes ="bcoA-type"
CASE(-12,-13)
use_alt_axes="unique-axis-b"
CASE default
NULLIFY (use_alt_axes_)
END SELECT
END IF
!
ALLOCATE(atom(nat))
DO ia = 1, nat
CALL qes_init ( atom(ia), "atom", name=trim(atm(ityp(ia))), atom=tau(1:3,ia), index = ia )
ENDDO
!
CALL qes_init (atomic_pos, "atomic_positions", atom)
!
DO ia = 1, nat
CALL qes_reset ( atom(ia) )
ENDDO
DEALLOCATE(atom)
!
! cell
!
CALL qes_init (cell, "cell", a1, a2, a3)
!
! global init
!
CALL qes_init (obj, "atomic_structure", NAT=nat, ALAT=alat, &
ATOMIC_POSITIONS=atomic_pos, CELL=cell , &
BRAVAIS_INDEX=ibrav_ptr, ALTERNATIVE_AXES = use_alt_axes_ )
!
! cleanup
!
CALL qes_reset (atomic_pos)
CALL qes_reset (cell)
!
END SUBROUTINE qexsd_init_atomic_structure
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_symmetries(obj, nsym, nrot, space_group, s, ft, sname, t_rev, nat, irt, &
class_names, verbosity, noncolin)
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(symmetries_type) :: obj
INTEGER, INTENT(IN) :: nsym, nrot, nat
INTEGER, INTENT(IN) :: space_group
INTEGER, INTENT(IN) :: s(:,:,:), irt(:,:)
REAL(DP), INTENT(IN) :: ft(:,:)
INTEGER, INTENT(IN) :: t_rev(:)
CHARACTER(LEN=*), INTENT(IN) :: sname(:), verbosity
CHARACTER(LEN=15),INTENT(IN) :: class_names(:)
LOGICAL,INTENT(IN) :: noncolin
!
TYPE(symmetry_type), ALLOCATABLE :: symm(:)
TYPE(equivalent_atoms_type) :: equiv_atm
TYPE(info_type) :: info
TYPE(matrix_type) :: matrix
CHARACTER(LEN=15),POINTER :: classname
CHARACTER(LEN=256) :: la_info
LOGICAL :: class_ispresent = .FALSE., time_reversal_ispresent = .FALSE.
INTEGER :: i
REAL(DP) :: mat_(3,3)
LOGICAL :: true_=.TRUE., false_ = .FALSE.
LOGICAL,POINTER :: trev
TARGET :: class_names, true_, false_
ALLOCATE(symm(nrot))
NULLIFY( classname, trev)
!
IF ( TRIM(verbosity) .EQ. 'high' .OR. TRIM(verbosity) .EQ. 'medium') class_ispresent= .TRUE.
IF ( noncolin ) time_reversal_ispresent = .TRUE.
DO i = 1, nrot
!
IF (class_ispresent ) classname => class_names(i)
IF (time_reversal_ispresent) THEN
SELECT CASE (t_rev(i))
CASE (1)
trev => true_
CASE default
trev => false_
END SELECT
END IF
IF ( i .LE. nsym ) THEN
la_info = "crystal_symmetry"
ELSE
la_info = "lattice_symmetry"
END IF
CALL qes_init (info, "info", name=sname(i), class=classname, time_reversal= trev, INFO= TRIM(la_info) )
!
mat_ = real(s(:,:,i),DP)
CALL qes_init (matrix, "rotation", DIMS=[3,3], mat=mat_ )
!
IF ( i .LE. nsym ) THEN
CALL qes_init (equiv_atm, "equivalent_atoms", nat=nat, equivalent_atoms = irt(i,1:nat) )
!
CALL qes_init (symm(i),"symmetry", info=info, rotation=matrix, fractional_translation=ft(:,i), &
equivalent_atoms=equiv_atm)
ELSE
CALL qes_init ( symm(i), "symmetry", INFO = info, ROTATION = matrix )
END IF
!
CALL qes_reset (info)
CALL qes_reset (matrix)
IF ( i .LT. nsym ) THEN
CALL qes_reset ( equiv_atm )
ELSE IF ( i .EQ. nrot ) THEN
CALL qes_reset ( equiv_atm )
END IF
!
ENDDO
!
CALL qes_init (obj,"symmetries",NSYM = nsym, NROT=nrot, SPACE_GROUP = space_group, SYMMETRY=symm )
!
DO i = 1, nsym
CALL qes_reset (symm(i))
ENDDO
DEALLOCATE(symm)
!
END SUBROUTINE qexsd_init_symmetries
!
!
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_basis_set(obj, gamma_only, ecutwfc, ecutrho, &
nr1, nr2, nr3, nr1s, nr2s, nr3s, &
fft_box_ispresent, nr1b, nr2b, nr3b, &
ngm, ngms, npwx, b1, b2, b3 )
!------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(basis_set_type) :: obj
LOGICAL, INTENT(IN) :: gamma_only
INTEGER, INTENT(IN) :: nr1, nr2, nr3
INTEGER, INTENT(IN) :: nr1s, nr2s, nr3s
LOGICAL, INTENT(IN) :: fft_box_ispresent
INTEGER, INTENT(IN) :: nr1b, nr2b, nr3b
INTEGER, INTENT(IN) :: ngm, ngms, npwx
REAL(DP), INTENT(IN) :: ecutwfc, ecutrho
REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3)
!
TYPE(basisSetItem_type) :: fft_grid
TYPE(basisSetItem_type) :: fft_smooth
TYPE(basisSetItem_type) :: fft_box
TYPE(reciprocal_lattice_type) :: recipr_latt
CALL qes_init (fft_grid, "fft_grid", nr1, nr2, nr3, "")
CALL qes_init (fft_smooth, "fft_smooth", nr1s, nr2s, nr3s, "")
CALL qes_init (fft_box, "fft_box", nr1b, nr2b, nr3b, "" )
CALL qes_init (recipr_latt, "reciprocal_lattice", b1, b2, b3)
CALL qes_init (obj, "basis_set", GAMMA_ONLY=gamma_only, ECUTWFC=ecutwfc, ECUTRHO=ecutrho, FFT_GRID=fft_grid, &
FFT_SMOOTH=fft_smooth, FFT_BOX=fft_box, NGM=ngm, NGMS=ngms, NPWX=npwx, &
RECIPROCAL_LATTICE=recipr_latt )
!
CALL qes_reset(fft_grid)
CALL qes_reset(fft_smooth)
CALL qes_reset(fft_box)
CALL qes_reset(recipr_latt)
!
END SUBROUTINE qexsd_init_basis_set
!
!
SUBROUTINE qexsd_init_dft (obj, functional, hybrid_, vdW_, dftU_)
IMPLICIT NONE
TYPE (dft_type),INTENT(INOUT) :: obj
CHARACTER(LEN=*),INTENT(IN) :: functional
TYPE(hybrid_type),OPTIONAL,INTENT(IN) :: hybrid_
TYPE(vdW_type),OPTIONAL,INTENT(IN) :: vdW_
TYPE(dftU_type),OPTIONAL,INTENT(IN) :: dftU_
!
CALL qes_init(obj, 'dft', functional, hybrid_, dftU_, vdW_)
END SUBROUTINE qexsd_init_dft
!------------------------------------------------------------------------
SUBROUTINE qexsd_init_hybrid ( obj, dft_is_hybrid, nq1, nq2, nq3, ecutfock, exx_fraction, screening_parameter,&
exxdiv_treatment, x_gamma_extrapolation, ecutvcut, local_thr )
IMPLICIT NONE
TYPE (hybrid_type),INTENT(INOUT) :: obj
LOGICAL,INTENT(IN) :: dft_is_hybrid
INTEGER,OPTIONAL, INTENT(IN) :: nq1, nq2, nq3
REAL(DP),OPTIONAL,INTENT(IN) :: ecutfock, exx_fraction, screening_parameter, ecutvcut,&
local_thr
CHARACTER(LEN=*), INTENT(IN) :: exxdiv_treatment
LOGICAL,OPTIONAL,INTENT(IN) :: x_gamma_extrapolation
!
TYPE (qpoint_grid_type),TARGET :: qpoint_grid
TYPE (qpoint_grid_type),POINTER :: qpoint_grid_opt
!
NULLIFY ( qpoint_grid_opt)
IF (.NOT. dft_is_hybrid) RETURN
IF (PRESENT(nq1) .AND. PRESENT(nq2) .AND. PRESENT(nq3) ) THEN
qpoint_grid_opt => qpoint_grid
CALL qes_init (qpoint_grid, "qpoint_grid", nq1, nq2, nq3, "")
END IF
!
CALL qes_init ( obj, "hybrid", qpoint_grid_opt, ecutfock, exx_fraction, &
screening_parameter, exxdiv_treatment, x_gamma_extrapolation, ecutvcut,&
local_thr )
!
IF (ASSOCIATED (qpoint_grid_opt)) CALL qes_reset (qpoint_grid_opt)
!
END SUBROUTINE qexsd_init_hybrid
!
SUBROUTINE qexsd_init_dftU (obj, nsp, psd, species, ityp, is_hubbard, &
is_hubbard_back, backall, hubb_l_back, hubb_l1_back, &
noncolin, lda_plus_u_kind, U_projection_type, U, U_back, J0, J, &
alpha, beta, alpha_back, starting_ns, Hub_ns, Hub_ns_nc )
IMPLICIT NONE
TYPE(dftU_type),INTENT(INOUT) :: obj
INTEGER,INTENT(IN) :: nsp
CHARACTER(LEN=*),INTENT(IN) :: psd(nsp)
CHARACTER(LEN=*),INTENT(IN) :: species(nsp)
INTEGER,INTENT(IN) :: ityp(:)
LOGICAL,INTENT(IN) :: is_hubbard(nsp)
LOGICAL,OPTIONAL,INTENT(IN) :: is_hubbard_back(nsp)
LOGICAL,OPTIONAL,INTENT(IN) :: backall(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: hubb_l_back(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: hubb_l1_back(nsp)
INTEGER,INTENT(IN) :: lda_plus_u_kind
CHARACTER(LEN=*),INTENT(IN) :: U_projection_type
LOGICAL,OPTIONAL,INTENT(IN) :: noncolin
REAL(DP),OPTIONAL,INTENT(IN) :: U(:), U_back(:), J0(:), alpha(:), alpha_back(:), &
beta(:), J(:,:)
REAL(DP),OPTIONAL,INTENT(IN) :: starting_ns(:,:,:), Hub_ns(:,:,:,:)
COMPLEX(DP),OPTIONAL,INTENT(IN) :: Hub_ns_nc(:,:,:,:)
!
CHARACTER(10), ALLOCATABLE :: label(:)
TYPE(HubbardCommon_type),ALLOCATABLE :: U_(:), U_back_(:), J0_(:), alpha_(:), &
alpha_back_(:), beta_(:)
TYPE(HubbardJ_type),ALLOCATABLE :: J_(:)
TYPE(starting_ns_type),ALLOCATABLE :: starting_ns_(:)
TYPE(Hubbard_ns_type),ALLOCATABLE :: Hubbard_ns_(:), Hubbard_ns_nc_(:)
TYPE(HubbardBack_type),ALLOCATABLE :: Hub_back_(:)
LOGICAL :: noncolin_ =.FALSE.
!
CALL set_labels ()
IF ( PRESENT(noncolin)) noncolin_ = noncolin
!
IF (PRESENT(U)) CALL init_hubbard_commons(U, U_, label, "Hubbard_U")
IF (PRESENT(U_back)) CALL init_hubbard_commons(U_back, U_back_, label, "Hubbard_U_back")
IF (PRESENT(J0)) CALL init_hubbard_commons(J0, J0_, label, "Hubbard_J0" )
IF (PRESENT(alpha)) CALL init_hubbard_commons(alpha, alpha_,label, "Hubbard_alpha")
IF (PRESENT(alpha_back)) CALL init_hubbard_commons(alpha_back, alpha_back_,label, "Hubbard_alpha_back")
IF (PRESENT(beta)) CALL init_hubbard_commons(beta, beta_, label, "Hubbard_beta")
IF (PRESENT(J)) CALL init_hubbard_J (J, J_, label, "Hubbard_J" )
IF (PRESENT(starting_ns)) CALL init_starting_ns(starting_ns_ , label)
IF (PRESENT(Hub_ns)) CALL init_Hubbard_ns(Hubbard_ns_ , label)
IF (PRESENT(Hub_ns_nc)) CALL init_Hubbard_ns(Hubbard_ns_nc_ , label)
IF (ANY(is_hubbard_back) .AND. PRESENT(hubb_l_back)) &
CALL init_Hubbard_back(is_hubbard_back, Hub_back_, hubb_l_back, backall, hubb_l1_back)
IF (ANY(is_hubbard_back) .AND. .NOT. PRESENT (hubb_l_back)) &
CALL errore('qexsd_init_dft:',&
'internal error background is set to true but hubb_l_back is not present',1)
!
CALL qes_init (obj, "dftU", lda_plus_u_kind, U_, J0_, alpha_, beta_, J_, starting_ns_, Hubbard_ns_, &
U_projection_type, Hub_back_, U_back_, alpha_back_, Hubbard_ns_nc_)
!
CALL reset_hubbard_commons(U_)
CALL reset_hubbard_commons(U_back_)
CALL reset_hubbard_commons(beta_)
CALL reset_hubbard_commons(J0_)
CALL reset_hubbard_commons(alpha_)
CALL reset_hubbard_commons(alpha_back_)
CALL reset_hubbard_J(J_)
CALL reset_starting_ns(starting_ns_)
CALL reset_Hubbard_ns(Hubbard_ns_)
!
CONTAINS
SUBROUTINE set_labels()
IMPLICIT NONE
CHARACTER :: hubbard_shell(4)=['s','p','d','f']
INTEGER,EXTERNAL :: set_hubbard_l,set_hubbard_n
INTEGER,EXTERNAL :: set_hubbard_l_back,set_hubbard_n_back
INTEGER :: i, hubb_l, hubb_n
!
ALLOCATE(label(nsp))
DO i = 1, nsp
IF (is_hubbard(i)) THEN
hubb_l=set_hubbard_l(psd(i))
hubb_n=set_hubbard_n(psd(i))
WRITE (label(i),'(I0,A)') hubb_n,hubbard_shell(hubb_l+1)
ELSE
label(i)="no Hubbard"
ENDIF
ENDDO
END SUBROUTINE set_labels
SUBROUTINE init_hubbard_commons(dati, objs, labs, tag)
IMPLICIT NONE
REAL(DP) :: dati(:)
TYPE(HubbardCommon_type),ALLOCATABLE :: objs(:)
CHARACTER(LEN=*) :: labs(:), tag
INTEGER :: i
!
ALLOCATE (objs(nsp))
DO i = 1, nsp
CALL qes_init( objs(i), TRIM(tag), TRIM(species(i)), dati(i), TRIM(labs(i)))
IF (TRIM(labs(i)) =='no Hubbard') objs(i)%lwrite = .FALSE.
END DO
END SUBROUTINE init_hubbard_commons
!
SUBROUTINE init_hubbard_J(dati, objs, labs, tag)
IMPLICIT NONE
REAL(DP) :: dati(:,:)
TYPE(HubbardJ_type),ALLOCATABLE :: objs(:)
CHARACTER(LEN=*) :: labs(:), tag
INTEGER :: i
!
IF ( SIZE(dati,2) .LE. 0 ) RETURN
ALLOCATE (objs(nsp))
DO i = 1, nsp
CALL qes_init( objs(i), TRIM(tag), TRIM(species(i)), HubbardJ = dati(1:3,i), LABEL = TRIM(labs(i)))
IF (TRIM(labs(i)) =='no Hubbard') objs(i)%lwrite = .FALSE.
END DO
END SUBROUTINE init_hubbard_J
!
SUBROUTINE reset_hubbard_commons(objs)
IMPLICIT NONE
TYPE(HubbardCommon_type),ALLOCATABLE :: objs(:)
INTEGER :: i
IF (.NOT. ALLOCATED(objs)) RETURN
DO i =1, SIZE(objs)
CALL qes_reset(objs(i))
END DO
DEALLOCATE(objs)
END SUBROUTINE reset_hubbard_commons
!
SUBROUTINE reset_hubbard_J(objs)
IMPLICIT NONE
TYPE(HubbardJ_type),ALLOCATABLE :: objs(:)
INTEGER :: i
IF (.NOT. ALLOCATED(objs)) RETURN
DO i =1, SIZE(objs)
CALL qes_reset(objs(i))
END DO
DEALLOCATE(objs)
END SUBROUTINE reset_hubbard_J
!
SUBROUTINE init_starting_ns(objs, labs )
IMPLICIT NONE
TYPE(starting_ns_type), ALLOCATABLE :: objs(:)
CHARACTER(len=*) :: labs(nsp)
INTEGER :: i, is, ind, llmax, nspin
!
IF ( .NOT. PRESENT(starting_ns)) RETURN
IF (noncolin_) THEN
llmax = SIZE(starting_ns,1)
nspin = 1
ALLOCATE(objs(nsp))
DO i = 1, nsp
IF (.NOT. ANY(starting_ns(1:2*llmax,1,i)>0.d0)) CYCLE
ind = ind + 1
CALL qes_init(objs(ind),"starting_ns", TRIM(species(i)), TRIM(labs(i)), 1, &
MAX(starting_ns(1:2*llmax,1,i),0._DP))
END DO
RETURN
ELSE
llmax = SIZE (starting_ns, 1)
nspin = SIZE(starting_ns, 2)
ALLOCATE(objs(nspin*nsp))
ind = 0
DO is = 1, nspin
DO i = 1, nsp
IF (.NOT. ANY (starting_ns(1:llmax,is,i) > 0.d0)) CYCLE
ind = ind + 1
CALL qes_init(objs(ind), "starting_ns", TRIM(species(i)), TRIM (labs(i)), &
is,MAX(starting_ns(1:llmax,is,i),0._DP))
END DO
END DO
RETURN
END IF
END SUBROUTINE init_starting_ns
!
SUBROUTINE init_Hubbard_ns(objs, labs )
IMPLICIT NONE
TYPE (Hubbard_ns_type),ALLOCATABLE :: objs(:)
CHARACTER(LEN=*) :: labs(nsp)
!
REAL(DP), ALLOCATABLE :: Hubb_occ_aux(:,:)
INTEGER :: i, is,ind, ldim, m1, m2, llmax, nat, nspin
!
IF (PRESENT(Hub_ns_nc )) THEN
llmax = SIZE ( Hub_ns_nc, 1)
nat = size(Hub_ns_nc,4)
ALLOCATE (objs(nat))
ldim = SIZE(Hub_ns_nc,1)
ALLOCATE (Hubb_occ_aux(2*ldim, 2*ldim))
DO i =1, nat
Hubb_occ_aux = 0._DP
DO m2 = 1, ldim
DO m1 =1, ldim
Hubb_occ_aux(m1,m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,1,i))*Hub_ns_nc(m1,m2,1,i))
Hubb_occ_aux(m1,ldim+m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,2,i))*Hub_ns_nc(m1,m2,2,i))
Hubb_occ_aux(ldim+m1,m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,3,i))*Hub_ns_nc(m1,m2,3,i))
Hubb_occ_aux(ldim+m1,ldim+m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,4,i))*Hub_ns_nc(m1,m2,4,i))
END DO
END DO
CALL qes_init (objs(i), TAGNAME = "Hubbard_ns_mod", SPECIE = TRIM(species(ityp(i))), &
LABEL = TRIM(labs(ityp(i))), SPIN =1, INDEX = i,ORDER ='F',Hubbard_NS = Hubb_occ_aux)
IF (TRIM(labs(ityp(i))) == 'no Hubbard') objs(i)%lwrite = .FALSE.
END DO
RETURN
ELSE IF (PRESENT (Hub_ns)) THEN
llmax = SIZE ( Hub_ns,1)
nat = size(Hub_ns,4)
nspin = size(Hub_ns,3)
ALLOCATE( objs(nspin*nat) )
ind = 0
DO i = 1, nat
DO is = 1, nspin
ind = ind+1
CALL qes_init(objs(ind),"Hubbard_ns", SPECIE = TRIM(species(ityp(i))), SPIN = is, &
ORDER = 'F', INDEX = ind, LABEL = TRIM(labs(ityp(i))), Hubbard_NS = Hub_ns(:,:,is,i))
IF (TRIM(labs(ityp(i))) =='no Hubbard' ) objs(ind)%lwrite=.FALSE.
END DO
END DO
END IF
RETURN
!
END SUBROUTINE init_Hubbard_ns
SUBROUTINE init_Hubbard_back(is_back, objs, l_back, backall_, l1_back)
IMPLICIT NONE
LOGICAL, INTENT(IN) :: is_back(nsp)
INTEGER, INTENT(IN) :: l_back(nsp)
TYPE(HubbardBack_type),ALLOCATABLE,INTENT(INOUT) :: objs(:)
LOGICAL,OPTIONAL,INTENT(IN) :: backall_(nsp)
INTEGER,OPTIONAL,INTENT(IN) :: l1_back(nsp)
!
INTEGER :: isp, il, ndimbackL
LOGICAL,ALLOCATABLE :: temp(:)
TYPE(backL_type) :: backL_objs(2)
CHARACTER(LEN=16) :: backchar
!
ALLOCATE(objs(nsp), temp(nsp))
IF (PRESENT(backall_)) THEN
temp(1:nsp) = backall_(1:nsp)
ELSE
temp(1:nsp) = .FALSE.
END IF
DO isp =1, nsp
CALL qes_init(backL_objs(1), "l_number", l_index=0, backL = l_back(isp))
ndimbackL = 1
IF (temp(isp) .AND. PRESENT(l1_back) ) THEN
IF (l1_back(isp) >=0) THEN
ndimbackL=2
CALL qes_init(backL_objs(2), "l_number", l_index=1, backL = l1_back(isp))
ELSE
CALL errore ('qexsd_init_dftU:', 'internal error: l1_back < 0',1)
END IF
ELSEIF (temp(isp) .AND. .NOT.PRESENT(l1_back) ) THEN
CALL errore ('qexsd_init_dftU:', 'internal error: backall is true but l1_back is not present',1)
END IF
IF (temp(isp)) THEN
backchar = 'two_orbitals'
ELSE
backchar = 'one_orbital'
END IF
CALL qes_init(objs(isp), "Hubbard_back", SPECIES = TRIM(species(ityp(isp))), &
background=TRIM(backchar), l_number = backL_objs(1:ndimbackL))
IF (.NOT. is_back(isp)) objs(isp)%lwrite = .FALSE.
DO il = 1, ndimbackL
CALL qes_reset(backL_objs(il))
END DO
END DO
END SUBROUTINE init_Hubbard_back
SUBROUTINE reset_Hubbard_ns(objs)
IMPLICIT NONE
!
TYPE(hubbard_ns_type),OPTIONAL :: objs(:)
INTEGER :: i_
IF ( .NOT. PRESENT (objs)) RETURN
DO i_ = 1, SIZE(objs)
CALL qes_reset(objs(i_))
END DO
END SUBROUTINE reset_Hubbard_ns
SUBROUTINE reset_starting_ns(obj)
IMPLICIT NONE
TYPE (starting_ns_type), OPTIONAL :: obj(:)
INTEGER :: i
IF ( .NOT. PRESENT(obj) ) RETURN
DO i = 1, SIZE(obj)
CALL qes_reset(obj(i))
END DO
END SUBROUTINE reset_starting_ns
!
END SUBROUTINE qexsd_init_dftU
!
!
SUBROUTINE qexsd_init_vdw(obj, non_local_term, vdw_corr, vdw_term, ts_thr, ts_isol,&
london_s6, london_c6, london_rcut, species, xdm_a1, xdm_a2,&
dftd3_version, dftd3_threebody )
IMPLICIT NONE
TYPE(vdW_type) :: obj
CHARACTER(LEN=*),OPTIONAL,INTENT(IN) :: non_local_term, vdw_corr
REAL(DP),OPTIONAL,INTENT(IN) :: vdw_term, london_c6(:), london_rcut, xdm_a1, xdm_a2, ts_thr,&
london_s6
INTEGER,OPTIONAL,INTENT(IN) :: dftd3_version
CHARACTER(LEN=*),OPTIONAL :: species(:)
LOGICAL,OPTIONAL,INTENT(IN) :: ts_isol, dftd3_threebody
!
LOGICAL :: empirical_vdw = .FALSE. , dft_is_vdw = .FALSE.
TYPE(HubbardCommon_type),ALLOCATABLE :: london_c6_obj(:)
INTEGER :: isp
!
empirical_vdw = PRESENT(vdw_corr)
dft_is_vdw = PRESENT(non_local_term)
IF ( .NOT. (dft_is_vdW .OR. empirical_vdw)) RETURN
IF ( PRESENT (london_c6)) CALL init_londonc6(london_c6, london_c6_obj)
CALL qes_init (obj, "vdW", VDW_CORR = vdw_corr, NON_LOCAL_TERM = non_local_term,&
TOTAL_ENERGY_TERM = vdw_term, LONDON_S6 = london_s6,&
TS_VDW_ECONV_THR = ts_thr, TS_VDW_ISOLATED = ts_isol, LONDON_RCUT = london_rcut, &
XDM_A1 = xdm_a1, XDM_A2 = xdm_a2, LONDON_C6 = london_c6_obj, &
DFTD3_VERSION = dftd3_version, DFTD3_THREEBODY = dftd3_threebody)
!
IF (ALLOCATED(london_c6_obj)) THEN
DO isp=1, SIZE(london_c6_obj,1)
CALL qes_reset(london_c6_obj(isp))
END DO
END IF
CONTAINS
!
SUBROUTINE init_londonc6(c6data, c6objs )
USE constants, ONLY: eps16
IMPLICIT NONE
REAL(DP),INTENT(IN) :: c6data(:)
TYPE(HubbardCommon_type),ALLOCATABLE,INTENT(INOUT) :: c6objs(:)
!
INTEGER :: ndim_london_c6, isp, ind, nsp
!
IF (.NOT. PRESENT ( species)) RETURN
nsp = SIZE(c6data)
ndim_london_c6 = COUNT ( c6data .GT. -eps16)
IF ( ndim_london_c6 .GT. 0 ) THEN
ALLOCATE (c6objs(ndim_london_c6))
DO isp = 1, nsp
IF ( c6data(isp) .GT. -eps16 ) THEN
ind = ind + 1
CALL qes_init(c6objs(ind ), "london_c6", SPECIE = TRIM(species(isp)), HUBBARDCOMMON = c6data(isp))
END IF
END DO
END IF
END SUBROUTINE init_londonc6
!
END SUBROUTINE qexsd_init_vdw
!--------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_outputPBC(obj,assume_isolated)
!--------------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
TYPE (outputPBC_type) :: obj
CHARACTER(LEN=*),INTENT(IN) :: assume_isolated
CHARACTER(LEN=*),PARAMETER :: TAGNAME="boundary_conditions"
!
CALL qes_init (obj,TAGNAME,ASSUME_ISOLATED =assume_isolated)
END SUBROUTINE qexsd_init_outputPBC
!
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_magnetization(obj, lsda, noncolin, spinorbit, total_mag, total_mag_nc, &
absolute_mag, do_magnetization)
!------------------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(magnetization_type) :: obj
LOGICAL, INTENT(IN) :: lsda, noncolin, spinorbit
REAL(DP), INTENT(IN) :: total_mag, absolute_mag
REAL(DP), INTENT(IN) :: total_mag_nc(3)
LOGICAL, INTENT(IN) :: do_magnetization
!
CALL qes_init(obj, "magnetization", lsda, noncolin, spinorbit, total_mag, absolute_mag, &
do_magnetization)
!
END SUBROUTINE qexsd_init_magnetization
!
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_band_structure(obj, lsda, noncolin, lspinorb, nelec, n_wfc_at, et, wg, nks, xk, ngk, wk, &
starting_kpoints, occupations_kind, wf_collected, &
smearing, nbnd, nbnd_up, nbnd_dw, fermi_energy, ef_updw, homo, lumo)
!----------------------------------------------------------------------------------------
IMPLICIT NONE
!
TYPE(band_structure_type) :: obj
CHARACTER(LEN=*), PARAMETER :: TAGNAME="band_structure"
LOGICAL,INTENT(IN) :: lsda, noncolin, lspinorb
INTEGER,INTENT(IN) :: nks, n_wfc_at
INTEGER,OPTIONAL,INTENT(IN) :: nbnd, nbnd_up, nbnd_dw
REAL(DP),INTENT(IN) :: nelec
REAL(DP),OPTIONAL,INTENT(IN) :: fermi_energy, ef_updw(2), homo, lumo
REAL(DP),DIMENSION(:,:),INTENT(IN) :: et, wg, xk
REAL(DP),DIMENSION(:),INTENT(IN) :: wk
INTEGER,DIMENSION(:),INTENT(IN) :: ngk
TYPE(k_points_IBZ_type),INTENT(IN) :: starting_kpoints
TYPE(occupations_type), INTENT(IN) :: occupations_kind
TYPE(smearing_type),OPTIONAL,INTENT(IN) :: smearing
LOGICAL,INTENT(IN) :: wf_collected
!
LOGICAL :: n_wfc_at_ispresent = .TRUE.
INTEGER :: ndim_ks_energies, ik
INTEGER,TARGET :: nbnd_, nbnd_up_, nbnd_dw_
INTEGER,POINTER :: nbnd_opt, nbnd_up_opt, nbnd_dw_opt
TYPE(k_point_type) :: kp_obj
TYPE(ks_energies_type),ALLOCATABLE :: ks_objs(:)
TYPE (k_points_IBZ_type) :: starting_k_points_
REAL(DP),DIMENSION(:),ALLOCATABLE :: eigenvalues, occupations
TYPE (smearing_type) :: smearing_
!
!
ndim_ks_energies=nks
!
NULLIFY( nbnd_opt, nbnd_up_opt, nbnd_dw_opt)
IF ( lsda ) THEN
ndim_ks_energies=ndim_ks_energies/2
nbnd_up_opt => nbnd_up_
nbnd_dw_opt => nbnd_dw_
IF ( PRESENT(nbnd_up) .AND. PRESENT(nbnd_dw) ) THEN
nbnd_ = nbnd_up+nbnd_dw
nbnd_up_ = nbnd_up
nbnd_dw_ = nbnd_dw
ELSE IF ( PRESENT (nbnd) ) THEN
nbnd_ = 2*nbnd
nbnd_up_ = nbnd
nbnd_dw_ = nbnd
ELSE
CALL errore ( "qexsd:qexsd_init_band_structure: ", &
"in case of lsda nbnd_up+nbnd_dw or nbnd must be givens as arguments", 10)
END IF
ELSE
IF (.NOT. PRESENT(nbnd) ) &
CALL errore ("qexsd:qexsd_init_band_structure:", "lsda is false but needed nbnd argument is missing", 10)
nbnd_=nbnd
nbnd_opt => nbnd_
END IF
!
!
ALLOCATE(eigenvalues(nbnd_),occupations(nbnd_))
ALLOCATE(ks_objs(ndim_ks_energies))
!
ks_objs%tagname="ks_energies"
DO ik=1,ndim_ks_energies
CALL qes_init(kp_obj,"k_point",WEIGHT = wk(ik), K_POINT = xk(:,ik))
IF ( lsda ) THEN
eigenvalues(1:nbnd_up_)=et(1:nbnd_up_,ik)/e2
eigenvalues(nbnd_up_+1:nbnd_)=et(1:nbnd_dw_,ndim_ks_energies+ik)/e2
ELSE
eigenvalues(1:nbnd_)= et(1:nbnd_,ik)/e2
END IF
!
!
IF (lsda) THEN
IF ( ABS(wk(ik)).GT.1.d-10) THEN
occupations(1:nbnd_up_)=wg(1:nbnd_up_,ik)/wk(ik)
occupations(nbnd_up_+1:nbnd_)=wg(1:nbnd_dw_,ndim_ks_energies+ik)/wk(ndim_ks_energies+ik)
ELSE
occupations(1:nbnd_up_)=wg(1:nbnd_up_,ik)
occupations(nbnd_up_+1:nbnd_)=wg(1:nbnd_dw_,ik)
END IF
ELSE
IF (ABS(wk(ik)).GT.1.d-10) THEN
occupations(1:nbnd_)=wg(1:nbnd_,ik)/wk(ik)
ELSE
occupations(1:nbnd_)=wg(1:nbnd_,ik)
END IF
END IF
!
!
ks_objs(ik)%k_point = kp_obj
ks_objs(ik)%npw = ngk(ik)
CALL qes_init(ks_objs(ik)%eigenvalues, "eigenvalues",eigenvalues)
CALL qes_init(ks_objs(ik)%occupations, "occupations",occupations)
!
eigenvalues=0.d0
occupations=0.d0
CALL qes_reset(kp_obj)
END DO
ks_objs%lwrite = .TRUE.
ks_objs%lread = .TRUE.
!
IF ( PRESENT(smearing) ) smearing_ = smearing
!
starting_k_points_ = starting_kpoints
starting_k_points_%tagname = "starting_k_points"
!
!
CALL qes_init (obj, TAGNAME, LSDA = lsda, NONCOLIN = noncolin, SPINORBIT = lspinorb, NBND = nbnd_opt, &
NELEC = nelec, WF_COLLECTED = wf_collected, STARTING_K_POINTS = starting_k_points_, &
NKS = ndim_ks_energies, OCCUPATIONS_KIND = occupations_kind, KS_ENERGIES = ks_objs, &
NBND_UP = nbnd_up_opt, NBND_DW = nbnd_dw_opt, NUM_OF_ATOMIC_WFC = n_wfc_at, &
FERMI_ENERGY = fermi_energy, HIGHESTOCCUPIEDLEVEL = homo, TWO_FERMI_ENERGIES = ef_updw, &
SMEARING = smearing, LOWESTUNOCCUPIEDLEVEL = lumo)
DO ik=1,ndim_ks_energies
CALL qes_reset(ks_objs(ik))
END DO
CALL qes_reset( starting_k_points_ )
DEALLOCATE (ks_objs,eigenvalues, occupations)
END SUBROUTINE qexsd_init_band_structure
!
!
!---------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_total_energy(obj, etot, eband, ehart, vtxc, etxc, ewald, degauss, demet, &
electric_field_corr, potentiostat_contr, gate_contribution, dispersion_contribution )
!----------------------------------------------------------------------------------------
!
!
IMPLICIT NONE
!
TYPE (total_energy_type) :: obj
REAL(DP),INTENT(IN) :: etot, ehart,vtxc,etxc
REAL(DP),OPTIONAL,INTENT(IN) :: ewald,demet, eband, degauss
REAL(DP),OPTIONAL :: electric_field_corr
REAL(DP),OPTIONAL :: potentiostat_contr
REAL(DP),OPTIONAL :: gate_contribution
REAL(DP),OPTIONAL :: dispersion_contribution
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="total_energy"
!
CALL qes_init (obj, TAGNAME, ETOT = etot, EBAND = eband, EHART = ehart, VTXC = vtxc, ETXC = etxc, &
EWALD = ewald, DEMET = demet, EFIELDCORR = electric_field_corr, POTENTIOSTAT_CONTR = potentiostat_contr, &
GATEFIELD_CONTR = gate_contribution, vdW_term = dispersion_contribution )
END SUBROUTINE qexsd_init_total_energy
!
!
!--------------------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_forces(obj,nat,forces,tprnfor)
!--------------------------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
TYPE(matrix_type) :: obj
INTEGER,INTENT(IN) :: nat
REAL(DP),DIMENSION(:,:),INTENT(IN) :: forces
LOGICAL,INTENT(IN) :: tprnfor
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="forces"
REAL(DP),DIMENSION(:,:),ALLOCATABLE :: forces_aux
!
IF (.NOT. tprnfor) THEN
obj%lwrite=.FALSE.
obj%lread =.FALSE.
RETURN
END IF
!
ALLOCATE (forces_aux(3,nat))
forces_aux(1:3,1:nat)=forces(1:3,1:nat)/e2
!
CALL qes_init(obj,TAGNAME,[3,nat],forces_aux )
!
DEALLOCATE (forces_aux)
!
END SUBROUTINE qexsd_init_forces
!
!
!---------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_stress(obj,stress,tstress)
!---------------------------------------------------------------------------------------------
!
IMPLICIT NONE
TYPE( matrix_type) :: obj
REAL(DP),DIMENSION(3,3),INTENT(IN) :: stress
LOGICAL,INTENT(IN) :: tstress
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="stress"
REAL(DP),DIMENSION(3,3) :: stress_aux
IF ( .NOT. tstress ) THEN
obj%lwrite = .FALSE.
obj%lread = .FALSE.
stress_aux = 0.d0
RETURN
END IF
!
stress_aux=stress/e2
CALL qes_init(obj,TAGNAME,[3,3],stress_aux )
!
END SUBROUTINE qexsd_init_stress
!
!
!------------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_dipole_info (dipole_info, el_dipole, ion_dipole, edir, eamp, emaxpos, eopreg)
!------------------------------------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE constants, ONLY : e2, fpi
USE qes_types_module,ONLY : dipoleOutput_type, scalarQuantity_type
USE qes_libs_module, ONLY : qes_init
USE cell_base, ONLY : alat, at, omega
!
IMPLICIT NONE
!
TYPE ( dipoleOutput_type ), INTENT(OUT) :: dipole_info
REAL(DP),INTENT(IN) :: el_dipole, ion_dipole, eamp, emaxpos, eopreg
INTEGER , INTENT(IN) :: edir
!
REAL(DP) :: tot_dipole, length, vamp, fac
TYPE ( scalarQuantity_type) :: temp_qobj
!
tot_dipole = -el_dipole+ion_dipole
!
dipole_info%idir = edir
fac=omega/fpi
dipole_info%tagname = "dipoleInfo"
dipole_info%lwrite = .TRUE.
dipole_info%lread = .TRUE.
CALL qes_init (dipole_info%ion_dipole, "ion_dipole" , units="Atomic Units", &
scalarQuantity= ion_dipole*fac)
CALL qes_init (dipole_info%elec_dipole,"elec_dipole" , units="Atomic Units",&
scalarQuantity= el_dipole*fac)
CALL qes_init (dipole_info%dipole,"dipole" , units="Atomic Units", &
scalarQuantity= tot_dipole*fac)
CALL qes_init (dipole_info%dipoleField,"dipoleField" , units="Atomic Units", &
scalarQuantity= tot_dipole)
!
length=(1._DP-eopreg)*(alat*SQRT(at(1,edir)**2+at(2,edir)**2+at(3,edir)**2))
vamp=e2*(eamp-tot_dipole)*length
!
CALL qes_init (dipole_info%potentialAmp,"potentialAmp" , units="Atomic Units",&
scalarQuantity= vamp)
CALL qes_init (dipole_info%totalLength, "totalLength", units = "Bohr",&
scalarQuantity = length )
END SUBROUTINE qexsd_init_dipole_info
!---------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_outputElectricField(obj, lelfield, tefield, ldipole, lberry, bp_obj, el_pol, &
ion_pol, dipole_obj , gateInfo)
!---------------------------------------------------------------------------------------------
!
IMPLICIT NONE
!
TYPE(outputElectricField_type) :: obj
!
LOGICAL,INTENT(IN) :: lberry, lelfield, tefield, ldipole
REAL(DP),OPTIONAL,INTENT(IN) :: el_pol(:), ion_pol(:)
TYPE(berryPhaseOutput_type),OPTIONAL,INTENT(IN) :: bp_obj
TYPE ( dipoleOutput_type ),OPTIONAL, INTENT(IN) :: dipole_obj
TYPE ( gateInfo_type),OPTIONAL,INTENT(IN) :: gateInfo
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME="electric_field"
TYPE ( berryPhaseOutput_type ) :: bp_loc_obj
TYPE ( dipoleOutput_type ) :: dip_loc_obj
TYPE ( finiteFieldOut_type ) :: finiteField_obj
LOGICAL :: bp_is = .FALSE. , finfield_is = .FALSE. , &
dipo_is = .FALSE.
!
IF (lberry .AND. PRESENT ( bp_obj)) THEN
bp_is = .TRUE.
bp_loc_obj = bp_obj
END IF
IF ( lelfield .AND. PRESENT(el_pol) .AND. PRESENT (ion_pol ) ) THEN
finfield_is=.TRUE.
CALL qes_init (finiteField_obj, "finiteElectricFieldInfo", el_pol, ion_pol)
END IF
IF ( ldipole .AND. PRESENT( dipole_obj ) ) THEN
dipo_is = .TRUE.
dip_loc_obj=dipole_obj
END IF
CALL qes_init (obj, TAGNAME, BerryPhase = bp_obj, &
finiteElectricFieldInfo = finiteField_obj, &
dipoleInfo = dipole_obj, &
GATEINFO = gateInfo )
IF ( finfield_is) CALL qes_reset ( finiteField_obj)
!
END SUBROUTINE qexsd_init_outputElectricField
!
!-------------------------------------------------------------------------------------------------
SUBROUTINE qexsd_init_berryPhaseOutput( obj, gpar, gvec, nppstr, nkort, xk, pdl_ion, &
mod_ion, pdl_ion_tot, mod_ion_tot, nstring, pdl_elec, &
mod_elec, wstring, pdl_elec_up, mod_elec_up, pdl_elec_dw,&
mod_elec_dw, pdl_elec_tot,mod_elec_tot, pdl_tot, mod_tot,&
upol, rmod)
!---------------------------------------------------------------------------------------------------
!
USE ions_base, ONLY: nat, tau, atm, zv, ityp
USE cell_base, ONLY: omega
USE noncollin_module, ONLY: nspin_lsda
IMPLICIT NONE
!
TYPE (berryPhaseOutput_type) :: obj
REAL(DP),INTENT(IN) :: gpar(3), gvec, pdl_ion(nat), pdl_ion_tot, xk(3,*)
REAL(DP),INTENT(IN) :: pdl_elec(:), pdl_elec_up, pdl_elec_dw, pdl_elec_tot, &
pdl_tot, upol(3), rmod
!
INTEGER,INTENT(IN) :: mod_ion(nat), mod_ion_tot, mod_elec(:), mod_elec_up, &
mod_elec_dw, mod_elec_tot, mod_tot, nppstr, nkort, nstring
!
REAL(DP),INTENT(IN) :: wstring(nstring)
!
CHARACTER(LEN=*),PARAMETER :: TAGNAME = "BerryPhase"
TYPE ( polarization_type) :: tot_pol_obj
!
TYPE ( electronicPolarization_type),ALLOCATABLE :: str_pol_obj(:)
TYPE ( ionicPolarization_type ), ALLOCATABLE :: ion_pol_obj(:)
TYPE ( k_point_type ) :: kp_obj
TYPE ( phase_type) :: el_phase, ion_phase, tot_phase
TYPE ( atom_type ) :: atom_obj
TYPE ( scalarQuantity_type ) :: pol_val
INTEGER :: iat, istring, indstring
INTEGER,POINTER :: ispin
INTEGER, TARGET :: spin_val
CHARACTER(10) :: mod_string
LOGICAL :: spin_is = .FALSE.
!
ALLOCATE (ion_pol_obj(nat))
ALLOCATE (str_pol_obj(nstring))
NULLIFY(ispin)
DO iat =1, nat
WRITE(mod_string,'("(mod" ,I1,")")') mod_ion(iat)
CALL qes_init (ion_phase,"phase", modulus = TRIM(mod_string), phase = pdl_ion(iat) )
CALL qes_init (atom_obj,"ion",name=TRIM(atm(ityp(iat))),atom = tau(:,iat))
CALL qes_init (ion_pol_obj(iat), "ionicPolarization", atom_obj, zv(ityp(iat)), ion_phase )
CALL qes_reset (ion_phase)
CALL qes_reset (atom_obj)
END DO
!
IF ( nspin_lsda .EQ. 2 ) ispin => spin_val
DO istring= 1, nstring
indstring = 1+(istring-1)*nppstr
WRITE(mod_string,'("(mod ",I1,")")') mod_elec(istring)
CALL qes_init(el_phase, "phase", modulus = TRIM (mod_string), phase = pdl_elec(istring) )
IF ( istring .LE. nstring/nspin_lsda ) THEN
spin_val = 1
ELSE
spin_val = 2
END IF
CALL qes_init(kp_obj, "firstKeyPoint", WEIGHT = wstring(istring), K_POINT = xk(:,indstring))
CALL qes_init(str_pol_obj(istring),"electronicPolarization", kp_obj, el_phase, ispin )
CALL qes_reset( el_phase )
CALL qes_reset(kp_obj)
END DO
!
WRITE(mod_string,'("(mod ",I1,")")') mod_tot
CALL qes_init (tot_phase, "totalPhase", IONIC = pdl_ion_tot, ELECTRONIC = pdl_elec_tot, &
MODULUS = TRIM(mod_string), PHASE = pdl_tot)
!
CALL qes_init ( pol_val, "polarization", Units="e/bohr^2", scalarQuantity=(rmod/omega)*pdl_tot )
!
CALL qes_init (tot_pol_obj, "totalPolarization", pol_val, modulus = (rmod/omega)*dble(mod_tot), &
direction = upol )
!
CALL qes_init ( obj, TAGNAME, totalPolarization = tot_pol_obj, totalPhase = tot_phase, &
ionicPolarization = ion_pol_obj, electronicPolarization = str_pol_obj )
!
DO istring=1,nstring
CALL qes_reset (str_pol_obj(istring))
END DO
DEALLOCATE (str_pol_obj)
DO iat=1, nat
CALL qes_reset (ion_pol_obj(iat))
END DO
DEALLOCATE (ion_pol_obj)
CALL qes_reset (tot_pol_obj)
CALL qes_reset (pol_val)
CALL qes_reset (tot_phase)
!
END SUBROUTINE qexsd_init_berryPhaseOutput
!
!-----------------------------------------------------------------------------------
SUBROUTINE qexsd_init_gate_info(obj, tagname, gatefield_en, zgate_, nelec_, alat_, at_, bg_, zv_, ityp_)
!--------------------------------------------------------------------------------
USE kinds, ONLY : DP
USE constants, ONLY : tpi
!
IMPLICIT NONE
TYPE (gateInfo_type),INTENT(INOUT) :: obj;
CHARACTER(LEN=*) :: tagname
REAL(DP), INTENT(IN) :: gatefield_en, zgate_, alat_, at_(3,3), bg_(3,3), zv_(:), nelec_
INTEGER,INTENT(IN) :: ityp_(:)
!
REAL(DP) :: bmod, area, ionic_charge, gateamp, gate_gate_term
!
bmod=SQRT(bg_(1,3)**2+bg_(2,3)**2+bg_(3,3)**2)
ionic_charge = SUM( zv_(ityp_(:)) )
area = ABS((at_(1,1)*at_(2,2)-at_(2,1)*at_(1,2))*alat_**2)
gateamp = (-(nelec_-ionic_charge)/area*tpi)
gate_gate_term = (- (nelec_-ionic_charge) * gateamp * (alat_/bmod) / 6.0)
obj = gateInfo_type( TAGNAME = TRIM(tagname), lwrite = .TRUE., lread = .FALSE., POT_PREFACTOR = gateamp, &
GATE_ZPOS = zgate_, GATE_GATE_TERM = gate_gate_term, GATEFIELDENERGY = gatefield_en)
!
END SUBROUTINE qexsd_init_gate_info
END MODULE qexsd_init
|