File: qexsd_init.f90

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (1200 lines) | stat: -rw-r--r-- 54,247 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
! Copyright (C) 2019 Quantum ESPRESSO foundation
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE qexsd_init
  !----------------------------------------------------------------------------
  !
  ! This module contains some common subroutines used to copy data used by
  ! the Quantum ESPRESSO package into XML format
  !
  ! Written by Paolo Giannozzi, building upon pre-existing code qexsd.f90
  !
  !
  USE kinds,            ONLY : DP
  ! 
  USE qes_types_module
  USE qes_reset_module, ONLY:  qes_reset 
  USE qes_init_module,  ONLY:  qes_init 
  ! FIXME: none of the following modules should be used here
  USE constants,        ONLY : e2
  USE mp_world,         ONLY : nproc
  USE mp_images,        ONLY : nimage,nproc_image
  USE mp_pools,         ONLY : npool
  USE mp_bands,         ONLY : ntask_groups, nproc_bgrp, nbgrp
  !
  IMPLICIT NONE
  !
  PRIVATE
  SAVE
  !
  ! type of objects
  ! 
  TYPE (berryPhaseOutput_type), TARGET         :: qexsd_bp_obj
  TYPE (k_points_IBZ_type)                     :: qexsd_start_k_obj 
  TYPE (occupations_type)                      :: qexsd_occ_obj
  !
  PUBLIC :: qexsd_bp_obj, qexsd_start_k_obj, qexsd_occ_obj
  !
  ! public subroutines. They all work in the same way:
  !    call qexsd_init_*( xml object, list of QE variables)
  ! copies QE variables into the xml object
  !
  PUBLIC :: qexsd_init_convergence_info, qexsd_init_algorithmic_info, &
            qexsd_init_atomic_species, qexsd_init_atomic_structure, &
            qexsd_init_symmetries, qexsd_init_basis_set, qexsd_init_dft, &
            qexsd_init_magnetization, qexsd_init_band_structure, & 
            qexsd_init_total_energy, qexsd_init_forces, qexsd_init_stress, &
            qexsd_init_dipole_info, qexsd_init_outputElectricField,   &
            qexsd_init_outputPBC, qexsd_init_gate_info, qexsd_init_hybrid, &
            qexsd_init_dftU, qexsd_init_vdw, qexsd_init_berryPhaseOutput
  !
CONTAINS
  !
    !
    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_convergence_info(obj, n_scf_steps, scf_has_converged, scf_error, &
                                           optimization_has_converged, n_opt_steps, grad_norm )
      !------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(convergence_info_type)   :: obj
      INTEGER,           INTENT(IN) :: n_scf_steps
      LOGICAL,           INTENT(IN) :: scf_has_converged   
      REAL(DP),          INTENT(IN) :: scf_error
      LOGICAL, OPTIONAL, INTENT(IN) :: optimization_has_converged
      INTEGER, OPTIONAL, INTENT(in) :: n_opt_steps
      REAL(DP),OPTIONAL, INTENT(IN) :: grad_norm
      !
      CHARACTER(27)       :: subname="qexsd_init_convergence_info"
      TYPE(scf_conv_type) :: scf_conv
      TYPE(opt_conv_type),POINTER :: opt_conv  
      !
      NULLIFY(opt_conv) 
      call qes_init (scf_conv, "scf_conv", scf_has_converged, n_scf_steps, scf_error)
      !
      IF ( PRESENT(optimization_has_converged ))  THEN
          !
          IF ( .NOT. PRESENT(n_opt_steps) ) CALL errore(subname,"n_opt_steps not present",10)
          IF ( .NOT. PRESENT(grad_norm) )   CALL errore(subname,"grad_norm not present",10)
          ALLOCATE ( opt_conv) 
          !
          call qes_init (opt_conv, "opt_conv", optimization_has_converged, n_opt_steps, grad_norm)
      ENDIF
      !
      call qes_init (obj, "convergence_info", scf_conv, opt_conv)
      !
      call qes_reset (scf_conv)
      IF (ASSOCIATED(opt_conv)) THEN
         CALL qes_reset (opt_conv)
         NULLIFY ( opt_conv) 
      END IF 
      !
    END SUBROUTINE qexsd_init_convergence_info
    !
    !
    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_algorithmic_info(obj, real_space_beta, real_space_q, uspp, paw )
      !------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(algorithmic_info_type)   :: obj
      LOGICAL,           INTENT(IN) :: real_space_beta, real_space_q, uspp, paw
      !
      CALL qes_init (obj, "algorithmic_info", REAL_SPACE_Q = real_space_q, &
                     REAL_SPACE_BETA = real_space_beta, USPP = uspp, PAW = paw)
      !
    END SUBROUTINE qexsd_init_algorithmic_info
    !
    !
    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_atomic_species(obj, nsp, atm, psfile, amass, starting_magnetization,&
                                         angle1,angle2) 
      !------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(atomic_species_type)    :: obj
      INTEGER,          INTENT(IN) :: nsp
      CHARACTER(len=*), INTENT(IN) :: atm(:)
      CHARACTER(len=*), INTENT(IN) :: psfile(:)
      REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: amass(:)
      REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: starting_magnetization(:)
      REAL(DP), OPTIONAL,TARGET, INTENT(IN) :: angle1(:),angle2(:)
      !
      TYPE(species_type), ALLOCATABLE :: species(:)
      REAL(DP),POINTER  :: amass_    
      REAL(DP),POINTER  :: start_mag_ 
      REAL(DP),POINTER  :: spin_teta  
      REAL(DP),POINTER  :: spin_phi   
      INTEGER   :: i
      
      ALLOCATE(species(nsp))
      NULLIFY ( amass_, start_mag_, spin_teta, spin_phi) 
      !
      DO i = 1, nsp
          !
          IF ( PRESENT(amass) ) THEN 
             IF (amass(i) .GT. 0._DP) amass_=>amass(i)
          END IF 
          IF ( PRESENT(starting_magnetization) ) THEN
             IF (ANY( starting_magnetization(1:nsp) /= 0.0_DP)) start_mag_ => starting_magnetization(i)
          END IF 
          IF ( PRESENT( angle1 ) ) THEN 
             IF (ANY ( angle1(1:nsp) /= 0.0_DP))    spin_teta => angle1(i)
          END IF 
          IF ( PRESENT( angle2 ) )  THEN 
             IF (ANY(angle2(1:nsp) /= 0.0_DP)) spin_phi  => angle2(i)
          END IF 
          !
          CALL qes_init ( species(i), "species", NAME = TRIM(atm(i)), PSEUDO_FILE = TRIM(psfile(i)), MASS = amass_, &
                               STARTING_MAGNETIZATION = start_mag_, SPIN_TETA = spin_teta, SPIN_PHI = spin_phi )
      ENDDO
      !
      CALL qes_init (obj, "atomic_species", nsp, species)
      !
      DO i = 1, nsp
          CALL qes_reset (species(i))
      ENDDO
      DEALLOCATE(species)
      !
    END SUBROUTINE qexsd_init_atomic_species
    !
    !
    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_atomic_structure(obj, nsp, atm, ityp, nat, tau, &
                                           alat, a1, a2, a3, ibrav)
      !------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(atomic_structure_type)  :: obj
      INTEGER,          INTENT(IN) :: nsp, nat
      INTEGER,          INTENT(in) :: ityp(:)
      CHARACTER(LEN=*), INTENT(in) :: atm(:)
      REAL(DP),         INTENT(IN) :: tau(3,*)! cartesian atomic positions, a.u.
      REAL(DP),         INTENT(IN) :: alat
      REAL(DP),         INTENT(IN) :: a1(:), a2(:), a3(:)
      INTEGER,          INTENT(IN) :: ibrav
      !
      INTEGER         :: ia 
      TYPE(atom_type), ALLOCATABLE :: atom(:)
      TYPE(cell_type) :: cell
      TYPE(atomic_positions_type)  :: atomic_pos
      TYPE(wyckoff_positions_type) :: wyckoff_pos
      REAL(DP)                     :: new_alat
      INTEGER,TARGET              :: ibrav_tgt
      INTEGER,POINTER             :: ibrav_ptr 
      CHARACTER(LEN=256),POINTER  :: use_alt_axes_ 
      CHARACTER(LEN=256),TARGET   :: use_alt_axes 
      !
      ! atomic positions
      !
      NULLIFY(use_alt_axes_, ibrav_ptr) 
      IF ( ibrav .ne. 0 ) THEN 
         ibrav_tgt =  abs(ibrav) 
         ibrav_ptr => ibrav_tgt
         use_alt_axes_ => use_alt_axes 
         SELECT CASE(ibrav)
            CASE(-3)
               use_alt_axes="b:a-b+c:-c"
            CASE(-5)
               use_alt_axes="3fold-111"
            CASE(-9)
               use_alt_axes="-b:a:c"
            CASE (91)
               ibrav_tgt = 9 
               use_alt_axes ="bcoA-type"
            CASE(-12,-13)
               use_alt_axes="unique-axis-b" 
            CASE default 
               NULLIFY (use_alt_axes_) 
         END SELECT 
      END IF 
      
      !
      ALLOCATE(atom(nat))
      DO ia = 1, nat
          CALL qes_init ( atom(ia), "atom", name=trim(atm(ityp(ia))), atom=tau(1:3,ia), index = ia )
      ENDDO
      !
      CALL qes_init (atomic_pos, "atomic_positions", atom)
      !
      DO ia = 1, nat
          CALL qes_reset ( atom(ia) )
      ENDDO
      DEALLOCATE(atom)
      !
      ! cell
      !
      CALL qes_init (cell, "cell", a1, a2, a3)
      !
      ! global init
      !
      CALL qes_init (obj, "atomic_structure", NAT=nat, ALAT=alat, &
              ATOMIC_POSITIONS=atomic_pos, CELL=cell , &
              BRAVAIS_INDEX=ibrav_ptr, ALTERNATIVE_AXES = use_alt_axes_ )
      ! 
      ! cleanup 
      ! 
      CALL qes_reset (atomic_pos)
      CALL qes_reset (cell)
      !
    END SUBROUTINE qexsd_init_atomic_structure
    !
    !
    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_symmetries(obj, nsym, nrot, space_group, s, ft, sname, t_rev, nat, irt, &
                                     class_names, verbosity, noncolin)
      !------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(symmetries_type)    :: obj
      INTEGER,          INTENT(IN) :: nsym, nrot, nat
      INTEGER,          INTENT(IN) :: space_group
      INTEGER,          INTENT(IN) :: s(:,:,:), irt(:,:)
      REAL(DP),         INTENT(IN) :: ft(:,:)
      INTEGER,          INTENT(IN) :: t_rev(:)
      CHARACTER(LEN=*), INTENT(IN) :: sname(:), verbosity
      CHARACTER(LEN=15),INTENT(IN) :: class_names(:)
      LOGICAL,INTENT(IN)           :: noncolin
      !
      TYPE(symmetry_type), ALLOCATABLE  :: symm(:)
      TYPE(equivalent_atoms_type)  :: equiv_atm
      TYPE(info_type)              :: info
      TYPE(matrix_type)            :: matrix
      CHARACTER(LEN=15),POINTER    :: classname 
      CHARACTER(LEN=256)           :: la_info
      LOGICAL                      :: class_ispresent = .FALSE., time_reversal_ispresent = .FALSE.
      INTEGER                      :: i
      REAL(DP)                     :: mat_(3,3)
      LOGICAL                      :: true_=.TRUE., false_ = .FALSE. 
      LOGICAL,POINTER              :: trev                       
      TARGET                       :: class_names, true_, false_  
      ALLOCATE(symm(nrot))
      NULLIFY( classname, trev) 
      !
      IF ( TRIM(verbosity) .EQ. 'high' .OR. TRIM(verbosity) .EQ. 'medium')  class_ispresent= .TRUE.
      IF ( noncolin  ) time_reversal_ispresent = .TRUE.
      DO i = 1, nrot
          !
          IF  (class_ispresent ) classname => class_names(i)
          IF (time_reversal_ispresent) THEN 
             SELECT CASE (t_rev(i)) 
               CASE (1) 
                  trev => true_ 
               CASE default
                  trev => false_ 
            END SELECT 
         END IF 
          IF ( i .LE. nsym ) THEN 
             la_info = "crystal_symmetry"
          ELSE 
             la_info = "lattice_symmetry"
          END IF
          CALL qes_init (info, "info", name=sname(i), class=classname, time_reversal= trev, INFO= TRIM(la_info) )
          !
          mat_ = real(s(:,:,i),DP)
          CALL qes_init (matrix, "rotation", DIMS=[3,3], mat=mat_ )
          !
          IF ( i .LE. nsym ) THEN 
             CALL qes_init (equiv_atm, "equivalent_atoms", nat=nat, equivalent_atoms = irt(i,1:nat)  )
          !
             CALL qes_init (symm(i),"symmetry", info=info, rotation=matrix, fractional_translation=ft(:,i),  & 
                            equivalent_atoms=equiv_atm)
          ELSE 
             CALL qes_init ( symm(i), "symmetry", INFO = info, ROTATION = matrix ) 
          END IF
          !
          CALL qes_reset (info)
          CALL qes_reset (matrix)
          IF ( i .LT. nsym ) THEN 
             CALL qes_reset ( equiv_atm )
          ELSE IF ( i .EQ. nrot ) THEN  
            CALL qes_reset ( equiv_atm )
          END IF
          !
      ENDDO
      !
      CALL qes_init (obj,"symmetries",NSYM = nsym, NROT=nrot, SPACE_GROUP = space_group, SYMMETRY=symm )
      !
      DO i = 1, nsym
         CALL qes_reset (symm(i))
      ENDDO
      DEALLOCATE(symm)
      !
    END SUBROUTINE qexsd_init_symmetries
    !
    !
    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_basis_set(obj, gamma_only, ecutwfc, ecutrho, &
                                    nr1, nr2, nr3, nr1s, nr2s, nr3s, &
                                    fft_box_ispresent, nr1b, nr2b, nr3b, &
                                    ngm, ngms, npwx, b1, b2, b3 )
      !------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(basis_set_type)    :: obj
      LOGICAL,          INTENT(IN) :: gamma_only
      INTEGER,          INTENT(IN) :: nr1, nr2, nr3
      INTEGER,          INTENT(IN) :: nr1s, nr2s, nr3s
      LOGICAL,          INTENT(IN) :: fft_box_ispresent
      INTEGER,          INTENT(IN) :: nr1b, nr2b, nr3b
      INTEGER,          INTENT(IN) :: ngm, ngms, npwx
      REAL(DP),         INTENT(IN) :: ecutwfc, ecutrho
      REAL(DP),         INTENT(IN) :: b1(3), b2(3), b3(3)
      !
      TYPE(basisSetItem_type) :: fft_grid
      TYPE(basisSetItem_type) :: fft_smooth
      TYPE(basisSetItem_type) :: fft_box
      TYPE(reciprocal_lattice_type) :: recipr_latt

      CALL qes_init (fft_grid, "fft_grid", nr1, nr2, nr3, "")
      CALL qes_init (fft_smooth, "fft_smooth", nr1s, nr2s, nr3s, "")
      CALL qes_init (fft_box, "fft_box", nr1b, nr2b, nr3b, "" )
      CALL qes_init (recipr_latt, "reciprocal_lattice", b1, b2, b3)

      CALL qes_init (obj, "basis_set", GAMMA_ONLY=gamma_only, ECUTWFC=ecutwfc, ECUTRHO=ecutrho, FFT_GRID=fft_grid, &
                     FFT_SMOOTH=fft_smooth, FFT_BOX=fft_box, NGM=ngm, NGMS=ngms, NPWX=npwx,  &
                     RECIPROCAL_LATTICE=recipr_latt )
      !
      CALL qes_reset(fft_grid)
      CALL qes_reset(fft_smooth)
      CALL qes_reset(fft_box)
      CALL qes_reset(recipr_latt)
      !
    END SUBROUTINE qexsd_init_basis_set
    !
    !
    SUBROUTINE  qexsd_init_dft (obj, functional, hybrid_, vdW_, dftU_) 
       IMPLICIT NONE 
       TYPE (dft_type),INTENT(INOUT)           :: obj 
       CHARACTER(LEN=*),INTENT(IN)             :: functional
       TYPE(hybrid_type),OPTIONAL,INTENT(IN)   :: hybrid_ 
       TYPE(vdW_type),OPTIONAL,INTENT(IN)      :: vdW_
       TYPE(dftU_type),OPTIONAL,INTENT(IN)     :: dftU_ 
       ! 
       CALL qes_init(obj, 'dft', functional, hybrid_, dftU_, vdW_)
    END SUBROUTINE qexsd_init_dft 

    !------------------------------------------------------------------------
    SUBROUTINE qexsd_init_hybrid ( obj, dft_is_hybrid, nq1, nq2, nq3, ecutfock, exx_fraction, screening_parameter,&
                                   exxdiv_treatment, x_gamma_extrapolation, ecutvcut, local_thr ) 
         IMPLICIT NONE 
         TYPE (hybrid_type),INTENT(INOUT)        :: obj 
         LOGICAL,INTENT(IN)                      :: dft_is_hybrid 
         INTEGER,OPTIONAL, INTENT(IN)            :: nq1, nq2, nq3 
         REAL(DP),OPTIONAL,INTENT(IN)            :: ecutfock, exx_fraction, screening_parameter, ecutvcut,&
                                                    local_thr
         CHARACTER(LEN=*), INTENT(IN)            :: exxdiv_treatment 
         LOGICAL,OPTIONAL,INTENT(IN)             :: x_gamma_extrapolation 
         ! 
         TYPE (qpoint_grid_type),TARGET          :: qpoint_grid 
         TYPE (qpoint_grid_type),POINTER         :: qpoint_grid_opt 
         !
         NULLIFY ( qpoint_grid_opt) 
         IF (.NOT. dft_is_hybrid) RETURN 
         IF (PRESENT(nq1) .AND. PRESENT(nq2) .AND. PRESENT(nq3) ) THEN
            qpoint_grid_opt => qpoint_grid           
            CALL qes_init (qpoint_grid, "qpoint_grid", nq1, nq2, nq3, "")
         END IF 
         !
         CALL qes_init ( obj, "hybrid", qpoint_grid_opt, ecutfock, exx_fraction, &
                        screening_parameter, exxdiv_treatment, x_gamma_extrapolation, ecutvcut,&
                        local_thr )
         !
         IF (ASSOCIATED (qpoint_grid_opt)) CALL qes_reset (qpoint_grid_opt)
         !
      END SUBROUTINE qexsd_init_hybrid 
      !
      SUBROUTINE qexsd_init_dftU (obj, nsp, psd, species, ityp, is_hubbard, &
                                  is_hubbard_back, backall, hubb_l_back, hubb_l1_back, & 
                                  noncolin, lda_plus_u_kind, U_projection_type, U, U_back, J0, J, &
                                  alpha, beta, alpha_back, starting_ns, Hub_ns, Hub_ns_nc )
         IMPLICIT NONE 
         TYPE(dftU_type),INTENT(INOUT)  :: obj 
         INTEGER,INTENT(IN)             :: nsp
         CHARACTER(LEN=*),INTENT(IN)    :: psd(nsp)
         CHARACTER(LEN=*),INTENT(IN)    :: species(nsp)
         INTEGER,INTENT(IN)             :: ityp(:)
         LOGICAL,INTENT(IN)             :: is_hubbard(nsp)
         LOGICAL,OPTIONAL,INTENT(IN)    :: is_hubbard_back(nsp)
         LOGICAL,OPTIONAL,INTENT(IN)    :: backall(nsp)
         INTEGER,OPTIONAL,INTENT(IN)    :: hubb_l_back(nsp)
         INTEGER,OPTIONAL,INTENT(IN)    :: hubb_l1_back(nsp) 
         INTEGER,INTENT(IN)             :: lda_plus_u_kind
         CHARACTER(LEN=*),INTENT(IN)    :: U_projection_type
         LOGICAL,OPTIONAL,INTENT(IN)    :: noncolin 
         REAL(DP),OPTIONAL,INTENT(IN)   :: U(:), U_back(:), J0(:), alpha(:), alpha_back(:), &
                                           beta(:), J(:,:)
         REAL(DP),OPTIONAL,INTENT(IN)   :: starting_ns(:,:,:), Hub_ns(:,:,:,:)
         COMPLEX(DP),OPTIONAL,INTENT(IN) :: Hub_ns_nc(:,:,:,:)
         !
         CHARACTER(10), ALLOCATABLE            :: label(:)
         TYPE(HubbardCommon_type),ALLOCATABLE  :: U_(:), U_back_(:), J0_(:), alpha_(:), &
                                                  alpha_back_(:), beta_(:) 
         TYPE(HubbardJ_type),ALLOCATABLE       :: J_(:) 
         TYPE(starting_ns_type),ALLOCATABLE    :: starting_ns_(:) 
         TYPE(Hubbard_ns_type),ALLOCATABLE     :: Hubbard_ns_(:), Hubbard_ns_nc_(:)
         TYPE(HubbardBack_type),ALLOCATABLE    :: Hub_back_(:) 
         LOGICAL                               :: noncolin_ =.FALSE.
         !
         CALL set_labels ()
         IF ( PRESENT(noncolin)) noncolin_ = noncolin 
         !
         IF (PRESENT(U))           CALL init_hubbard_commons(U, U_, label, "Hubbard_U") 
         IF (PRESENT(U_back))      CALL init_hubbard_commons(U_back, U_back_, label, "Hubbard_U_back") 
         IF (PRESENT(J0))          CALL init_hubbard_commons(J0, J0_, label, "Hubbard_J0" ) 
         IF (PRESENT(alpha))       CALL init_hubbard_commons(alpha, alpha_,label, "Hubbard_alpha") 
         IF (PRESENT(alpha_back))  CALL init_hubbard_commons(alpha_back, alpha_back_,label, "Hubbard_alpha_back") 
         IF (PRESENT(beta))        CALL init_hubbard_commons(beta, beta_, label, "Hubbard_beta")
         IF (PRESENT(J))           CALL init_hubbard_J (J, J_, label, "Hubbard_J" )
         IF (PRESENT(starting_ns)) CALL init_starting_ns(starting_ns_ , label)
         IF (PRESENT(Hub_ns))      CALL init_Hubbard_ns(Hubbard_ns_ , label)
         IF (PRESENT(Hub_ns_nc))   CALL init_Hubbard_ns(Hubbard_ns_nc_ , label)
         IF (ANY(is_hubbard_back) .AND.  PRESENT(hubb_l_back)) &
              CALL init_Hubbard_back(is_hubbard_back, Hub_back_, hubb_l_back, backall, hubb_l1_back) 
         IF (ANY(is_hubbard_back) .AND. .NOT. PRESENT (hubb_l_back)) &
            CALL errore('qexsd_init_dft:',&
                        'internal error background is set to true but hubb_l_back is not present',1)  
         !
         CALL qes_init (obj, "dftU", lda_plus_u_kind, U_, J0_, alpha_, beta_, J_, starting_ns_, Hubbard_ns_, &
                        U_projection_type, Hub_back_, U_back_, alpha_back_, Hubbard_ns_nc_)
         ! 
         CALL reset_hubbard_commons(U_)
         CALL reset_hubbard_commons(U_back_)
         CALL reset_hubbard_commons(beta_) 
         CALL reset_hubbard_commons(J0_)
         CALL reset_hubbard_commons(alpha_) 
         CALL reset_hubbard_commons(alpha_back_) 
         CALL reset_hubbard_J(J_)
         CALL reset_starting_ns(starting_ns_) 
         CALL reset_Hubbard_ns(Hubbard_ns_) 
         !
      CONTAINS 
         SUBROUTINE set_labels() 
            IMPLICIT NONE 
            CHARACTER                     :: hubbard_shell(4)=['s','p','d','f']
            INTEGER,EXTERNAL              :: set_hubbard_l,set_hubbard_n
            INTEGER,EXTERNAL              :: set_hubbard_l_back,set_hubbard_n_back
            INTEGER                       :: i, hubb_l, hubb_n 
            ! 
            ALLOCATE(label(nsp))
            DO i = 1, nsp
               IF (is_hubbard(i)) THEN
                  hubb_l=set_hubbard_l(psd(i))
                  hubb_n=set_hubbard_n(psd(i))
                  WRITE (label(i),'(I0,A)') hubb_n,hubbard_shell(hubb_l+1) 
               ELSE
                  label(i)="no Hubbard"
               ENDIF
            ENDDO
         END SUBROUTINE set_labels 

         SUBROUTINE init_hubbard_commons(dati, objs, labs, tag)
            IMPLICIT NONE
            REAL(DP)   :: dati(:) 
            TYPE(HubbardCommon_type),ALLOCATABLE  :: objs(:)
            CHARACTER(LEN=*) :: labs(:), tag
            INTEGER          :: i
            !
            ALLOCATE (objs(nsp)) 
            DO i = 1, nsp 
               CALL qes_init( objs(i), TRIM(tag), TRIM(species(i)), dati(i), TRIM(labs(i)))
               IF (TRIM(labs(i)) =='no Hubbard') objs(i)%lwrite = .FALSE. 
            END DO 
         END SUBROUTINE init_hubbard_commons 
         !
         SUBROUTINE init_hubbard_J(dati, objs, labs, tag)
            IMPLICIT NONE
            REAL(DP)  :: dati(:,:)
            TYPE(HubbardJ_type),ALLOCATABLE :: objs(:)
            CHARACTER(LEN=*)  :: labs(:), tag 
            INTEGER           :: i
            !
            IF ( SIZE(dati,2) .LE. 0 ) RETURN 
            ALLOCATE (objs(nsp)) 
            DO i = 1, nsp 
               CALL qes_init( objs(i), TRIM(tag), TRIM(species(i)), HubbardJ = dati(1:3,i), LABEL = TRIM(labs(i)))
               IF (TRIM(labs(i)) =='no Hubbard') objs(i)%lwrite = .FALSE. 
            END DO 
         END SUBROUTINE init_hubbard_J
         !
         SUBROUTINE reset_hubbard_commons(objs) 
            IMPLICIT NONE 
            TYPE(HubbardCommon_type),ALLOCATABLE :: objs(:)
            INTEGER  ::   i 
            IF (.NOT. ALLOCATED(objs)) RETURN 
            DO i =1, SIZE(objs) 
               CALL qes_reset(objs(i)) 
            END DO 
            DEALLOCATE(objs)
         END SUBROUTINE reset_hubbard_commons 
         ! 
         SUBROUTINE reset_hubbard_J(objs) 
            IMPLICIT NONE
            TYPE(HubbardJ_type),ALLOCATABLE :: objs(:)
            INTEGER  ::   i
            IF (.NOT. ALLOCATED(objs)) RETURN
            DO i =1, SIZE(objs)
               CALL qes_reset(objs(i))
            END DO
            DEALLOCATE(objs)
         END SUBROUTINE reset_hubbard_J 
         !
         SUBROUTINE init_starting_ns(objs, labs )
            IMPLICIT NONE
            TYPE(starting_ns_type), ALLOCATABLE   :: objs(:)
            CHARACTER(len=*)                      :: labs(nsp)
            INTEGER                               :: i, is, ind, llmax, nspin
            !  
            IF ( .NOT. PRESENT(starting_ns)) RETURN
            
            IF (noncolin_) THEN
               llmax = SIZE(starting_ns,1)
               nspin = 1
               ALLOCATE(objs(nsp))
               DO i = 1, nsp
                  IF (.NOT. ANY(starting_ns(1:2*llmax,1,i)>0.d0)) CYCLE
                  ind = ind + 1 
                  CALL qes_init(objs(ind),"starting_ns", TRIM(species(i)), TRIM(labs(i)), 1, &
                                MAX(starting_ns(1:2*llmax,1,i),0._DP)) 
               END DO 
               RETURN 
            ELSE
               llmax = SIZE (starting_ns, 1)
               nspin = SIZE(starting_ns, 2)
               ALLOCATE(objs(nspin*nsp))
               ind = 0 
               DO is = 1, nspin
                  DO i = 1, nsp 
                     IF (.NOT. ANY (starting_ns(1:llmax,is,i) > 0.d0)) CYCLE 
                     ind = ind + 1 
                     CALL qes_init(objs(ind), "starting_ns", TRIM(species(i)), TRIM (labs(i)), & 
                                    is,MAX(starting_ns(1:llmax,is,i),0._DP))
                  END DO 
               END DO
               RETURN 
            END IF 
         END SUBROUTINE init_starting_ns 
         ! 
         SUBROUTINE init_Hubbard_ns(objs, labs  )
            IMPLICIT NONE 
            TYPE (Hubbard_ns_type),ALLOCATABLE  :: objs(:) 
            CHARACTER(LEN=*)                    :: labs(nsp) 
            !
            REAL(DP), ALLOCATABLE               :: Hubb_occ_aux(:,:) 
            INTEGER                             :: i, is,ind, ldim, m1, m2, llmax, nat, nspin
            !
            IF (PRESENT(Hub_ns_nc )) THEN
               llmax = SIZE ( Hub_ns_nc, 1) 
               nat = size(Hub_ns_nc,4)
               ALLOCATE (objs(nat))
               ldim = SIZE(Hub_ns_nc,1)
               ALLOCATE (Hubb_occ_aux(2*ldim, 2*ldim)) 
               DO i =1, nat 
                  Hubb_occ_aux = 0._DP 
                  DO m2 = 1, ldim
                     DO m1 =1, ldim 
                        Hubb_occ_aux(m1,m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,1,i))*Hub_ns_nc(m1,m2,1,i))
                        Hubb_occ_aux(m1,ldim+m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,2,i))*Hub_ns_nc(m1,m2,2,i))
                        Hubb_occ_aux(ldim+m1,m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,3,i))*Hub_ns_nc(m1,m2,3,i))
                        Hubb_occ_aux(ldim+m1,ldim+m2)=SQRT(DCONJG(Hub_ns_nc(m1,m2,4,i))*Hub_ns_nc(m1,m2,4,i))
                     END DO
                  END DO
                  CALL qes_init (objs(i), TAGNAME = "Hubbard_ns_mod", SPECIE = TRIM(species(ityp(i))), &
                               LABEL = TRIM(labs(ityp(i))), SPIN =1, INDEX = i,ORDER ='F',Hubbard_NS = Hubb_occ_aux) 
                  IF (TRIM(labs(ityp(i))) == 'no Hubbard') objs(i)%lwrite = .FALSE. 
               END DO
               RETURN 
            ELSE IF (PRESENT (Hub_ns)) THEN
               llmax = SIZE ( Hub_ns,1) 
               nat = size(Hub_ns,4)
               nspin = size(Hub_ns,3)
               ALLOCATE( objs(nspin*nat) )
               ind = 0 
               DO i = 1, nat
                  DO is = 1, nspin
                     ind = ind+1
                     CALL qes_init(objs(ind),"Hubbard_ns", SPECIE = TRIM(species(ityp(i))), SPIN = is, &
                        ORDER = 'F', INDEX = ind, LABEL = TRIM(labs(ityp(i))), Hubbard_NS = Hub_ns(:,:,is,i))
                        IF (TRIM(labs(ityp(i))) =='no Hubbard' )  objs(ind)%lwrite=.FALSE. 
                  END DO
               END DO
            END IF
            RETURN
            !
         END SUBROUTINE init_Hubbard_ns 
         
         SUBROUTINE init_Hubbard_back(is_back, objs, l_back, backall_, l1_back) 
            IMPLICIT NONE
            LOGICAL, INTENT(IN)                                  :: is_back(nsp) 
            INTEGER, INTENT(IN)                                  :: l_back(nsp)
            TYPE(HubbardBack_type),ALLOCATABLE,INTENT(INOUT)     :: objs(:) 
            LOGICAL,OPTIONAL,INTENT(IN)                          :: backall_(nsp) 
            INTEGER,OPTIONAL,INTENT(IN)                          :: l1_back(nsp)  
            !
            INTEGER  :: isp, il, ndimbackL  
            LOGICAL,ALLOCATABLE  :: temp(:) 
            TYPE(backL_type)     :: backL_objs(2)  
            CHARACTER(LEN=16)    :: backchar
            !
            ALLOCATE(objs(nsp), temp(nsp)) 
            IF (PRESENT(backall_)) THEN 
               temp(1:nsp)  = backall_(1:nsp)
            ELSE 
               temp(1:nsp) = .FALSE.
            END IF 
            DO isp =1, nsp 
               CALL qes_init(backL_objs(1), "l_number", l_index=0, backL = l_back(isp))
               ndimbackL = 1 
               IF (temp(isp) .AND. PRESENT(l1_back) ) THEN 
                  IF (l1_back(isp) >=0) THEN
                     ndimbackL=2 
                     CALL qes_init(backL_objs(2), "l_number", l_index=1, backL  = l1_back(isp)) 
                  ELSE
                     CALL errore ('qexsd_init_dftU:', 'internal error: l1_back < 0',1)
                  END IF
               ELSEIF (temp(isp) .AND. .NOT.PRESENT(l1_back) ) THEN
                     CALL errore ('qexsd_init_dftU:', 'internal error: backall is true but l1_back is not present',1) 
               END IF 
               IF (temp(isp)) THEN
                  backchar = 'two_orbitals'
               ELSE 
                  backchar = 'one_orbital'
               END IF 
               CALL qes_init(objs(isp), "Hubbard_back", SPECIES = TRIM(species(ityp(isp))), &
                             background=TRIM(backchar),  l_number = backL_objs(1:ndimbackL))    
               IF (.NOT. is_back(isp)) objs(isp)%lwrite = .FALSE.
               DO il = 1, ndimbackL
                  CALL qes_reset(backL_objs(il))
               END DO 
            END DO 
         END SUBROUTINE init_Hubbard_back 


         SUBROUTINE reset_Hubbard_ns(objs) 
            IMPLICIT NONE 
            ! 
            TYPE(hubbard_ns_type),OPTIONAL    :: objs(:) 
            INTEGER   :: i_ 

            IF ( .NOT. PRESENT (objs)) RETURN 
            DO i_ = 1, SIZE(objs) 
               CALL qes_reset(objs(i_)) 
            END DO 
         END SUBROUTINE reset_Hubbard_ns

         SUBROUTINE reset_starting_ns(obj) 
            IMPLICIT NONE 
            TYPE (starting_ns_type), OPTIONAL  :: obj(:)  
            INTEGER  :: i 
            IF ( .NOT. PRESENT(obj) ) RETURN 
            DO i = 1, SIZE(obj)
               CALL qes_reset(obj(i)) 
            END DO 
         END SUBROUTINE reset_starting_ns 
         !
             
      END SUBROUTINE qexsd_init_dftU 
         ! 
         !
         SUBROUTINE qexsd_init_vdw(obj, non_local_term, vdw_corr, vdw_term, ts_thr, ts_isol,& 
                                   london_s6, london_c6, london_rcut, species, xdm_a1, xdm_a2,&
                                   dftd3_version, dftd3_threebody )
            IMPLICIT NONE 
            TYPE(vdW_type)  :: obj 
            CHARACTER(LEN=*),OPTIONAL,INTENT(IN)            :: non_local_term, vdw_corr
            REAL(DP),OPTIONAL,INTENT(IN)           :: vdw_term, london_c6(:), london_rcut,  xdm_a1, xdm_a2, ts_thr,&
                                                      london_s6
            INTEGER,OPTIONAL,INTENT(IN)                     :: dftd3_version           
            CHARACTER(LEN=*),OPTIONAL              :: species(:)
            LOGICAL,OPTIONAL,INTENT(IN)            :: ts_isol, dftd3_threebody 
            !
            LOGICAL         :: empirical_vdw = .FALSE. , dft_is_vdw  = .FALSE. 
            TYPE(HubbardCommon_type),ALLOCATABLE :: london_c6_obj(:)  
            INTEGER                              :: isp
            ! 
            empirical_vdw = PRESENT(vdw_corr) 
            dft_is_vdw = PRESENT(non_local_term) 
            IF ( .NOT. (dft_is_vdW .OR. empirical_vdw)) RETURN
            IF ( PRESENT (london_c6)) CALL init_londonc6(london_c6, london_c6_obj) 
            CALL qes_init (obj, "vdW", VDW_CORR = vdw_corr, NON_LOCAL_TERM = non_local_term,&
                           TOTAL_ENERGY_TERM = vdw_term, LONDON_S6  = london_s6,& 
                            TS_VDW_ECONV_THR = ts_thr,  TS_VDW_ISOLATED  = ts_isol, LONDON_RCUT = london_rcut, &
                            XDM_A1 = xdm_a1, XDM_A2  = xdm_a2, LONDON_C6 = london_c6_obj, &
                            DFTD3_VERSION = dftd3_version, DFTD3_THREEBODY = dftd3_threebody)
          !
          IF (ALLOCATED(london_c6_obj))   THEN
             DO isp=1, SIZE(london_c6_obj,1) 
                CALL qes_reset(london_c6_obj(isp))
             END DO 
          END IF
          CONTAINS
          ! 
          SUBROUTINE init_londonc6(c6data, c6objs )
            USE constants, ONLY: eps16
            IMPLICIT NONE 
            REAL(DP),INTENT(IN)  :: c6data(:)
            TYPE(HubbardCommon_type),ALLOCATABLE,INTENT(INOUT) :: c6objs(:) 
            ! 
            INTEGER :: ndim_london_c6, isp, ind, nsp
            !
            IF (.NOT. PRESENT ( species)) RETURN
            nsp = SIZE(c6data)
            ndim_london_c6 = COUNT ( c6data .GT. -eps16) 
            IF ( ndim_london_c6 .GT. 0 ) THEN 
               ALLOCATE (c6objs(ndim_london_c6))
               DO isp = 1, nsp
                  IF ( c6data(isp) .GT. -eps16 ) THEN
                     ind  = ind + 1  
                     CALL qes_init(c6objs(ind ), "london_c6", SPECIE = TRIM(species(isp)), HUBBARDCOMMON = c6data(isp))
                  END IF 
               END DO                        
            END IF 
         END SUBROUTINE init_londonc6 
         !   
   END SUBROUTINE qexsd_init_vdw  
    !--------------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_outputPBC(obj,assume_isolated)
    !--------------------------------------------------------------------------------------------
    ! 
    IMPLICIT NONE
    ! 
    TYPE (outputPBC_type)                       :: obj
    CHARACTER(LEN=*),INTENT(IN)                  :: assume_isolated
    CHARACTER(LEN=*),PARAMETER                   :: TAGNAME="boundary_conditions"
    !
    CALL qes_init (obj,TAGNAME,ASSUME_ISOLATED =assume_isolated)
    END SUBROUTINE qexsd_init_outputPBC
    !
    !
    !---------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_magnetization(obj, lsda, noncolin, spinorbit, total_mag, total_mag_nc, &
                                        absolute_mag, do_magnetization)
      !------------------------------------------------------------------------------------
      IMPLICIT NONE
      !
      TYPE(magnetization_type)    :: obj
      LOGICAL,         INTENT(IN) :: lsda, noncolin, spinorbit
      REAL(DP),        INTENT(IN) :: total_mag, absolute_mag
      REAL(DP),        INTENT(IN) :: total_mag_nc(3)
      LOGICAL,         INTENT(IN) :: do_magnetization
      !
      CALL qes_init(obj, "magnetization", lsda, noncolin, spinorbit, total_mag, absolute_mag, &
                                 do_magnetization)
      !
    END SUBROUTINE qexsd_init_magnetization 
    !
    ! 
    !---------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_band_structure(obj, lsda, noncolin, lspinorb, nelec, n_wfc_at,  et, wg, nks, xk, ngk, wk, & 
                                         starting_kpoints, occupations_kind, wf_collected, & 
                                         smearing, nbnd, nbnd_up, nbnd_dw, fermi_energy, ef_updw, homo, lumo)
    !----------------------------------------------------------------------------------------
    IMPLICIT NONE
    !
    TYPE(band_structure_type)               :: obj
    CHARACTER(LEN=*), PARAMETER             :: TAGNAME="band_structure"
    LOGICAL,INTENT(IN)                      :: lsda, noncolin, lspinorb 
    INTEGER,INTENT(IN)                      :: nks, n_wfc_at
    INTEGER,OPTIONAL,INTENT(IN)             :: nbnd, nbnd_up, nbnd_dw 
    REAL(DP),INTENT(IN)                     :: nelec 
    REAL(DP),OPTIONAL,INTENT(IN)            :: fermi_energy, ef_updw(2), homo, lumo
    REAL(DP),DIMENSION(:,:),INTENT(IN)      :: et, wg, xk
    REAL(DP),DIMENSION(:),INTENT(IN)        :: wk
    INTEGER,DIMENSION(:),INTENT(IN)         :: ngk      
    TYPE(k_points_IBZ_type),INTENT(IN)      :: starting_kpoints
    TYPE(occupations_type), INTENT(IN)      :: occupations_kind
    TYPE(smearing_type),OPTIONAL,INTENT(IN) :: smearing
    LOGICAL,INTENT(IN)                      :: wf_collected                    
    ! 
    LOGICAL                                 :: n_wfc_at_ispresent = .TRUE.  
    INTEGER                                 :: ndim_ks_energies, ik
    INTEGER,TARGET                          :: nbnd_, nbnd_up_, nbnd_dw_
    INTEGER,POINTER                         :: nbnd_opt, nbnd_up_opt, nbnd_dw_opt 
    TYPE(k_point_type)                      :: kp_obj
    TYPE(ks_energies_type),ALLOCATABLE      :: ks_objs(:)
    TYPE (k_points_IBZ_type)                :: starting_k_points_ 
    REAL(DP),DIMENSION(:),ALLOCATABLE       :: eigenvalues, occupations
    TYPE (smearing_type)                    :: smearing_ 
    !
    !
    ndim_ks_energies=nks   
    !
    NULLIFY( nbnd_opt, nbnd_up_opt, nbnd_dw_opt)  
    IF ( lsda ) THEN 
       ndim_ks_energies=ndim_ks_energies/2
       nbnd_up_opt => nbnd_up_
       nbnd_dw_opt => nbnd_dw_ 
       IF ( PRESENT(nbnd_up) .AND. PRESENT(nbnd_dw) ) THEN
            nbnd_ = nbnd_up+nbnd_dw
            nbnd_up_ = nbnd_up 
            nbnd_dw_ = nbnd_dw 
       ELSE IF ( PRESENT (nbnd) ) THEN
            nbnd_ = 2*nbnd
            nbnd_up_ = nbnd
            nbnd_dw_  = nbnd
       ELSE
            CALL errore ( "qexsd:qexsd_init_band_structure: ", &
                          "in case of lsda nbnd_up+nbnd_dw or nbnd must be givens as arguments", 10)
       END IF
    ELSE 
       IF (.NOT. PRESENT(nbnd) ) &
          CALL errore ("qexsd:qexsd_init_band_structure:", "lsda is false but needed nbnd argument is missing", 10)
       nbnd_=nbnd
       nbnd_opt => nbnd_ 
    END IF  
    !
    !   
    ALLOCATE(eigenvalues(nbnd_),occupations(nbnd_))
    ALLOCATE(ks_objs(ndim_ks_energies))
    !  
    ks_objs%tagname="ks_energies"
    DO ik=1,ndim_ks_energies
       CALL qes_init(kp_obj,"k_point",WEIGHT = wk(ik), K_POINT = xk(:,ik))
       IF ( lsda ) THEN 
          eigenvalues(1:nbnd_up_)=et(1:nbnd_up_,ik)/e2
          eigenvalues(nbnd_up_+1:nbnd_)=et(1:nbnd_dw_,ndim_ks_energies+ik)/e2
       ELSE 
          eigenvalues(1:nbnd_)= et(1:nbnd_,ik)/e2
       END IF
       !
       !
       IF (lsda) THEN 
          IF ( ABS(wk(ik)).GT.1.d-10) THEN 
             occupations(1:nbnd_up_)=wg(1:nbnd_up_,ik)/wk(ik)
             occupations(nbnd_up_+1:nbnd_)=wg(1:nbnd_dw_,ndim_ks_energies+ik)/wk(ndim_ks_energies+ik)
          ELSE 
             occupations(1:nbnd_up_)=wg(1:nbnd_up_,ik)
             occupations(nbnd_up_+1:nbnd_)=wg(1:nbnd_dw_,ik) 
          END IF            
       ELSE 
          IF (ABS(wk(ik)).GT.1.d-10) THEN
              occupations(1:nbnd_)=wg(1:nbnd_,ik)/wk(ik)
          ELSE
              occupations(1:nbnd_)=wg(1:nbnd_,ik)
          END IF
       END IF
       !
       !
       ks_objs(ik)%k_point = kp_obj
       ks_objs(ik)%npw = ngk(ik)
       CALL  qes_init(ks_objs(ik)%eigenvalues, "eigenvalues",eigenvalues)
       CALL  qes_init(ks_objs(ik)%occupations, "occupations",occupations)
       !
       eigenvalues=0.d0
       occupations=0.d0
       CALL qes_reset(kp_obj)  
    END DO 
    ks_objs%lwrite = .TRUE.
    ks_objs%lread  = .TRUE.
    !
    IF ( PRESENT(smearing) ) smearing_ = smearing
!
    starting_k_points_ = starting_kpoints
    starting_k_points_%tagname = "starting_k_points"
!
! 
   CALL qes_init  (obj, TAGNAME, LSDA = lsda, NONCOLIN = noncolin, SPINORBIT = lspinorb, NBND = nbnd_opt,   &
                   NELEC = nelec, WF_COLLECTED = wf_collected, STARTING_K_POINTS = starting_k_points_,      & 
                   NKS = ndim_ks_energies, OCCUPATIONS_KIND = occupations_kind, KS_ENERGIES = ks_objs,      &
                   NBND_UP = nbnd_up_opt, NBND_DW = nbnd_dw_opt, NUM_OF_ATOMIC_WFC = n_wfc_at,              &
                   FERMI_ENERGY = fermi_energy, HIGHESTOCCUPIEDLEVEL = homo,  TWO_FERMI_ENERGIES = ef_updw, & 
                   SMEARING = smearing, LOWESTUNOCCUPIEDLEVEL = lumo)
    DO ik=1,ndim_ks_energies
       CALL qes_reset(ks_objs(ik))
    END DO
    CALL qes_reset( starting_k_points_ ) 
    DEALLOCATE (ks_objs,eigenvalues, occupations)
    END SUBROUTINE qexsd_init_band_structure 
    !
    ! 
    !---------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_total_energy(obj, etot, eband, ehart, vtxc, etxc, ewald, degauss, demet, &
                       electric_field_corr, potentiostat_contr, gate_contribution, dispersion_contribution )
    !----------------------------------------------------------------------------------------
    !
    ! 
    IMPLICIT NONE
    ! 
    TYPE (total_energy_type)        :: obj
    REAL(DP),INTENT(IN)             :: etot, ehart,vtxc,etxc
    REAL(DP),OPTIONAL,INTENT(IN)    :: ewald,demet, eband, degauss 
    REAL(DP),OPTIONAL               :: electric_field_corr
    REAL(DP),OPTIONAL               :: potentiostat_contr
    REAL(DP),OPTIONAL               :: gate_contribution
    REAL(DP),OPTIONAL               :: dispersion_contribution  
    !
    CHARACTER(LEN=*),PARAMETER      :: TAGNAME="total_energy"
    ! 
    CALL  qes_init (obj, TAGNAME, ETOT = etot, EBAND = eband, EHART = ehart, VTXC = vtxc, ETXC = etxc, & 
                    EWALD = ewald, DEMET = demet, EFIELDCORR = electric_field_corr, POTENTIOSTAT_CONTR = potentiostat_contr,  &
                                  GATEFIELD_CONTR = gate_contribution, vdW_term = dispersion_contribution ) 
    
    END SUBROUTINE qexsd_init_total_energy
    ! 
    !
    !-------------------------------------------------------------------------------------------------------- 
    SUBROUTINE qexsd_init_forces(obj,nat,forces,tprnfor)
    !-------------------------------------------------------------------------------------------------------- 
    !
    IMPLICIT NONE
    !
    TYPE(matrix_type)                            :: obj
    INTEGER,INTENT(IN)                           :: nat 
    REAL(DP),DIMENSION(:,:),INTENT(IN)           :: forces
    LOGICAL,INTENT(IN)                           :: tprnfor
    !
    CHARACTER(LEN=*),PARAMETER                   :: TAGNAME="forces"
    REAL(DP),DIMENSION(:,:),ALLOCATABLE          :: forces_aux
    ! 
    IF (.NOT. tprnfor) THEN
       obj%lwrite=.FALSE.
       obj%lread =.FALSE.
       RETURN
    END IF 
    !
    ALLOCATE (forces_aux(3,nat))
    forces_aux(1:3,1:nat)=forces(1:3,1:nat)/e2
    !
    CALL qes_init(obj,TAGNAME,[3,nat],forces_aux )
    !
    DEALLOCATE (forces_aux)
    !
    END SUBROUTINE qexsd_init_forces
    ! 
    ! 
    !---------------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_stress(obj,stress,tstress) 
    !---------------------------------------------------------------------------------------------
    !
    IMPLICIT NONE
    TYPE( matrix_type)                           :: obj
    REAL(DP),DIMENSION(3,3),INTENT(IN)           :: stress
    LOGICAL,INTENT(IN)                           :: tstress
    ! 
    CHARACTER(LEN=*),PARAMETER                   :: TAGNAME="stress"
    REAL(DP),DIMENSION(3,3)                      :: stress_aux
    
    IF ( .NOT. tstress ) THEN 
       obj%lwrite = .FALSE.
       obj%lread  = .FALSE.
       stress_aux = 0.d0
       RETURN
    END IF
    ! 
    stress_aux=stress/e2
    CALL qes_init(obj,TAGNAME,[3,3],stress_aux )
    ! 
    END SUBROUTINE qexsd_init_stress
    !
    !
    !------------------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_dipole_info (dipole_info, el_dipole, ion_dipole, edir, eamp, emaxpos, eopreg) 
       !------------------------------------------------------------------------------------------------
       ! 
       USE kinds,           ONLY : DP
       USE constants,       ONLY : e2, fpi 
       USE qes_types_module,ONLY : dipoleOutput_type, scalarQuantity_type
       USE qes_libs_module, ONLY : qes_init
       USE cell_base,       ONLY : alat, at, omega
       ! 
       IMPLICIT NONE  
       ! 
       TYPE ( dipoleOutput_type ), INTENT(OUT)  :: dipole_info
       REAL(DP),INTENT(IN)                      :: el_dipole, ion_dipole, eamp, emaxpos, eopreg
       INTEGER , INTENT(IN)                     :: edir
       ! 
       REAL(DP)                                 :: tot_dipole, length, vamp, fac
       TYPE ( scalarQuantity_type)              :: temp_qobj
       ! 
       tot_dipole = -el_dipole+ion_dipole
       ! 
       dipole_info%idir = edir  
       fac=omega/fpi
       dipole_info%tagname = "dipoleInfo"
       dipole_info%lwrite  = .TRUE.
       dipole_info%lread   = .TRUE.
       CALL qes_init (dipole_info%ion_dipole, "ion_dipole" , units="Atomic Units", &
                                    scalarQuantity= ion_dipole*fac)
       CALL qes_init (dipole_info%elec_dipole,"elec_dipole" , units="Atomic Units",&
                                     scalarQuantity= el_dipole*fac)
       CALL qes_init (dipole_info%dipole,"dipole" , units="Atomic Units", &
                                    scalarQuantity= tot_dipole*fac)
       CALL qes_init (dipole_info%dipoleField,"dipoleField" , units="Atomic Units", &
                                    scalarQuantity= tot_dipole)
       ! 
       length=(1._DP-eopreg)*(alat*SQRT(at(1,edir)**2+at(2,edir)**2+at(3,edir)**2))
       vamp=e2*(eamp-tot_dipole)*length
       !
       CALL qes_init (dipole_info%potentialAmp,"potentialAmp" , units="Atomic Units",&
                                     scalarQuantity= vamp)
       CALL qes_init (dipole_info%totalLength, "totalLength", units = "Bohr",&
                                     scalarQuantity = length )
  
    END SUBROUTINE qexsd_init_dipole_info
    !---------------------------------------------------------------------------------------------
    SUBROUTINE  qexsd_init_outputElectricField(obj, lelfield, tefield, ldipole, lberry, bp_obj, el_pol, &
                                               ion_pol, dipole_obj , gateInfo)
    !---------------------------------------------------------------------------------------------
    !
    IMPLICIT NONE
    ! 
    TYPE(outputElectricField_type)                    :: obj 
    ! 
    LOGICAL,INTENT(IN)                                :: lberry, lelfield, tefield, ldipole
    REAL(DP),OPTIONAL,INTENT(IN)                      :: el_pol(:), ion_pol(:)
    TYPE(berryPhaseOutput_type),OPTIONAL,INTENT(IN)   :: bp_obj
    TYPE ( dipoleOutput_type ),OPTIONAL, INTENT(IN)   :: dipole_obj 
    TYPE ( gateInfo_type),OPTIONAL,INTENT(IN)         :: gateInfo
    ! 
    CHARACTER(LEN=*),PARAMETER                        :: TAGNAME="electric_field" 
    TYPE ( berryPhaseOutput_type )                    :: bp_loc_obj
    TYPE ( dipoleOutput_type )                        :: dip_loc_obj
    TYPE ( finiteFieldOut_type )                      :: finiteField_obj
    LOGICAL                                           :: bp_is = .FALSE. , finfield_is = .FALSE. , &
                                                         dipo_is = .FALSE.
    ! 
    
    IF (lberry .AND. PRESENT ( bp_obj))  THEN
       bp_is = .TRUE. 
       bp_loc_obj = bp_obj
    END IF 
    IF ( lelfield .AND. PRESENT(el_pol) .AND. PRESENT (ion_pol ) ) THEN 
       finfield_is=.TRUE.
       CALL qes_init (finiteField_obj, "finiteElectricFieldInfo", el_pol, ion_pol)
    END IF 
    IF ( ldipole .AND. PRESENT( dipole_obj ) ) THEN
       dipo_is = .TRUE.
       dip_loc_obj=dipole_obj
    END IF 
    CALL  qes_init (obj, TAGNAME,   BerryPhase = bp_obj, &
                                    finiteElectricFieldInfo  = finiteField_obj, &
                                    dipoleInfo = dipole_obj, &
                                    GATEINFO =  gateInfo   )
    IF ( finfield_is) CALL qes_reset ( finiteField_obj) 
    !
    END SUBROUTINE qexsd_init_outputElectricField
    ! 
    !-------------------------------------------------------------------------------------------------
    SUBROUTINE qexsd_init_berryPhaseOutput( obj, gpar, gvec, nppstr, nkort, xk, pdl_ion,  &    
                                            mod_ion, pdl_ion_tot, mod_ion_tot, nstring, pdl_elec,  &
                                          mod_elec, wstring, pdl_elec_up, mod_elec_up, pdl_elec_dw,& 
                                          mod_elec_dw, pdl_elec_tot,mod_elec_tot, pdl_tot, mod_tot,&
                                          upol, rmod)
    !---------------------------------------------------------------------------------------------------
    !
    USE ions_base,            ONLY: nat, tau, atm, zv, ityp
    USE cell_base,            ONLY: omega
    USE noncollin_module,     ONLY: nspin_lsda
    IMPLICIT NONE 
    ! 
    TYPE (berryPhaseOutput_type)                      :: obj
    REAL(DP),INTENT(IN)                               :: gpar(3), gvec, pdl_ion(nat), pdl_ion_tot, xk(3,*) 

    REAL(DP),INTENT(IN)                               :: pdl_elec(:), pdl_elec_up, pdl_elec_dw, pdl_elec_tot,    & 
                                                         pdl_tot, upol(3), rmod 
    !  
    INTEGER,INTENT(IN)                                :: mod_ion(nat), mod_ion_tot, mod_elec(:), mod_elec_up,    &
                                                         mod_elec_dw, mod_elec_tot, mod_tot, nppstr, nkort, nstring  
    !  
    REAL(DP),INTENT(IN)                               :: wstring(nstring)      
    ! 
    CHARACTER(LEN=*),PARAMETER                        :: TAGNAME = "BerryPhase"
    TYPE ( polarization_type)                         :: tot_pol_obj
    ! 
    TYPE ( electronicPolarization_type),ALLOCATABLE   :: str_pol_obj(:)
    TYPE ( ionicPolarization_type ),    ALLOCATABLE   :: ion_pol_obj(:)
    TYPE ( k_point_type )                             :: kp_obj
    TYPE ( phase_type)                                :: el_phase, ion_phase, tot_phase
    TYPE ( atom_type )                                :: atom_obj
    TYPE ( scalarQuantity_type )                      :: pol_val
    INTEGER                                           :: iat, istring, indstring
    INTEGER,POINTER                                   :: ispin  
    INTEGER, TARGET                                   :: spin_val 
    CHARACTER(10)                                     :: mod_string
    LOGICAL                                           :: spin_is = .FALSE. 
    !
    ALLOCATE (ion_pol_obj(nat))
    ALLOCATE (str_pol_obj(nstring))
    NULLIFY(ispin) 
    DO iat =1, nat 
       WRITE(mod_string,'("(mod" ,I1,")")') mod_ion(iat) 
       CALL qes_init (ion_phase,"phase", modulus = TRIM(mod_string), phase = pdl_ion(iat) )
       CALL qes_init (atom_obj,"ion",name=TRIM(atm(ityp(iat))),atom = tau(:,iat))
       CALL qes_init (ion_pol_obj(iat), "ionicPolarization", atom_obj, zv(ityp(iat)), ion_phase )       
       CALL qes_reset (ion_phase)
       CALL qes_reset (atom_obj)
    END DO
    ! 
    IF ( nspin_lsda .EQ. 2 ) ispin => spin_val 
    DO  istring= 1, nstring
        indstring = 1+(istring-1)*nppstr
        WRITE(mod_string,'("(mod ",I1,")")') mod_elec(istring)
        CALL qes_init(el_phase, "phase", modulus = TRIM (mod_string), phase = pdl_elec(istring) )
        IF ( istring .LE. nstring/nspin_lsda ) THEN 
           spin_val  = 1 
        ELSE  
           spin_val  = 2 
        END IF
        CALL qes_init(kp_obj, "firstKeyPoint", WEIGHT = wstring(istring), K_POINT = xk(:,indstring))
        CALL qes_init(str_pol_obj(istring),"electronicPolarization", kp_obj, el_phase, ispin  )
        CALL qes_reset( el_phase ) 
        CALL qes_reset(kp_obj)
    END DO
    ! 
    WRITE(mod_string,'("(mod ",I1,")")') mod_tot
    CALL qes_init (tot_phase, "totalPhase", IONIC = pdl_ion_tot, ELECTRONIC = pdl_elec_tot,  &
                                                       MODULUS = TRIM(mod_string), PHASE = pdl_tot)
    ! 
    CALL qes_init ( pol_val, "polarization", Units="e/bohr^2", scalarQuantity=(rmod/omega)*pdl_tot )
    !
    CALL qes_init (tot_pol_obj, "totalPolarization", pol_val, modulus = (rmod/omega)*dble(mod_tot), &
                               direction = upol )  
    ! 
    CALL qes_init ( obj, TAGNAME, totalPolarization = tot_pol_obj, totalPhase = tot_phase, & 
                         ionicPolarization = ion_pol_obj, electronicPolarization = str_pol_obj )
    ! 
    DO istring=1,nstring     
       CALL  qes_reset (str_pol_obj(istring))
    END DO 
    DEALLOCATE (str_pol_obj)
    DO iat=1, nat
       CALL qes_reset (ion_pol_obj(iat))
    END DO
    DEALLOCATE (ion_pol_obj)
    CALL qes_reset (tot_pol_obj)
    CALL qes_reset (pol_val)
    CALL qes_reset (tot_phase) 
    !
    END SUBROUTINE qexsd_init_berryPhaseOutput
    !
!-----------------------------------------------------------------------------------
SUBROUTINE qexsd_init_gate_info(obj, tagname, gatefield_en, zgate_, nelec_, alat_, at_, bg_, zv_, ityp_) 
   !--------------------------------------------------------------------------------
   USE kinds,         ONLY : DP
   USE constants,     ONLY : tpi
   !
   IMPLICIT NONE
   TYPE (gateInfo_type),INTENT(INOUT)      :: obj;
   CHARACTER(LEN=*)                        :: tagname
   REAL(DP), INTENT(IN)                    :: gatefield_en, zgate_, alat_, at_(3,3), bg_(3,3), zv_(:), nelec_ 
   INTEGER,INTENT(IN)                      :: ityp_(:) 
   ! 
   REAL(DP)                                :: bmod, area, ionic_charge, gateamp, gate_gate_term
   ! 
   bmod=SQRT(bg_(1,3)**2+bg_(2,3)**2+bg_(3,3)**2)
   ionic_charge = SUM( zv_(ityp_(:)) )
   area = ABS((at_(1,1)*at_(2,2)-at_(2,1)*at_(1,2))*alat_**2) 
   gateamp = (-(nelec_-ionic_charge)/area*tpi)
   gate_gate_term =  (- (nelec_-ionic_charge) * gateamp * (alat_/bmod) / 6.0)
   obj = gateInfo_type( TAGNAME = TRIM(tagname), lwrite = .TRUE., lread = .FALSE., POT_PREFACTOR = gateamp, &
                        GATE_ZPOS = zgate_,  GATE_GATE_TERM = gate_gate_term, GATEFIELDENERGY = gatefield_en) 
   ! 
END SUBROUTINE qexsd_init_gate_info 



 END MODULE qexsd_init