1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
!
! Copyright (C) 2001-2012 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
MODULE random_numbers
!----------------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
!
INTERFACE gauss_dist
!
MODULE PROCEDURE gauss_dist_scal, gauss_dist_vect
!
END INTERFACE
!
CONTAINS
!
!------------------------------------------------------------------------
FUNCTION randy ( irand )
!------------------------------------------------------------------------
!
! x=randy(n): reseed with initial seed idum=n ( 0 <= n <= ic, see below)
! if randy is not explicitly initialized, it will be
! initialized with seed idum=0 the first time it is called
! x=randy() : generate uniform real(DP) numbers x in [0,1]
!
REAL(DP) :: randy
INTEGER, optional :: irand
!
INTEGER , PARAMETER :: m = 714025, &
ia = 1366, &
ic = 150889, &
ntab = 97
REAL(DP), PARAMETER :: rm = 1.0_DP / m
INTEGER :: j
INTEGER, SAVE :: ir(ntab), iy, idum=0
LOGICAL, SAVE :: first=.true.
!
IF ( present(irand) ) THEN
idum = MIN( ABS(irand), ic)
first=.true.
END IF
IF ( first ) THEN
!
first = .false.
idum = MOD( ic - idum, m )
!
DO j=1,ntab
idum=mod(ia*idum+ic,m)
ir(j)=idum
END DO
idum=mod(ia*idum+ic,m)
iy=idum
END IF
j=1+(ntab*iy)/m
IF( j > ntab .OR. j < 1 ) call errore('randy','j out of range',ABS(j)+1)
iy=ir(j)
randy=iy*rm
idum=mod(ia*idum+ic,m)
ir(j)=idum
!
RETURN
!
END FUNCTION randy
!
!------------------------------------------------------------------------
SUBROUTINE set_random_seed ( )
!------------------------------------------------------------------------
!
! poor-man random seed for randy
!
INTEGER, DIMENSION (8) :: itime
INTEGER :: iseed, irand
!
CALL date_and_time ( values = itime )
! itime contains: year, month, day, time difference in minutes, hours,
! minutes, seconds and milliseconds.
iseed = ( itime(8) + itime(6) ) * ( itime(7) + itime(4) )
irand = randy ( iseed )
!
END SUBROUTINE set_random_seed
!
!-----------------------------------------------------------------------
FUNCTION gauss_dist_scal( mu, sigma )
!-----------------------------------------------------------------------
!
! ... this function generates a number taken from a normal
! ... distribution of mean value \mu and variance \sigma
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: mu
REAL(DP), INTENT(IN) :: sigma
REAL(DP) :: gauss_dist_scal
!
REAL(DP) :: x1, x2, w
!
!
gaussian_loop: DO
!
x1 = 2.0_DP * randy() - 1.0_DP
x2 = 2.0_DP * randy() - 1.0_DP
!
w = x1 * x1 + x2 * x2
!
IF ( w < 1.0_DP ) EXIT gaussian_loop
!
END DO gaussian_loop
!
w = SQRT( ( - 2.0_DP * LOG( w ) ) / w )
!
gauss_dist_scal = x1 * w * sigma + mu
!
RETURN
!
END FUNCTION gauss_dist_scal
!
!-----------------------------------------------------------------------
FUNCTION gauss_dist_cmplx( mu, sigma )
!-----------------------------------------------------------------------
!
! ... this function generates a number taken from a normal
! ... distribution of mean value \mu and variance \sigma
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: mu
REAL(DP), INTENT(IN) :: sigma
COMPLEX(DP) :: gauss_dist_cmplx
!
REAL(DP) :: x1, x2, w
!
!
gaussian_loop: DO
!
x1 = 2.0_DP * randy() - 1.0_DP
x2 = 2.0_DP * randy() - 1.0_DP
!
w = x1 * x1 + x2 * x2
!
IF ( w < 1.0_DP ) EXIT gaussian_loop
!
END DO gaussian_loop
!
w = SQRT( ( - 2.0_DP * LOG( w ) ) / w )
!
gauss_dist_cmplx = CMPLX( x1 * w * sigma + mu, x2 * w * sigma + mu, kind=DP)
!
RETURN
!
END FUNCTION gauss_dist_cmplx
!
!-----------------------------------------------------------------------
FUNCTION gauss_dist_vect( mu, sigma, dim )
!-----------------------------------------------------------------------
!
! ... this function generates an array of numbers taken from a normal
! ... distribution of mean value \mu and variance \sigma
!
IMPLICIT NONE
!
REAL(DP), INTENT(IN) :: mu
REAL(DP), INTENT(IN) :: sigma
INTEGER, INTENT(IN) :: dim
REAL(DP) :: gauss_dist_vect( dim )
!
REAL(DP) :: x1, x2, w
INTEGER :: i
!
!
DO i = 1, dim, 2
!
gaussian_loop: DO
!
x1 = 2.0_DP * randy() - 1.0_DP
x2 = 2.0_DP * randy() - 1.0_DP
!
w = x1 * x1 + x2 * x2
!
IF ( w < 1.0_DP ) EXIT gaussian_loop
!
END DO gaussian_loop
!
w = SQRT( ( - 2.0_DP * LOG( w ) ) / w )
!
gauss_dist_vect(i) = x1 * w * sigma
!
IF ( i >= dim ) EXIT
!
gauss_dist_vect(i+1) = x2 * w * sigma
!
END DO
!
gauss_dist_vect(:) = gauss_dist_vect(:) + mu
!
RETURN
!
END FUNCTION gauss_dist_vect
!
!-----------------------------------------------------------------------
FUNCTION gamma_dist (ialpha)
!-----------------------------------------------------------------------
!
! gamma-distributed random number, implemented as described in
! Numerical recipes (Press, Teukolsky, Vetterling, Flannery)
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: ialpha
REAL(DP) gamma_dist
INTEGER j
REAL(DP) am,e,s,v1,v2,x,y
REAL(DP), external :: ran1
!
IF ( ialpha < 1 ) CALL errore('gamma_dist', 'bad alpha in gamma_dist', 1)
!
! For small alpha, it is more efficient to calculate Gamma as the waiting time
! to the alpha-th event oin a Poisson random process of unit mean.
! Define alpha as small for 0 < alpha < 6:
IF ( ialpha < 6 ) THEN
!
x = 1.0D0
DO j=1,ialpha
x = x * randy()
ENDDO
x = -LOG(x)
ELSE
DO
v1 = 2.0D0*randy()-1.0D0
v2 = 2.0D0*randy()-1.0D0
!
! need to get this condition met:
IF ( v1**2+v2**2 > 1.0D0) CYCLE
!
y = v2 / v1
am = ialpha - 1
s = sqrt(2.0D0 * am + 1.0D0)
x = s * y + am
!
IF ( x <= 0.) CYCLE
!
e = (1.0D0+y**2)* exp( am * log( x / am ) - s * y)
!
IF (randy() > e) THEN
CYCLE
ELSE
EXIT
ENDIF
ENDDO
ENDIF
!
gamma_dist=x
!
ENDFUNCTION gamma_dist
!
!-----------------------------------------------------------------------
FUNCTION sum_of_gaussians2(inum_gaussians)
!-----------------------------------------------------------------------
! returns the sum of inum independent gaussian noises squared, i.e. the result
! is equivalent to summing the square of the return values of inum calls
! to gauss_dist.
!
IMPLICIT NONE
INTEGER, INTENT(IN) :: inum_gaussians
!
REAL(DP) sum_of_gaussians2
!
IF ( inum_gaussians < 0 ) THEN
CALL errore('sum_of_gaussians2', 'negative number of gaussians', 1)
ELSEIF ( inum_gaussians == 0 ) THEN
sum_of_gaussians2 = 0.0D0
ELSEIF ( inum_gaussians == 1 ) THEN
sum_of_gaussians2 = gauss_dist( 0.0D0, 1.0D0 )**2
ELSEIF( MODULO(inum_gaussians,2) == 0 ) THEN
sum_of_gaussians2 = 2.0 * gamma_dist( inum_gaussians/2 )
ELSE
sum_of_gaussians2 = 2.0 * gamma_dist((inum_gaussians-1)/2) + &
gauss_dist( 0.0D0, 1.0D0 )**2
ENDIF
!
ENDFUNCTION sum_of_gaussians2
!
END MODULE random_numbers
|