1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
|
This example tests the recover feature of ph.x
The calculation in run_example proceeds as follows:
1) make a self-consistent calculation for norm conserving Si
(input=si.scf.in, output=si.scf.out).
2) make a phonon calculation at the Gamma point and stop it after 3
seconds (input=si.phG.in1, output=si.phG.out1).
3) make a phonon calculation at the Gamma point and recover the previous
run (input=si.phG.in2, output=si.phG.out2).
4) make a self-consistent calculation for ultrasoft Ni
(input=ni.scf.in, output=ni.scf.out).
5) make a phonon calculation at the X point and stop it after 6
seconds (input=ni.phX.in1, output=si.phX.out1).
6) make a phonon calculation at the X point and recover the previous
run (input=ni.phX.in2, output=ni.phX.out2).
7) make a self-consistent calculation for PAW Cu
(input=Cu.scf_pbe.in, output=Cu.scf_pbe.out).
8) make a phonon calculation at the Gamma point and stop it after 5
seconds (input=Cu.phG_pbe.in1, output=Cu.phG_pbe.out1).
9) make a phonon calculation at the Gamma point and recover the previous
run (input=Cu.phG_pbe.in2, output=Cu.phG_pbe.out2).
The calculation in run_example_1 proceeds as follows:
1) Makes two self-consistent calculations of Al (see example 03)
2) Start the electron phonon calculation with max_seconds=3 sec.
3) Recover the electron-phonon calculation with recover=.true. and no
max_seconds limit.
4) calculate a2F(omega).
|