File: SiO2.xspectra_dip_c.out

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (667 lines) | stat: -rw-r--r-- 33,901 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

     Program XSpectra v.5.2.0 (svn rev. 11610M) starts on 20Aug2015 at 16:20:43 

     This program is part of the open-source Quantum ESPRESSO suite
     for quantum simulation of materials; please cite
         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
          URL http://www.quantum-espresso.org", 
     in publications or presentations arising from this work. More details at
     http://www.quantum-espresso.org/quote

     Parallel version (MPI), running on     1 processors

     -------------------------------------------------------------------------
                    __  ____                 _
                    \ \/ / _\_ __   ___  ___| |_ _ __ __ _
                     \  /\ \| '_ \ / _ \/ __| __| '__/ _` |
                     /  \_\ \ |_) |  __/ (__| |_| | | (_| |
                    /_/\_\__/ .__/ \___|\___|\__|_|  \__,_|
                            |_|

     In publications arising from the use of XSpectra, please cite:
      - O. Bunau and M. Calandra,
        Phys. Rev. B 87, 205105 (2013)
      - Ch. Gougoussis, M. Calandra, A. P. Seitsonen, F. Mauri,
        Phys. Rev. B 80, 075102 (2009)
      - M. Taillefumier, D. Cabaret, A. M. Flank, and F. Mauri,
        Phys. Rev. B 66, 195107 (2002)

     -------------------------------------------------------------------------
                                Reading input_file
     -------------------------------------------------------------------------

     calculation: xanes_dipole

     xepsilon  [crystallographic coordinates]:   0.000000   0.000000   1.000000

     xonly_plot: FALSE
        => complete calculation: Lanczos + spectrum plot

     filecore (core-wavefunction file): Si.wfc              

     main plot parameters:
        cut_occ_states: TRUE
        gamma_mode:  constant
        -> using xgamma [eV]:  0.80
        xemin [eV]: -10.00
        xemax [eV]: 100.00
        xnepoint: 1000
        energy zero automatically set to the Fermi level

     Fermi level determined from SCF save directory (SiO2.save)
     NB: For an insulator (SCF calculated with occupations="fixed")
         the Fermi level will be placed at the position of HOMO.

     WARNING: variable ef_r is obsolete

     -------------------------------------------------------------------------
                      Reading SCF save directory: SiO2.save
     -------------------------------------------------------------------------


     Reading data from directory:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save

   Info: using nr1, nr2, nr3 values from input

   Info: using nr1, nr2, nr3 values from input

     IMPORTANT: XC functional enforced from input :
     Exchange-correlation      =  SLA  PW   PBE  PBE ( 1  4  3  4 0 0)
     Any further DFT definition will be discarded
     Please, verify this is what you really want

     WARNING: atomic wfc #  2 for atom type 1 has zero norm
     WARNING: atomic wfc #  2 for atom type 2 has zero norm
               file O_PBE_USPP.UPF: wavefunction(s)  2S renormalized

     G-vector sticks info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Sum         889     475    151                23595     9203    1559


     the Fermi energy is     6.4758 ev

     -------------------------------------------------------------------------
                           Getting the Fermi energy 
     -------------------------------------------------------------------------

     From SCF save directory:
        ef    [eV]:    6.4758

     -> ef (in eV) will be written in x_save_file

     -------------------------------------------------------------------------
                           Energy zero of the spectrum 
     -------------------------------------------------------------------------

     -> ef will be used as energy zero of the spectrum

     G-vector sticks info
     --------------------
     sticks:   dense  smooth     PW     G-vecs:    dense   smooth      PW
     Sum         889     475    169                23595     9203    2057



     bravais-lattice index     =            4
     lattice parameter (alat)  =       9.2863  a.u.
     unit-cell volume          =     762.9417 (a.u.)^3
     number of atoms/cell      =            9
     number of atomic types    =            3
     number of electrons       =        48.00
     number of Kohn-Sham states=           30
     kinetic-energy cutoff     =      20.0000  Ry
     charge density cutoff     =     150.0000  Ry
     Exchange-correlation      =  SLA  PW   PBE  PBE ( 1  4  3  4 0 0)

     celldm(1)=   9.286303  celldm(2)=   0.000000  celldm(3)=   1.100100
     celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000

     crystal axes: (cart. coord. in units of alat)
               a(1) = (   1.000000   0.000000   0.000000 )  
               a(2) = (  -0.500000   0.866025   0.000000 )  
               a(3) = (   0.000000   0.000000   1.100100 )  

     reciprocal axes: (cart. coord. in units 2 pi/alat)
               b(1) = (  1.000000  0.577350 -0.000000 )  
               b(2) = (  0.000000  1.154701  0.000000 )  
               b(3) = (  0.000000 -0.000000  0.909008 )  


     PseudoPot. # 1 for Si read from file:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
     MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
     Pseudo is Ultrasoft, Zval =  4.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of 1141 points,  4 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
     Q(r) pseudized with 0 coefficients 


     PseudoPot. # 2 for Si read from file:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/Si_PBE_USPP.UPF
     MD5 check sum: 2fb286e7979bc4fe35b54746d77eb429
     Pseudo is Ultrasoft, Zval =  4.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of 1141 points,  4 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
     Q(r) pseudized with 0 coefficients 


     PseudoPot. # 3 for O  read from file:
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/pseudo/O_PBE_USPP.UPF
     MD5 check sum: 390ba29e75625707450f3bd3f0eb6be9
     Pseudo is Ultrasoft, Zval =  6.0
     Generated by new atomic code, or converted to UPF format
     Using radial grid of 1269 points,  4 beta functions with: 
                l(1) =   0
                l(2) =   0
                l(3) =   1
                l(4) =   1
     Q(r) pseudized with 0 coefficients 


     atomic species   valence    mass     pseudopotential
        Sih            4.00    28.08600     Si( 1.00)
        Si             4.00    28.08600     Si( 1.00)
        O              6.00    15.99940     O ( 1.00)

      2 Sym. Ops. (no inversion) found



   Cartesian axes

     site n.     atom                  positions (alat units)
         1           Sih tau(   1) = (   0.4700000   0.0000000   0.0000000  )
         2           Si  tau(   2) = (  -0.2350000   0.4070319   0.7334000  )
         3           Si  tau(   3) = (  -0.2350000  -0.4070319   0.3667000  )
         4           O   tau(   4) = (   0.2792500   0.2318350   0.1308019  )
         5           O   tau(   5) = (   0.0611500   0.3577551   0.6025981  )
         6           O   tau(   6) = (  -0.3404000   0.1259201   0.8642019  )
         7           O   tau(   7) = (  -0.3404000  -0.1259201   0.2358981  )
         8           O   tau(   8) = (   0.0611500  -0.3577551   0.4975019  )
         9           O   tau(   9) = (   0.2792500  -0.2318350  -0.1308019  )

     number of k points=    27  Methfessel-Paxton smearing, width (Ry)=  0.0300
                       cart. coord. in units 2pi/alat
        k(    1) = (   0.0000000   0.0000000   0.0000000), wk =   0.0740741
        k(    2) = (   0.0000000   0.0000000   0.3030028), wk =   0.0740741
        k(    3) = (   0.0000000   0.0000000   0.6060055), wk =   0.0740741
        k(    4) = (   0.0000000   0.3849002   0.0000000), wk =   0.0740741
        k(    5) = (   0.0000000   0.3849002   0.3030028), wk =   0.0740741
        k(    6) = (   0.0000000   0.3849002   0.6060055), wk =   0.0740741
        k(    7) = (   0.0000000   0.7698004   0.0000000), wk =   0.0740741
        k(    8) = (   0.0000000   0.7698004   0.3030028), wk =   0.0740741
        k(    9) = (   0.0000000   0.7698004   0.6060055), wk =   0.0740741
        k(   10) = (   0.3333333   0.1924501   0.0000000), wk =   0.0740741
        k(   11) = (   0.3333333   0.1924501   0.3030028), wk =   0.0740741
        k(   12) = (   0.3333333   0.1924501   0.6060055), wk =   0.0740741
        k(   13) = (   0.3333333   0.5773503   0.0000000), wk =   0.0740741
        k(   14) = (   0.3333333   0.5773503   0.3030028), wk =   0.0740741
        k(   15) = (   0.3333333   0.5773503   0.6060055), wk =   0.0740741
        k(   16) = (   0.3333333   0.9622504   0.0000000), wk =   0.0740741
        k(   17) = (   0.3333333   0.9622504   0.3030028), wk =   0.0740741
        k(   18) = (   0.3333333   0.9622504   0.6060055), wk =   0.0740741
        k(   19) = (   0.6666667   0.3849002   0.0000000), wk =   0.0740741
        k(   20) = (   0.6666667   0.3849002   0.3030028), wk =   0.0740741
        k(   21) = (   0.6666667   0.3849002   0.6060055), wk =   0.0740741
        k(   22) = (   0.6666667   0.7698004   0.0000000), wk =   0.0740741
        k(   23) = (   0.6666667   0.7698004   0.3030028), wk =   0.0740741
        k(   24) = (   0.6666667   0.7698004   0.6060055), wk =   0.0740741
        k(   25) = (   0.6666667   1.1547005   0.0000000), wk =   0.0740741
        k(   26) = (   0.6666667   1.1547005   0.3030028), wk =   0.0740741
        k(   27) = (   0.6666667   1.1547005   0.6060055), wk =   0.0740741

     Dense  grid:    23595 G-vectors     FFT dimensions: (  40,  40,  40)

     Smooth grid:     9203 G-vectors     FFT dimensions: (  27,  27,  30)

     Largest allocated arrays     est. size (Mb)     dimensions
        Kohn-Sham Wavefunctions         0.54 Mb     (    1184,   30)
        NL pseudopotentials             1.30 Mb     (    1184,   72)
        Each V/rho on FFT grid          0.98 Mb     (   64000)
        Each G-vector array             0.18 Mb     (   23595)
        G-vector shells                 0.01 Mb     (    1138)
     Largest temporary arrays     est. size (Mb)     dimensions
        Auxiliary wavefunctions         0.54 Mb     (    1184,   30)
        Each subspace H/S matrix        0.01 Mb     (      30,   30)
        Each <psi_i|beta_j> matrix      0.03 Mb     (      72,   30)

     The potential is recalculated from file :
     /Users/calandra/Pw/SVN_9_7_2015/espresso/XSpectra/examples/results/tmp/SiO2.save/charge-density.dat

     Starting wfc are   60 atomic wfcs

     -------------------------------------------------------------------------
               Reading core wavefunction file for the absorbing atom
     -------------------------------------------------------------------------

     Si.wfc successfully read

     -------------------------------------------------------------------------
                              Attributing the PAW radii 
                     for the absorbing atom [units: Bohr radius]
     -------------------------------------------------------------------------

        PAW proj 1: r_paw(l= 0)= 3.60  (1.5*r_cut)
        PAW proj 2: r_paw(l= 0)= 3.60  (1.5*r_cut)
        PAW proj 3: r_paw(l= 1)= 2.40  (from input file))
        PAW proj 4: r_paw(l= 1)= 2.40  (from input file))
        PAW proj 5: r_paw(l= 2)= 3.00  (1.5*r_cut)

        NB: The calculation will not necessary use all these r_paw values.
            - For a edge in the electric-dipole approximation,
              only the r_paw(l=1) values are used.
            - For a K edge in the electric-quadrupole approximation,
              only the r_paw(l=2) values are used.

            - For a L2 or L3 edge in the electric-quadrupole approximation,

              all projectors (s, p and d) are used.


     init_gipaw_1: projectors nearly linearly dependent:
     ntyp =  1, l/n1/n2 =  1 2 1  0.99554741


     -------------------------------------------------------------------------
                          Starting XANES calculation
                     in the electric dipole approximation
     -------------------------------------------------------------------------

     Method of calculation based on the Lanczos recursion algorithm
     --------------------------------------------------------------
        - STEP 1: Construction of a kpoint-dependent Lanczos basis,
          in which the Hamiltonian is tridiagonal (each 'iter' 
          corresponds to the calculation of one more Lanczos vector)
        - STEP 2: Calculation of the cross-section as a continued fraction
          averaged over the k-points.

     ... Begin STEP 1 ...

        Radial transition matrix element(s) used in the calculation of the
        initial vector of the Lanczos basis (|tilde{phi}_abs> normalized)
        | For PAW proj. (l=1) #1: radial matrix element =   0.026695735
        | For PAW proj. (l=1) #2: radial matrix element =   0.024893931

        |-------------------------------------------------------------
        ! k-point #     1:  ( 0.0000,  0.0000,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1155
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417308E-01
        |   Estimated error at iter     50:   1.00277730
        |   Estimated error at iter    100:   0.07651864
        |   Estimated error at iter    150:   0.01420994
        |   Estimated error at iter    200:   0.00556253
        |   Estimated error at iter    250:   0.00125413
        !   => CONVERGED at iter    300 with error=  0.00057385
        |-------------------------------------------------------------
        ! k-point #     2:  ( 0.0000,  0.0000,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419098E-01
        |   Estimated error at iter     50:   1.00283537
        |   Estimated error at iter    100:   0.09044884
        |   Estimated error at iter    150:   0.02420809
        |   Estimated error at iter    200:   0.01220361
        |   Estimated error at iter    250:   0.00312395
        |   Estimated error at iter    300:   0.00112913
        !   => CONVERGED at iter    350 with error=  0.00023178
        |-------------------------------------------------------------
        ! k-point #     3:  ( 0.0000,  0.0000,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419098E-01
        |   Estimated error at iter     50:   1.00283537
        |   Estimated error at iter    100:   0.09044884
        |   Estimated error at iter    150:   0.02421656
        |   Estimated error at iter    200:   0.01237198
        |   Estimated error at iter    250:   0.00357142
        |   Estimated error at iter    300:   0.00113671
        !   => CONVERGED at iter    350 with error=  0.00024485
        |-------------------------------------------------------------
        ! k-point #     4:  ( 0.0000,  0.3849,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1150
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419678E-01
        |   Estimated error at iter     50:   1.00287354
        |   Estimated error at iter    100:   0.10922284
        |   Estimated error at iter    150:   0.02155831
        |   Estimated error at iter    200:   0.00899210
        |   Estimated error at iter    250:   0.00314158
        |   Estimated error at iter    300:   0.00122132
        !   => CONVERGED at iter    350 with error=  0.00056770
        |-------------------------------------------------------------
        ! k-point #     5:  ( 0.0000,  0.3849,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417436E-01
        |   Estimated error at iter     50:   1.00285922
        |   Estimated error at iter    100:   0.10769202
        |   Estimated error at iter    150:   0.02801034
        |   Estimated error at iter    200:   0.00771331
        |   Estimated error at iter    250:   0.00300996
        |   Estimated error at iter    300:   0.00126374
        !   => CONVERGED at iter    350 with error=  0.00047347
        |-------------------------------------------------------------
        ! k-point #     6:  ( 0.0000,  0.3849,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417348E-01
        |   Estimated error at iter     50:   1.00288690
        |   Estimated error at iter    100:   0.12309929
        |   Estimated error at iter    150:   0.02677024
        |   Estimated error at iter    200:   0.01060518
        |   Estimated error at iter    250:   0.00350476
        !   => CONVERGED at iter    300 with error=  0.00095008
        |-------------------------------------------------------------
        ! k-point #     7:  ( 0.0000,  0.7698,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1150
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419678E-01
        |   Estimated error at iter     50:   1.00287354
        |   Estimated error at iter    100:   0.10922284
        |   Estimated error at iter    150:   0.02156013
        |   Estimated error at iter    200:   0.00872405
        |   Estimated error at iter    250:   0.00363369
        |   Estimated error at iter    300:   0.00116392
        !   => CONVERGED at iter    350 with error=  0.00044240
        |-------------------------------------------------------------
        ! k-point #     8:  ( 0.0000,  0.7698,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417348E-01
        |   Estimated error at iter     50:   1.00288690
        |   Estimated error at iter    100:   0.12309929
        |   Estimated error at iter    150:   0.02659503
        |   Estimated error at iter    200:   0.00986091
        |   Estimated error at iter    250:   0.00345126
        !   => CONVERGED at iter    300 with error=  0.00087137
        |-------------------------------------------------------------
        ! k-point #     9:  ( 0.0000,  0.7698,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417436E-01
        |   Estimated error at iter     50:   1.00285922
        |   Estimated error at iter    100:   0.10769202
        |   Estimated error at iter    150:   0.02799464
        |   Estimated error at iter    200:   0.00782435
        |   Estimated error at iter    250:   0.00291619
        |   Estimated error at iter    300:   0.00133196
        !   => CONVERGED at iter    350 with error=  0.00056027
        |-------------------------------------------------------------
        ! k-point #    10:  ( 0.3333,  0.1925,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1150
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419907E-01
        |   Estimated error at iter     50:   1.00282646
        |   Estimated error at iter    100:   0.07749673
        |   Estimated error at iter    150:   0.02524323
        |   Estimated error at iter    200:   0.01215333
        |   Estimated error at iter    250:   0.00355567
        |   Estimated error at iter    300:   0.00130152
        !   => CONVERGED at iter    350 with error=  0.00035648
        |-------------------------------------------------------------
        ! k-point #    11:  ( 0.3333,  0.1925,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417335E-01
        |   Estimated error at iter     50:   1.00283190
        |   Estimated error at iter    100:   0.10635822
        |   Estimated error at iter    150:   0.02091974
        |   Estimated error at iter    200:   0.00921490
        |   Estimated error at iter    250:   0.00325435
        |   Estimated error at iter    300:   0.00130754
        !   => CONVERGED at iter    350 with error=  0.00043617
        |-------------------------------------------------------------
        ! k-point #    12:  ( 0.3333,  0.1925,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417428E-01
        |   Estimated error at iter     50:   1.00285415
        |   Estimated error at iter    100:   0.10430261
        |   Estimated error at iter    150:   0.02684842
        |   Estimated error at iter    200:   0.01211073
        |   Estimated error at iter    250:   0.00406251
        |   Estimated error at iter    300:   0.00109834
        !   => CONVERGED at iter    350 with error=  0.00049478
        |-------------------------------------------------------------
        ! k-point #    13:  ( 0.3333,  0.5774,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14423824E-01
        |   Estimated error at iter     50:   1.00287041
        |   Estimated error at iter    100:   0.09569165
        |   Estimated error at iter    150:   0.03603029
        |   Estimated error at iter    200:   0.00701266
        |   Estimated error at iter    250:   0.00157020
        !   => CONVERGED at iter    300 with error=  0.00071183
        |-------------------------------------------------------------
        ! k-point #    14:  ( 0.3333,  0.5774,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1149
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14416648E-01
        |   Estimated error at iter     50:   1.00286783
        |   Estimated error at iter    100:   0.10247801
        |   Estimated error at iter    150:   0.02189022
        |   Estimated error at iter    200:   0.01046817
        |   Estimated error at iter    250:   0.00307962
        |   Estimated error at iter    300:   0.00123169
        !   => CONVERGED at iter    350 with error=  0.00055575
        |-------------------------------------------------------------
        ! k-point #    15:  ( 0.3333,  0.5774,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1149
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14416648E-01
        |   Estimated error at iter     50:   1.00286783
        |   Estimated error at iter    100:   0.10247801
        |   Estimated error at iter    150:   0.02190819
        |   Estimated error at iter    200:   0.01031259
        |   Estimated error at iter    250:   0.00292295
        |   Estimated error at iter    300:   0.00111243
        !   => CONVERGED at iter    350 with error=  0.00054450
        |-------------------------------------------------------------
        ! k-point #    16:  ( 0.3333,  0.9623,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419907E-01
        |   Estimated error at iter     50:   1.00282646
        |   Estimated error at iter    100:   0.07749673
        |   Estimated error at iter    150:   0.02520130
        |   Estimated error at iter    200:   0.01207465
        |   Estimated error at iter    250:   0.00359796
        |   Estimated error at iter    300:   0.00134542
        !   => CONVERGED at iter    350 with error=  0.00066586
        |-------------------------------------------------------------
        ! k-point #    17:  ( 0.3333,  0.9623,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417428E-01
        |   Estimated error at iter     50:   1.00285415
        |   Estimated error at iter    100:   0.10430261
        |   Estimated error at iter    150:   0.02686750
        |   Estimated error at iter    200:   0.01202935
        |   Estimated error at iter    250:   0.00450774
        !   => CONVERGED at iter    300 with error=  0.00098352
        |-------------------------------------------------------------
        ! k-point #    18:  ( 0.3333,  0.9623,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417335E-01
        |   Estimated error at iter     50:   1.00283190
        |   Estimated error at iter    100:   0.10635822
        |   Estimated error at iter    150:   0.02116670
        |   Estimated error at iter    200:   0.00945711
        |   Estimated error at iter    250:   0.00335217
        |   Estimated error at iter    300:   0.00124925
        !   => CONVERGED at iter    350 with error=  0.00042985
        |-------------------------------------------------------------
        ! k-point #    19:  ( 0.6667,  0.3849,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419907E-01
        |   Estimated error at iter     50:   1.00282646
        |   Estimated error at iter    100:   0.07749673
        |   Estimated error at iter    150:   0.02522260
        |   Estimated error at iter    200:   0.01214625
        |   Estimated error at iter    250:   0.00369838
        |   Estimated error at iter    300:   0.00127517
        !   => CONVERGED at iter    350 with error=  0.00034827
        |-------------------------------------------------------------
        ! k-point #    20:  ( 0.6667,  0.3849,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417428E-01
        |   Estimated error at iter     50:   1.00285415
        |   Estimated error at iter    100:   0.10430261
        |   Estimated error at iter    150:   0.02685610
        |   Estimated error at iter    200:   0.01217102
        |   Estimated error at iter    250:   0.00413507
        |   Estimated error at iter    300:   0.00127816
        !   => CONVERGED at iter    350 with error=  0.00049156
        |-------------------------------------------------------------
        ! k-point #    21:  ( 0.6667,  0.3849,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417335E-01
        |   Estimated error at iter     50:   1.00283190
        |   Estimated error at iter    100:   0.10635822
        |   Estimated error at iter    150:   0.02116939
        |   Estimated error at iter    200:   0.00941069
        |   Estimated error at iter    250:   0.00348398
        |   Estimated error at iter    300:   0.00146298
        !   => CONVERGED at iter    350 with error=  0.00042525
        |-------------------------------------------------------------
        ! k-point #    22:  ( 0.6667,  0.7698,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14419907E-01
        |   Estimated error at iter     50:   1.00282646
        |   Estimated error at iter    100:   0.07749673
        |   Estimated error at iter    150:   0.02517818
        |   Estimated error at iter    200:   0.01202410
        |   Estimated error at iter    250:   0.00356050
        |   Estimated error at iter    300:   0.00131787
        !   => CONVERGED at iter    350 with error=  0.00034087
        |-------------------------------------------------------------
        ! k-point #    23:  ( 0.6667,  0.7698,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417335E-01
        |   Estimated error at iter     50:   1.00283190
        |   Estimated error at iter    100:   0.10635822
        |   Estimated error at iter    150:   0.02054182
        |   Estimated error at iter    200:   0.00893991
        |   Estimated error at iter    250:   0.00317095
        |   Estimated error at iter    300:   0.00123731
        !   => CONVERGED at iter    350 with error=  0.00047500
        |-------------------------------------------------------------
        ! k-point #    24:  ( 0.6667,  0.7698,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14417428E-01
        |   Estimated error at iter     50:   1.00285415
        |   Estimated error at iter    100:   0.10430261
        |   Estimated error at iter    150:   0.02686924
        |   Estimated error at iter    200:   0.01216574
        |   Estimated error at iter    250:   0.00410010
        |   Estimated error at iter    300:   0.00113321
        !   => CONVERGED at iter    350 with error=  0.00053165
        |-------------------------------------------------------------
        ! k-point #    25:  ( 0.6667,  1.1547,  0.0000),  0.0741,   1
        |-------------------------------------------------------------
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14423824E-01
        |   Estimated error at iter     50:   1.00287041
        |   Estimated error at iter    100:   0.09569430
        |   Estimated error at iter    150:   0.03604781
        |   Estimated error at iter    200:   0.00708039
        |   Estimated error at iter    250:   0.00157457
        !   => CONVERGED at iter    300 with error=  0.00068343
        |-------------------------------------------------------------
        ! k-point #    26:  ( 0.6667,  1.1547,  0.3030),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1149
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14416648E-01
        |   Estimated error at iter     50:   1.00286783
        |   Estimated error at iter    100:   0.10247801
        |   Estimated error at iter    150:   0.02189018
        |   Estimated error at iter    200:   0.01047071
        |   Estimated error at iter    250:   0.00292569
        |   Estimated error at iter    300:   0.00109949
        !   => CONVERGED at iter    350 with error=  0.00055052
        |-------------------------------------------------------------
        ! k-point #    27:  ( 0.6667,  1.1547,  0.6060),  0.0741,   1
        |-------------------------------------------------------------
        |   Hilbert space is saturated
        |   xniter is set equal to       1149
        |   Increase kinetic-energy cutoff in your SCF calculation!
 okvan= T
        |   Norm of the initial Lanczos vector: 0.14416648E-01
        |   Estimated error at iter     50:   1.00286783
        |   Estimated error at iter    100:   0.10247801
        |   Estimated error at iter    150:   0.02201015
        |   Estimated error at iter    200:   0.01014338
        |   Estimated error at iter    250:   0.00302164
        |   Estimated error at iter    300:   0.00120215
        !   => CONVERGED at iter    350 with error=  0.00055068

     Results of STEP 1 successfully written in x_save_file
     x_save_file name: 
     ->  SiO2.xspectra_dip_c.sav                                          
     x_save_file version:  2

     ... End STEP 1 ...

     ... Begin STEP 2 ...

     The spectrum is calculated using the following parameters:
        energy-zero of the spectrum [eV]:    6.4758
        the occupied states are cut
        xemin [eV]: -10.00
        xemax [eV]: 100.00
        xnepoint: 1000
        constant broadening parameter [eV]:    0.800
        Core level energy [eV]:  -1839.    
         (from electron binding energy of neutral atoms in X-ray data booklet)

     Cross-section successfully written in xanes.dat

     ... End STEP 2 ...

     xanes        :     65.92s CPU     66.18s WALL (       1 calls)

     -------------------------------------------------------------------------
                                END JOB XSpectra
     -------------------------------------------------------------------------