1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>3.1 Single-projector, norm-conserving, no semicore</TITLE>
<META NAME="description" CONTENT="3.1 Single-projector, norm-conserving, no semicore">
<META NAME="keywords" CONTENT="pseudo-gen">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">
<LINK REL="STYLESHEET" HREF="pseudo-gen.css">
<LINK REL="next" HREF="node13.html">
<LINK REL="previous" HREF="node11.html">
<LINK REL="next" HREF="node13.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A
HREF="node13.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node11.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html114"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node13.html">3.2 Single-projector, norm-conserving, with</A>
<B> Up:</B> <A
HREF="node11.html">3 A worked example:</A>
<B> Previous:</B> <A
HREF="node11.html">3 A worked example:</A>
<B> <A ID="tex2html115"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<!--Table of Child-Links-->
<A ID="CHILD_LINKS"><STRONG>Subsections</STRONG></A>
<UL>
<LI><A ID="tex2html116"
HREF="node12.html#SECTION00041100000000000000">3.1.1 Generation</A>
<LI><A ID="tex2html117"
HREF="node12.html#SECTION00041200000000000000">3.1.2 Testing</A>
</UL>
<!--End of Table of Child-Links-->
<HR>
<H2><A ID="SECTION00041000000000000000">
3.1 Single-projector, norm-conserving, no semicore</A>
</H2>
<P>
<H3><A ID="SECTION00041100000000000000">
3.1.1 Generation</A>
</H3><EM>
Let us start from the simplest case with the following input:
</EM><PRE>
&input
atom='Ti', dft='PBE', config='[Ar] 3d2 4s2 4p0',
rlderiv=2.90, eminld=-2.0, emaxld=2.0, deld=0.01, nld=3,
iswitch=3
/
&inputp
pseudotype=1, nlcc=.true., lloc=1,
file_pseudopw='Ti.pbe-n-rrkj.UPF'
/
3
4S 1 0 2.00 0.00 2.9 2.9
3D 3 2 2.00 0.00 1.3 1.3
4P 2 1 0.00 0.00 2.9 2.9
</PRE><EM>
In the <TT>&input</TT> namelist,
we specify the we want to generate a PP (<TT>iswitch=3</TT>) and to
calculate <TT>nld=3</TT> logarithmic derivatives at <TT>rlderiv=2.90</TT> a.u.
from the origin, in the energy range <TT>eminld=-2.0</TT> Ry to
<TT>emaxld=2.0</TT> Ry, in energy steps <TT>deld=0.01</TT> Ry
(note that these values will not affect PP generation).
In the <TT>&inputp</TT> namelist, we specify the we want a single-projector,
NC-PP (<TT>pseudotype=1</TT>), with nonlinear core correction
(<TT>nlcc=.true.</TT>), using the <I>l</I> = 1 channel as local (<TT>lloc=1</TT>).
The output PP will be written in UPF format to file <TT>Ti.pbe-n-rrkj.UPF</TT>
(following the <SMALL>QUANTUM </SMALL>ESPRESSO convention for PP names).
Following the two namelists, there is a list of states used for pseudization:
the 4S state, with pseudization radius <I>r</I><SUB>c</SUB> = 2.9 a.u.; the 3D state,
<I>r</I><SUB>c</SUB> = 1.3 a.u.; the 4P, <I>r</I><SUB>c</SUB> = 2.9 a.u., listed as last because it is
the channel to be chosen as local potential.
</EM>
<P>
<EM>There is nothing magic or especially deep in the choice of the radius
and energy range for logarithmic derivatives, of the local
potential and of pseudization radii: it is just a reasonable guess.
Running the input, one gets an error:
</EM><PRE>
Wfc 4S rcut= 2.883 Estimated cut-off energy= 14.82 Ry
l= 0 Node at 0.71997236
This function has 1 nodes for 0 < r < 2.883
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
from compute_phi : error # 1
phi has nodes before r_c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
</PRE><EM>
This means that the 4S pseudized orbitals has one node. With RRKJ
pseudization (the default), this may occasionally happen. One can
either choose TM pseudization (<TT>tm=.true.</TT>) or set a small
value of <I>ρ</I>(<I>r</I> = 0) (e.g. <TT>rho0=0.001</TT>). Let us do the latter.
You should carefully look at the output, which will consists in
an all-electron calculation, followed by the pseudopotential generation
step, followed by a final test. In particular, notice this message
about the nonlinear core correction:
</EM><PRE>
Computing core charge for nlcc:
r > 1.73 : true rho core
r < 1.73 : rho core = a sin(br)/r a= 2.40 b= 1.56
Integrated core pseudo-charge : 3.43
</PRE><EM>
(this is actually not an ideal situation: the pseudization radius for the
charge density should be smaller than all pseudization radii; in our
case, smaller than <!-- MATH
$r_c^{(min)} = r_c^{(l=2)}=1.3$
-->
<I>r</I><SUB>c</SUB><SUP>(min)</SUP> = <I>r</I><SUB>c</SUB><SUP>(l=2)</SUP> = 1.3 a.u.).
Also notice messages on pseudization:
</EM><PRE>
Wfc 4S rcut= 2.883 Estimated cut-off energy= 5.32 Ry
Using 4 Bessel functions for this wfc, rho(0) = 0.001
This function has 0 nodes for 0 < r < 2.883
Wfc 3D rcut= 1.296 Estimated cut-off energy= 137.82 Ry
This function has 0 nodes for 0 < r < 1.296
</PRE><EM>
(note the large difference between the estimated cutoff for the <I>s</I> and
the <I>d</I> channel! Of course, it is only the latter the ``problem'' one
here); and look at the final consistency check:
</EM><PRE>
n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry)
1 0 4S 1( 2.00) -0.32830 -0.32830 0.00000
3 2 3D 1( 2.00) -0.31302 -0.31302 0.00000
2 1 4P 1( 0.00) -0.10777 -0.10777 0.00000
</PRE><EM>
You should get exactly 0 (within numerical accuracy) in the columnn
at the right.
</EM>
<P>
<EM>As a further check, let's have a look at the logaritmic derivatives
and at pseudized Kohn-Sham orbitals. Logarithmic derivatives are written
to files <TT>ld1.dlog</TT> and <TT>ld1ps.dlog</TT>, for AE and PS
calculations respectively (file names can be changed using variable
<TT>prefix</TT>). They can be plotted using for instance
<TT>gnuplot</TT> and the following commands:
</EM><PRE>
plot [-2:2][-20:20] 'ld1.dlog' u 1:2 w l lt 1, 'ld1.dlog' u 1:3 w l lt 2,\
'ld1.dlog' u 1:4 w l lt 3, 'ld1ps.dlog' u 1:2 lt 1, \
'ld1ps.dlog' u 1:3 lt 2, 'ld1ps.dlog' u 1:4 lt 3
</PRE><EM>
PS orbitals and the corresponding AE ones are written to file
<TT>ld1ps.wfc</TT> (PS on the left, AE on the right). They can be
plotted using the following commands:
</EM><PRE>
plot [0:5] 'ld1ps.wfc' u 1:2 lt 1 , 'ld1ps.wfc' u 1:3 lt 3 , \
'ld1ps.wfc' u 1:4 lt 2 , 'ld1ps.wfc' u 1:5 lt 1 w l, \
'ld1ps.wfc' u 1:6 lt 3 w l, 'ld1ps.wfc' u 1:7 lt 2 w l
</PRE><EM>
One gets the following plots (AE=lines, PS=points;
<TT>lt 1</TT>=red=<I>s</I>; <TT>lt 2</TT>=green=<I>p</I>; <TT>lt 3</TT>=blue=<I>d</I>;
note that in the files, orbitals are ordered as given in input,
logarithmic derivatives as <I>s</I>, <I>p</I>, <I>d</I>).
</EM>
<P>
<EM><IMG STYLE=""
SRC="img2.png"
ALT="\includegraphics[width=7.5cm]{pseudo-gen-fig1.pdf}">
<IMG STYLE=""
SRC="img3.png"
ALT="\includegraphics[width=7.5cm]{pseudo-gen-fig2.pdf}">
</EM>
<P>
<EM>We observe that our PP seems to reproduce fairly well
the logarithmic derivatives, with deviations appearing only at
relatively high (> 1 Ry) energies. AE and PS orbitals match
very well beyond the pseudization radii; the 3<I>d</I> orbital is
slightly deformed, because we have chosen a relatively large
<!-- MATH
$r_c^{(l=2)}=1.3$
-->
<I>r</I><SUB>c</SUB><SUP>(l=2)</SUP> = 1.3 a.u.. It is easy to verify that a smaller
<!-- MATH
$r_c^{(l=2)}$
-->
<I>r</I><SUB>c</SUB><SUP>(l=2)</SUP> yields a better 3<I>d</I> PS orbital, but also a harder
<I>d</I> potential: e.g., for <!-- MATH
$r_c^{(l=2)}=1.0$
-->
<I>r</I><SUB>c</SUB><SUP>(l=2)</SUP> = 1.0 a.u., you get
</EM><PRE>
Wfc 3D rcut= 1.009 Estimated cut-off energy= 225.64 Ry
</PRE><EM>
Before proceding, it is wise to verify whether our PP has ``ghosts''.
Let us prepare the following input for the testing phase
(note the variable <TT>iswitch=2</TT> and the <TT>&test</TT>
namelist):
</EM><PRE>
&input
atom='Ti', dft='PBE', config='[Ar] 3d2 4s2 4p0',
iswitch=2
/
&test
file_pseudo='Ti.pbe-n-rrkj.UPF',
nconf=1, configts(1)='3d2 4s2 4p0',
ecutmin=50, ecutmax=200, decut=50
/
</PRE><EM>
This will solve the Kohn-Sham equation for the PP read from
<TT>file_pseudo</TT>, for a single valence configuration
(<TT>nconf=1</TT>) listed in <TT>configts(1)</TT> (the ground state
in this case), using a base of spherical waves whose cutoff
(in Ry) ranges from <TT>ecutmin</TT> to <TT>ecutmax</TT> in steps of
<TT>decut</TT>. The initial part of the output looks good, but let us
look at the test with spherical waves, towards the end:
</EM><PRE>
Cutoff (Ry) : 200.0
N = 1 N = 2 N = 3
E(L=0) = -0.7483 Ry -0.3282 Ry -0.0042 Ry
E(L=1) = -0.1077 Ry 0.0192 Ry 0.0630 Ry
E(L=2) = -0.2961 Ry 0.0304 Ry 0.0654 Ry
</PRE><EM>
The lowest levels found in this way should be the same<A ID="tex2html1"
HREF="footnode.html#foot201"><SUP>1</SUP></A>
as those calculated from radial integration (see above).
This is true for the 4<I>p</I> state (-0.1077 Ry),
for the 3<I>d</I> state (-0.2961 Ry vs -0.31302 Ry, see footnote),
for the 4<I>s</I> state (-0.3282 Ry)....but note the spurious 4<I>s</I>
level at -0.7483 Ry! Our PP has a ghost and is unusable.
</EM>
<P>
<EM>What should be do now? we may try to change the definition of the
local potential. We had chosen <I>l</I> = 1, let us try <I>l</I> = 2 and <I>l</I> = 0.
The former has the same pathology, the latter has no ghosts.
So our data for PP generation are as follows:
</EM><PRE>
&input
atom='Ti', dft='PBE', config='[Ar] 3d2 4s2 4p0',
rlderiv=2.90, eminld=-2.0, emaxld=2.0, deld=0.01, nld=3,
iswitch=3
/
&inputp
pseudotype=1, nlcc=.true., lloc=0,
file_pseudopw='Ti.pbe-n-rrkj.UPF',
/
3
4P 2 1 0.00 0.00 2.9 2.9
3D 3 2 2.00 0.00 1.3 1.3
4S 1 0 2.00 0.00 2.9 2.9
</PRE><EM>
(note <TT>lloc=0</TT> and the 4<I>s</I> state at the end of the list).
Let us plot again logarithmic derivatives and orbitals (they look
quite the same as before) and run again the test with spherical
waves. We get (see the last section in the output):
</EM><PRE>
Cutoff (Ry) : 50.0
N = 1 N = 2 N = 3
E(L=0) = -0.3282 Ry -0.0049 Ry 0.0361 Ry
E(L=1) = -0.1077 Ry 0.0192 Ry 0.0630 Ry
E(L=2) = -0.1469 Ry 0.0311 Ry 0.0682 Ry
Cutoff (Ry) : 100.0
N = 1 N = 2 N = 3
E(L=0) = -0.3282 Ry -0.0049 Ry 0.0361 Ry
E(L=1) = -0.1077 Ry 0.0192 Ry 0.0630 Ry
E(L=2) = -0.2959 Ry 0.0303 Ry 0.0652 Ry
Cutoff (Ry) : 150.0
N = 1 N = 2 N = 3
E(L=0) = -0.3282 Ry -0.0049 Ry 0.0361 Ry
E(L=1) = -0.1077 Ry 0.0192 Ry 0.0630 Ry
E(L=2) = -0.2961 Ry 0.0303 Ry 0.0652 Ry
</PRE><EM>
This time the first column yields (with a small discrepancy for 3<I>d</I>)
the expected levels, and only those levels. It is wise to inspect
the second column as well for absence of suspiciously low levels:
ghosts may appear also as spurious excited states close to occupied
states. Note how bad the energy for the 3<I>d</I> level is at 50 Ry.
At 100 Ry however we are close to convergence and at 150 Ry
well converged, in agreement with the estimate given during
the PP generation (138 Ry).
</EM>
<P>
<EM>We have now our first candidate (i.e. not surely wrong) PP.
In order to 1) verify if it really does the job, 2) quantify
its transferability, 3) quantify its hardness, and 4) improve
it, if possible, we need to perform some more testing.
</EM>
<P>
<H3><A ID="SECTION00041200000000000000">
3.1.2 Testing</A>
</H3>
<P>
<EM>As a first idea of how good our PP is, let us verify how it
behaves on differente electronic configuration. The code
allows to test several configurations in the following way:
</EM><PRE>
&input
atom='Ti', dft='PBE', config='[Ar] 3d2 4s2 4p0',
iswitch=2
/
&test
file_pseudo='Ti.pbe-n-rrkj.UPF',
nconf=9
configts(1)='3d2 4s2 4p0'
configts(2)='3d2 4s1 4p1'
configts(3)='3d2 4s1 4p0'
configts(4)='3d2 4s0 4p0'
configts(5)='3d1 4s2 4p1'
configts(6)='3d1 4s2 4p0'
configts(7)='3d1 4s1 4p0'
configts(8)='3d1 4s0 4p0'
configts(9)='3d0 4s0 4p0'
/
</PRE><EM>
here we have chosen 9 different valence configurations
(the corresponding AE configurations are obtained by
superimposing <TT>configts</TT> to core states in <TT>config</TT>).
Some of them are neutral, some are ionic, the first five leave
the 3<I>d</I> states unchanged, the last one is a completely ionized
Ti<SUP>4+</SUP>. For each configuration, the code writes results
(e.g. orbitals) into files <TT>ld1</TT><I>N</I>.* and <TT>ld1ps</TT><I>N</I>.*,
where <I>N</I> is the index of the configuration. A summary is written to
file <TT>ld1.test</TT>. For the first configuration, AE and PS
eigenvalues and total energies are written:
</EM><PRE>
3 2 3D 1( 2.00) -0.31302 -0.31302 0.00000
1 0 4S 1( 2.00) -0.32830 -0.32830 0.00000
2 1 4P 1( 0.00) -0.10777 -0.10777 0.00000
Etot = -1707.131006 Ry, -853.565503 Ha, -23226.698556 eV
Etotps = -9.748745 Ry, -4.874372 Ha, -132.638416 eV
</PRE><EM>
(AE and PS eigenvalues are in this case the same, since this is the
reference configuration used to build the PP). For the following
configurations, AE and PS eigenvalues, plus total energy
<EM>differences</EM><A ID="tex2html2"
HREF="footnode.html#foot219"><SUP>2</SUP></A>wrt configuration 1 are printed:
</EM><PRE>
3 2 3D 1( 2.00) -0.40319 -0.40457 0.00138
1 0 4S 1( 1.00) -0.38394 -0.38420 0.00026
2 1 4P 1( 1.00) -0.15248 -0.15237 -0.00011
dEtot_ae = 0.226061 Ry
dEtot_ps = 0.226250 Ry, Delta E= -0.000189 Ry
</PRE><EM>
The discrepancy between AE and PS energy differences (in this case,
wrt the ground state) as well as the discrepancies in AE and PS
eigenvalues, are a measure of how transferrable a PP is. In this case,
the AE-PS discrepancy on <!-- MATH
$\delta E = E(4s^14p^13d^2) - E(4s^24p^03d^2)$
-->
<I>δE</I> = <I>E</I>(4<I>s</I><SUP>1</SUP>4<I>p</I><SUP>1</SUP>3<I>d</I><SUP>2</SUP>) - <I>E</I>(4<I>s</I><SUP>2</SUP>4<I>p</I><SUP>0</SUP>3<I>d</I><SUP>2</SUP>)
(look at <TT>Delta E</TT>) is quite small, < 0.2 mRy, while the
maximum discrepancy of the eigenvalues (rightmost column) ∼1 mRy.
These are very good results.
Unfortunately this is also a configuration that doesn't differ much
from the reference one. Let us see the other cases:
</EM><PRE>
3 2 3D 1( 2.00) -0.83550 -0.83256 -0.00295
1 0 4S 1( 1.00) -0.76075 -0.76163 0.00088
2 1 4P 1( 0.00) -0.48549 -0.48617 0.00068
dEtot_ae = 0.539968 Ry
dEtot_ps = 0.540344 Ry, Delta E= -0.000376 Ry
3 2 3D 1( 2.00) -1.44648 -1.44538 -0.00110
1 0 4S 1( 0.00) -1.24186 -1.24652 0.00465
2 1 4P 1( 0.00) -0.91224 -0.91599 0.00375
dEtot_ae = 1.537516 Ry
dEtot_ps = 1.540285 Ry, Delta E= -0.002769 Ry
3 2 3D 1( 1.00) -0.68514 -0.74236 0.05722
1 0 4S 1( 2.00) -0.45729 -0.45802 0.00073
2 1 4P 1( 1.00) -0.18855 -0.18471 -0.00383
dEtot_ae = 0.343391 Ry
dEtot_ps = 0.371650 Ry, Delta E= -0.028259 Ry
3 2 3D 1( 1.00) -1.16621 -1.21438 0.04817
1 0 4S 1( 2.00) -0.87720 -0.87620 -0.00100
2 1 4P 1( 0.00) -0.56807 -0.56137 -0.00670
dEtot_ae = 0.716203 Ry
dEtot_ps = 0.739110 Ry, Delta E= -0.022907 Ry
3 2 3D 1( 1.00) -1.82248 -1.87471 0.05223
1 0 4S 1( 1.00) -1.39447 -1.39936 0.00489
2 1 4P 1( 0.00) -1.03942 -1.03465 -0.00476
dEtot_ae = 1.848995 Ry
dEtot_ps = 1.873240 Ry, Delta E= -0.024245 Ry
3 2 3D 1( 1.00) -2.54976 -2.61959 0.06983
1 0 4S 1( 0.00) -1.94361 -1.96745 0.02383
2 1 4P 1( 0.00) -1.53584 -1.54419 0.00835
dEtot_ae = 3.518170 Ry
dEtot_ps = 3.554733 Ry, Delta E= -0.036564 Ry
3 2 3D 1( 0.00) -3.84145 -3.95251 0.11106
1 0 4S 1( 0.00) -2.73793 -2.81405 0.07612
2 1 4P 1( 0.00) -2.25938 -2.28768 0.02831
dEtot_ae = 6.699594 Ry
dEtot_ps = 6.831938 Ry, Delta E= -0.132344 Ry
</PRE><EM>
It is evident that configurations with 3<I>d</I><SUP>2</SUP> occupancy are well
reproduced, with errors on total energy differences < 3 mRy and
on eigenvalues< 5 mRy. Configurations with different 3<I>d</I> occupancy,
however, have errors one order of magnitude higher. For the extreme
case of Ti<SUP>4+</SUP>, the error is ∼ 0.1 Ry.
</EM>
<P>
<EM>In order to better understand what is going on, let us have a
look at the AE vs PS orbitals and logarithmic derivatives for
configuration 9 (i.e. for the bare PP). Let us add a line
like this:
</EM><PRE>
rlderiv=2.90, eminld=-4.0, emaxld=0.0, deld=0.01, nld=3,
</PRE><EM>
and plot files <TT>ld19ps.wfc</TT>, <TT>ld19.dlog</TT>,
<TT>ld19ps.dlog</TT> using <TT>gnuplot</TT> as above :
</EM>
<P>
<EM><IMG STYLE=""
SRC="img4.png"
ALT="\includegraphics[width=7.5cm]{pseudo-gen-fig3.pdf}">
<IMG STYLE=""
SRC="img5.png"
ALT="\includegraphics[width=7.5cm]{pseudo-gen-fig4.pdf}">
</EM>
<P>
<EM>Both the orbitals and the logarithmic derivatives (note the
different energy range) start to exhibit some visible
discrepancy now.
</EM>
<P>
<EM>One can try to fiddle with all generation parameters,
better if one at the time, to see whether things improve.
Curiously enough, the pseudization radius for the core
correction, which in principle should be as small as
possible, seems to improve things if pushed slightly
outwards (try <TT>rcore=2.0</TT>). Also surprisingly,
a smaller pseudization radius for the 3<I>d</I> state, 0.9
or 1.0 a.u., doesn't bring any visible improvement
to transferability
(but it increases a lot the required cutoff!).
Changing the pseudization radii for 4<I>s</I> and 4<I>p</I> states
doesn't affect much the results.
</EM>
<P>
<EM>A different local potential – a pseudized version
of the total self-consistent potential – can be chosen
by setting <TT>lloc=-1</TT> and setting <TT>rcloc</TT>
to the desired pseudization radius (a.u.). For small
<TT>rcloc</TT> ghosts re-appear; <TT>rcloc=2.9</TT>
yields slighty better total energy differences but slightly worse
eigenvalues. Note that the PP so generated will also have a
<I>s</I> projector, while the previous
ones had only <I>p</I> and <I>d</I> projectors.
</EM>
<P>
<EM>One could also generate the PP from a different electronic
configuration. Since Ti tends to lose rather than to attract
electrons, it will be more easily found in a ionized state than
in the neutral one. One might for instance use the electronic
configuration of the Bachelet-Hamann-Schlüter paper[<A
HREF="node21.html#BHS">4</A>]:
<!-- MATH
$3d^2 4s^{0.75} 4p^{0.25}$
-->
3<I>d</I><SUP>2</SUP>4<I>s</I><SUP>0.75</SUP>4<I>p</I><SUP>0.25</SUP>. This however doesn't seem to improve
much.
</EM>
<P>
<EM>Finally we end up with these generation data:
</EM><PRE>
&input
atom='Ti', dft='PBE', config='[Ar] 3d2 4s2 4p0',
iswitch=3
/
&inputp
pseudotype=1, nlcc=.true., rcore=2.0, lloc=0,
file_pseudopw='Ti.pbe-n-rrkj.UPF'
/
3
4P 2 1 0.00 0.00 2.9 2.9
3D 3 2 2.00 0.00 1.3 1.3
4S 1 0 2.00 0.00 2.9 2.9
</PRE>
<P><HR>
<!--Navigation Panel-->
<A
HREF="node13.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node11.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html114"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node13.html">3.2 Single-projector, norm-conserving, with</A>
<B> Up:</B> <A
HREF="node11.html">3 A worked example:</A>
<B> Previous:</B> <A
HREF="node11.html">3 A worked example:</A>
<B> <A ID="tex2html115"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
</BODY>
</HTML>
|