1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>3.2 Single-projector, norm-conserving, with semicore states</TITLE>
<META NAME="description" CONTENT="3.2 Single-projector, norm-conserving, with semicore states">
<META NAME="keywords" CONTENT="pseudo-gen">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">
<LINK REL="STYLESHEET" HREF="pseudo-gen.css">
<LINK REL="next" HREF="node14.html">
<LINK REL="previous" HREF="node12.html">
<LINK REL="next" HREF="node14.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A
HREF="node14.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node12.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html118"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node14.html">3.3 Testing in molecules</A>
<B> Up:</B> <A
HREF="node11.html">3 A worked example:</A>
<B> Previous:</B> <A
HREF="node12.html">3.1 Single-projector, norm-conserving, no</A>
<B> <A ID="tex2html119"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A ID="SECTION00042000000000000000">
3.2 Single-projector, norm-conserving, with semicore states</A>
</H2>
<P>
<EM>The results of transferability tests suggest that a Ti PP with only
3<I>d</I>, 4<I>s</I>, 4<I>p</I> states have limited transferability to cases with
different 3<I>d</I> configurations. In order to improve it, a possible
way is to put semicore 3<I>s</I> and 3<I>p</I> states in valence. The maximum
for those states (0.87 a.u. and 0.90 a.u. respectively) is in the
same range as for 3<I>d</I> (0.98 a.u.). Let us try thus the following:
</EM><PRE>
&input
atom='Ti', dft='PBE', config='[Ar] 3d2 4s2 4p0',
rlderiv=2.90, eminld=-4.0, emaxld=2.0, deld=0.01, nld=3,
iswitch=3
/
&inputp
pseudotype=1, rho0=0.001, ...
file_pseudopw='Ti.pbe-sp-rrkj.UPF'
/
3
3S 1 0 2.00 0.00 1.1 1.1
3P 2 1 6.00 0.00 1.2 1.2
3D 3 2 2.00 0.00 1.3 1.3
&test
configts(1)='3s2 3p6 3d2 4s2 4p0',
/
</PRE><EM>
Note the presence of the <TT>&test</TT> namelist: it is used in this
context to supply the electronic valence configuration, to be used
for unscreening. As a first step, we do not include the core correction.
In place of the dots we should specify the local reference potential.
If we use <TT>lloc=-1</TT> with large values of <TT>rcloc</TT>,
(comparable to pseudization radii for the previous case)
we get all kinds of mysterious errors:
</EM><PRE>
from compute_chi : error # 1
n is too large
</PRE><EM>
for <TT>rcloc=2.5</TT>, while <TT>rcloc=2.7</TT> produces an equally
mysterious
</EM><PRE>
from run_pseudo : error # 1
Errors in PS-KS equation
</PRE><EM>
while smaller values (e.g. 1.5) lead to other errors:
</EM><PRE>
WARNING! Expected number of nodes: 0 = 2-1-1, number of nodes found: 1.
</PRE><EM>
Even if the code doesn't stop, the presence of such messages
is a signal of something going wrong in the generation algorithm.
With some more experiments, though, one finds that <TT>rcloc=1.3</TT>
yields a good potential. We still have other choices. In this case,
<I>d</I> as reference potential: <TT>lloc=2</TT>, seems to work as well
(and produces a PP with less projectors: only <I>s</I> and <I>p</I>).
The generation algorithm in the latter case yields these
results for Kohn-Sham energies:
</EM><PRE>
n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry)
1 0 3S 1( 2.00) -4.60347 -4.60348 0.00001
2 1 3P 1( 6.00) -2.85621 -2.85623 0.00002
3 2 3D 1( 2.00) -0.31302 -0.31301 -0.00001
2 0 4S 1( 2.00) -0.32830 -0.32892 0.00062
3 1 4P 1( 0.00) -0.10777 -0.10732 -0.00045
</PRE><EM>
Note that the 3<I>s</I>, 3<I>p</I>, 3<I>d</I> levels should be the same by construction
(the difference is numerical noise); the 4<I>s</I> and 4<I>p</I> levels are not
guaranteed to be the same. The fact that they are, to a very good degree,
is very reassuring. A look at the orbitals will reveal that <!-- MATH
$3s, 3p, 3d$
-->
3<I>s</I>, 3<I>p</I>, 3<I>d</I>
are nodeless, 4<I>s</I> and 4<I>p</I> have one node. The spherical wave basis
set confirms the absence of ghosts:
</EM><PRE>
Cutoff (Ry) : 50.0
N = 1 N = 2 N = 3
E(L=0) = -4.5385 Ry -0.3263 Ry -0.0047 Ry
E(L=1) = -2.8427 Ry -0.1071 Ry 0.0193 Ry
E(L=2) = -0.1511 Ry 0.0311 Ry 0.0685 Ry
Cutoff (Ry) : 100.0
N = 1 N = 2 N = 3
E(L=0) = -4.5883 Ry -0.3279 Ry -0.0048 Ry
E(L=1) = -2.8547 Ry -0.1073 Ry 0.0193 Ry
E(L=2) = -0.2918 Ry 0.0303 Ry 0.0649 Ry
Cutoff (Ry) : 150.0
N = 1 N = 2 N = 3
E(L=0) = -4.5899 Ry -0.3280 Ry -0.0048 Ry
E(L=1) = -2.8549 Ry -0.1073 Ry 0.0193 Ry
E(L=2) = -0.2936 Ry 0.0303 Ry 0.0649 Ry
</PRE><EM>
Note that for <I>l</I> = 0 the first (<I>N</I> = 1) level is the 3<I>s</I> level,
the second (<I>N</I> = 2) level is the 4<I>s</I> level, and the like for
<I>l</I> = 1. Let us now repeat the testing on the nine
selected configurations as for the 4-electron PP. You will
have to add <TT>3s2 3p6</TT> to all test configurations
<TT>configts</TT>. Let us see check the errors on total energy
differences:
</EM><PRE>
$ grep Delta ld1.test
dEtot_ps = 0.227291 Ry, Delta E= -0.001230 Ry
dEtot_ps = 0.540886 Ry, Delta E= -0.000918 Ry
dEtot_ps = 1.540155 Ry, Delta E= -0.002640 Ry
dEtot_ps = 0.343314 Ry, Delta E= 0.000077 Ry
dEtot_ps = 0.715061 Ry, Delta E= 0.001142 Ry
dEtot_ps = 1.849816 Ry, Delta E= -0.000820 Ry
dEtot_ps = 3.522904 Ry, Delta E= -0.004735 Ry
dEtot_ps = 6.702626 Ry, Delta E= -0.003032 Ry
</PRE><EM>
Energy differences are reproduced with an
error that does not exceed a few mRy (see column at the rhs).
Eigenvalues are also well reproduced, e.g.:
</EM><PRE>
1 0 3S 1( 2.00) -8.37382 -8.37230 -0.00152
2 1 3P 1( 6.00) -6.57173 -6.57195 0.00021
3 2 3D 1( 0.00) -3.84145 -3.83518 -0.00627
2 0 4S 1( 0.00) -2.73793 -2.74985 0.01192
3 1 4P 1( 0.00) -2.25938 -2.25525 -0.00412
</PRE><EM>
although errors may reach 0.01 Ry (still one order of magnitude
better than what we get with the previous 4-electron PP). The price
to pay is the presence of more electrons in the valence.
</EM><HR>
<!--Navigation Panel-->
<A
HREF="node14.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node12.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html118"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node14.html">3.3 Testing in molecules</A>
<B> Up:</B> <A
HREF="node11.html">3 A worked example:</A>
<B> Previous:</B> <A
HREF="node12.html">3.1 Single-projector, norm-conserving, no</A>
<B> <A ID="tex2html119"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
</BODY>
</HTML>
|