File: node13.html

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (201 lines) | stat: -rw-r--r-- 7,981 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>3.2 Single-projector, norm-conserving, with semicore states</TITLE>
<META NAME="description" CONTENT="3.2 Single-projector, norm-conserving, with semicore states">
<META NAME="keywords" CONTENT="pseudo-gen">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">

<LINK REL="STYLESHEET" HREF="pseudo-gen.css">

<LINK REL="next" HREF="node14.html">
<LINK REL="previous" HREF="node12.html">
<LINK REL="next" HREF="node14.html">
</HEAD>

<BODY >
<!--Navigation Panel-->
<A
 HREF="node14.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A> 
<A
 HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A> 
<A
 HREF="node12.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A> 
<A ID="tex2html118"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>  
<BR>
<B> Next:</B> <A
 HREF="node14.html">3.3 Testing in molecules</A>
<B> Up:</B> <A
 HREF="node11.html">3 A worked example:</A>
<B> Previous:</B> <A
 HREF="node12.html">3.1 Single-projector, norm-conserving, no</A>
 &nbsp; <B>  <A ID="tex2html119"
  HREF="node1.html">Contents</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A ID="SECTION00042000000000000000">
3.2 Single-projector, norm-conserving, with semicore states</A>
</H2>
<P>
<EM>The results of transferability tests suggest that a Ti PP with only
3<I>d</I>, 4<I>s</I>, 4<I>p</I> states have limited transferability to cases with 
different 3<I>d</I> configurations. In order to improve it, a possible
way is to put semicore 3<I>s</I> and 3<I>p</I> states in valence. The maximum
for those states (0.87 a.u. and 0.90 a.u. respectively) is in the 
same range as for 3<I>d</I> (0.98 a.u.). Let us try thus the following:
</EM><PRE>
 &amp;input
   atom='Ti',  dft='PBE',  config='[Ar] 3d2 4s2 4p0',
   rlderiv=2.90, eminld=-4.0, emaxld=2.0, deld=0.01, nld=3,
   iswitch=3
 /
 &amp;inputp
   pseudotype=1, rho0=0.001, ...
   file_pseudopw='Ti.pbe-sp-rrkj.UPF'
 /
3
3S 1 0 2.00  0.00 1.1 1.1
3P 2 1 6.00  0.00 1.2 1.2
3D 3 2 2.00  0.00 1.3 1.3
 &amp;test
   configts(1)='3s2 3p6 3d2 4s2 4p0',
 /
</PRE><EM>
Note the presence of the <TT>&amp;test</TT> namelist: it is used in this
context to supply the electronic valence configuration, to be used
for unscreening. As a first step, we do not include the core correction.
In place of the dots we should specify the local reference potential. 
If we use <TT>lloc=-1</TT> with large values of <TT>rcloc</TT>,
(comparable to pseudization radii for the previous case) 
we get all kinds of mysterious errors:
</EM><PRE>
     from compute_chi : error #         1
     n is too large
</PRE><EM>
for <TT>rcloc=2.5</TT>, while <TT>rcloc=2.7</TT> produces an equally 
mysterious
</EM><PRE>
     from run_pseudo : error #         1
     Errors in PS-KS equation
</PRE><EM>
while smaller values (e.g. 1.5) lead to other errors:
</EM><PRE>
     WARNING! Expected number of nodes: 0 = 2-1-1, number of nodes found: 1.
</PRE><EM>
Even if the code doesn't stop, the presence of such messages
is a signal of something going wrong in the generation algorithm.
With some more experiments, though, one finds that <TT>rcloc=1.3</TT> 
yields a good potential. We still have other choices. In this case, 
<I>d</I> as reference potential: <TT>lloc=2</TT>, seems to work as well
(and produces a PP with less projectors: only <I>s</I> and <I>p</I>). 
The generation algorithm in the latter case yields these 
results for Kohn-Sham energies:
</EM><PRE>
     n l     nl             e AE (Ry)        e PS (Ry)    De AE-PS (Ry) 
     1 0     3S   1( 2.00)       -4.60347       -4.60348        0.00001
     2 1     3P   1( 6.00)       -2.85621       -2.85623        0.00002
     3 2     3D   1( 2.00)       -0.31302       -0.31301       -0.00001
     2 0     4S   1( 2.00)       -0.32830       -0.32892        0.00062
     3 1     4P   1( 0.00)       -0.10777       -0.10732       -0.00045
</PRE><EM>
Note that the 3<I>s</I>, 3<I>p</I>, 3<I>d</I> levels should be the same by construction
(the difference is numerical noise); the 4<I>s</I> and 4<I>p</I> levels are not
guaranteed to be the same. The fact that they are, to a very good degree,
is very reassuring. A look at the orbitals will reveal that <!-- MATH
 $3s, 3p, 3d$
 -->
3<I>s</I>, 3<I>p</I>, 3<I>d</I>
are nodeless, 4<I>s</I> and 4<I>p</I> have one node. The spherical wave basis 
set confirms the absence of ghosts:
</EM><PRE>
    Cutoff (Ry) :   50.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -4.5385 Ry   -0.3263 Ry   -0.0047 Ry
     E(L=1) =        -2.8427 Ry   -0.1071 Ry    0.0193 Ry
     E(L=2) =        -0.1511 Ry    0.0311 Ry    0.0685 Ry

     Cutoff (Ry) :  100.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -4.5883 Ry   -0.3279 Ry   -0.0048 Ry
     E(L=1) =        -2.8547 Ry   -0.1073 Ry    0.0193 Ry
     E(L=2) =        -0.2918 Ry    0.0303 Ry    0.0649 Ry

     Cutoff (Ry) :  150.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -4.5899 Ry   -0.3280 Ry   -0.0048 Ry
     E(L=1) =        -2.8549 Ry   -0.1073 Ry    0.0193 Ry
     E(L=2) =        -0.2936 Ry    0.0303 Ry    0.0649 Ry
</PRE><EM>
Note that for <I>l</I> = 0 the first (<I>N</I> = 1) level is the 3<I>s</I> level, 
the second (<I>N</I> = 2) level is the 4<I>s</I> level, and the like for 
<I>l</I> = 1. Let us now repeat the testing on the nine
selected configurations as for the 4-electron PP. You will
have to add <TT>3s2 3p6</TT> to all test configurations
<TT>configts</TT>. Let us see check the errors on total energy 
differences:
</EM><PRE>
$ grep Delta ld1.test
     dEtot_ps =       0.227291 Ry,   Delta E=      -0.001230 Ry
     dEtot_ps =       0.540886 Ry,   Delta E=      -0.000918 Ry
     dEtot_ps =       1.540155 Ry,   Delta E=      -0.002640 Ry
     dEtot_ps =       0.343314 Ry,   Delta E=       0.000077 Ry
     dEtot_ps =       0.715061 Ry,   Delta E=       0.001142 Ry
     dEtot_ps =       1.849816 Ry,   Delta E=      -0.000820 Ry
     dEtot_ps =       3.522904 Ry,   Delta E=      -0.004735 Ry
     dEtot_ps =       6.702626 Ry,   Delta E=      -0.003032 Ry
</PRE><EM>
Energy differences are reproduced with an
error that does not exceed a few mRy (see column at the rhs). 
Eigenvalues are also well reproduced, e.g.:
</EM><PRE>
     1 0     3S   1( 2.00)       -8.37382       -8.37230       -0.00152
     2 1     3P   1( 6.00)       -6.57173       -6.57195        0.00021
     3 2     3D   1( 0.00)       -3.84145       -3.83518       -0.00627
     2 0     4S   1( 0.00)       -2.73793       -2.74985        0.01192
     3 1     4P   1( 0.00)       -2.25938       -2.25525       -0.00412
</PRE><EM>
although errors may reach 0.01 Ry (still one order of magnitude 
better than what we get with the previous 4-electron PP). The price 
to pay is the presence of more electrons in the valence.

</EM><HR>
<!--Navigation Panel-->
<A
 HREF="node14.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A> 
<A
 HREF="node11.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A> 
<A
 HREF="node12.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A> 
<A ID="tex2html118"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>  
<BR>
<B> Next:</B> <A
 HREF="node14.html">3.3 Testing in molecules</A>
<B> Up:</B> <A
 HREF="node11.html">3 A worked example:</A>
<B> Previous:</B> <A
 HREF="node12.html">3.1 Single-projector, norm-conserving, no</A>
 &nbsp; <B>  <A ID="tex2html119"
  HREF="node1.html">Contents</A></B> 
<!--End of Navigation Panel-->

</BODY>
</HTML>