1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>A..3 Scalar-relativistic case</TITLE>
<META NAME="description" CONTENT="A..3 Scalar-relativistic case">
<META NAME="keywords" CONTENT="pseudo-gen">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">
<LINK REL="STYLESHEET" HREF="pseudo-gen.css">
<LINK REL="next" HREF="node19.html">
<LINK REL="previous" HREF="node17.html">
<LINK REL="next" HREF="node19.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A
HREF="node19.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node15.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node17.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html134"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node19.html">A..4 Numerical solution</A>
<B> Up:</B> <A
HREF="node15.html">A. Atomic Calculations</A>
<B> Previous:</B> <A
HREF="node17.html">A..2 Fully relativistic case</A>
<B> <A ID="tex2html135"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A ID="SECTION00053000000000000000">
A..3 Scalar-relativistic case</A>
</H2>
<P>
<EM>The full relativistic KS equations
is be transformed into an equation for the large component only
and averaged over spin-orbit components. In atomic units
(Rydberg: <!-- MATH
$\hbar=1, m=1/2, e^2=2$
-->
<IMG STYLE="height: 1.69ex; vertical-align: -0.10ex; " SRC="img62.png"
ALT="$\hbar$"> = 1, <I>m</I> = 1/2, <I>e</I><SUP>2</SUP> = 2):
</EM>
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray}
-{d^2 R_{nl}(r)\over dr^2}
+\left( {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
\right) R_{nl}(r) \qquad \nonumber \\\mbox{} -
{\alpha^2\over 4M(r)} {dV(r)\over dr}
\left({dR_{nl}(r)\over dr} +
\langle\kappa\rangle {R_{nl}(r)\over r}\right)= 0,
\end{eqnarray}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT">- <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img16.png"
ALT="$\displaystyle {d^2 R_{nl}(r)\over dr^2}$"> + <IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img63.png"
ALT="$\displaystyle \left(\vphantom{ {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
}\right.$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img30.png"
ALT="$\displaystyle {l(l+1)\over r^2}$"> + <I>M</I>(<I>r</I>)<IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img64.png"
ALT="$\displaystyle \left(\vphantom{V(r)-\epsilon}\right.$"><I>V</I>(<I>r</I>) - <I>ε</I><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img65.png"
ALT="$\displaystyle \left.\vphantom{V(r)-\epsilon}\right)$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img66.png"
ALT="$\displaystyle \left.\vphantom{ {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
}\right)$"><I>R</I><SUB>nl</SUB>(<I>r</I>) </TD>
<TD> </TD>
<TD> </TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"> - <IMG STYLE="height: 5.60ex; vertical-align: -2.27ex; " SRC="img67.png"
ALT="$\displaystyle {\alpha^2\over 4M(r)}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img68.png"
ALT="$\displaystyle {dV(r)\over dr}$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img69.png"
ALT="$\displaystyle \left(\vphantom{{dR_{nl}(r)\over dr} +
\langle\kappa\rangle {R_{nl}(r)\over r}}\right.$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img70.png"
ALT="$\displaystyle {dR_{nl}(r)\over dr}$"> + 〈<I>κ</I>〉<IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img11.png"
ALT="$\displaystyle {R_{nl}(r)\over r}$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img71.png"
ALT="$\displaystyle \left.\vphantom{{dR_{nl}(r)\over dr} +
\langle\kappa\rangle {R_{nl}(r)\over r}}\right)$"> = 0,</TD>
<TD> </TD>
<TD> </TD>
<TD WIDTH=10 ALIGN="RIGHT">
(12)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL">
<EM>
where <!-- MATH
$\alpha=1/137.036$
-->
<I>α</I> = 1/137.036 is the fine-structure constant,
<!-- MATH
$\langle\kappa\rangle=-1$
-->
〈<I>κ</I>〉 = - 1 is the degeneracy-weighted average value
of the Dirac's <I>κ</I> for the two spin-orbit-split levels, <I>M</I>(<I>r</I>) is
defined as
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
M(r)= 1 - {\alpha^2\over 4} \left(V(r)-\epsilon\right).
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>M</I>(<I>r</I>) = 1 - <IMG STYLE="height: 5.01ex; vertical-align: -1.69ex; " SRC="img72.png"
ALT="$\displaystyle {\alpha^2\over 4}$"><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img64.png"
ALT="$\displaystyle \left(\vphantom{V(r)-\epsilon}\right.$"><I>V</I>(<I>r</I>) - <I>ε</I><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img65.png"
ALT="$\displaystyle \left.\vphantom{V(r)-\epsilon}\right)$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(13)</TD></TR>
</TABLE>
</DIV><EM>
The charge density is defined as in the nonrelativistic case:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
n(r) = \sum_{nl} \Theta_{nl}{R^2_{nl}(r)\over 4\pi r^2}.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>n</I>(<I>r</I>) = <IMG STYLE="height: 5.01ex; vertical-align: -3.07ex; " SRC="img36.png"
ALT="$\displaystyle \sum_{{nl}}^{}$"><I>Θ</I><SUB>nl</SUB><IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img37.png"
ALT="$\displaystyle {R^2_{nl}(r)\over 4\pi r^2}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(14)</TD></TR>
</TABLE>
</DIV>
<P>
<BR><HR>
</BODY>
</HTML>
|