1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>A..4 Numerical solution</TITLE>
<META NAME="description" CONTENT="A..4 Numerical solution">
<META NAME="keywords" CONTENT="pseudo-gen">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">
<LINK REL="STYLESHEET" HREF="pseudo-gen.css">
<LINK REL="previous" HREF="node18.html">
<LINK REL="next" HREF="node20.html">
</HEAD>
<BODY >
<!--Navigation Panel-->
<A
HREF="node20.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node15.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node18.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html136"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node20.html">B. Equations for the</A>
<B> Up:</B> <A
HREF="node15.html">A. Atomic Calculations</A>
<B> Previous:</B> <A
HREF="node18.html">A..3 Scalar-relativistic case</A>
<B> <A ID="tex2html137"
HREF="node1.html">Contents</A></B>
<BR>
<BR>
<!--End of Navigation Panel-->
<H2><A ID="SECTION00054000000000000000">
A..4 Numerical solution</A>
</H2>
<P>
<EM>The radial (scalar-relativistic) KS equation is integrated
on a radial grid. It is convenient to
have a denser grid close to the nucleus and a coarser one far
away. Traditionally a logarithmic grid is used:
<!-- MATH
$r_i=r_0\mbox{exp}(i\Delta x)$
-->
<I>r</I><SUB>i</SUB> = <I>r</I><SUB>0</SUB>exp(<I>iΔx</I>). With this grid, one has
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
\int_0^\infty f(r) d r = \int_0^\infty f(x) r(x) dx
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<IMG STYLE="height: 5.36ex; vertical-align: -2.19ex; " SRC="img73.png"
ALT="$\displaystyle \int_{0}^{\infty}$"><I>f</I> (<I>r</I>)<I>dr</I> = <IMG STYLE="height: 5.36ex; vertical-align: -2.19ex; " SRC="img73.png"
ALT="$\displaystyle \int_{0}^{\infty}$"><I>f</I> (<I>x</I>)<I>r</I>(<I>x</I>)<I>dx</I>
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(15)</TD></TR>
</TABLE>
</DIV><EM>
and
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
{d f(r)\over d r}={1\over r} {d f(x)\over d x},\qquad
{d^2 f(r)\over d r^2}=-{1\over r^2} {d f(x)\over d x}
+ {1\over r^2} {d^2 f(x)\over d x^2}.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img74.png"
ALT="$\displaystyle {d f(r)\over d r}$"> = <IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img15.png"
ALT="$\displaystyle {1\over r}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img75.png"
ALT="$\displaystyle {d f(x)\over d x}$">, <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img76.png"
ALT="$\displaystyle {d^2 f(r)\over d r^2}$"> = - <IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img75.png"
ALT="$\displaystyle {d f(x)\over d x}$"> + <IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img78.png"
ALT="$\displaystyle {d^2 f(x)\over d x^2}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(16)</TD></TR>
</TABLE>
</DIV><EM>
We start with a given self-consistent potential <I>V</I> and
a trial eigenvalue <I>ε</I>. The equation is integrated
from <I>r</I> = 0 outwards to <I>r</I><SUB>t</SUB>, the outermost classical
(nonrelativistic for simplicity) turning point, defined
by <!-- MATH
${l(l+1) /r_t^2} + \left(V(r_t)-\epsilon\right)=0$
-->
<I>l</I> (<I>l</I>+1)/<I>r</I><SUB>t</SUB><SUP>2</SUP> + <IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img79.png"
ALT="$\left(\vphantom{V(r_t)-\epsilon}\right.$"><I>V</I>(<I>r</I><SUB>t</SUB>) - <I>ε</I><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img80.png"
ALT="$\left.\vphantom{V(r_t)-\epsilon}\right)$"> = 0.
In a logarithmic grid (see above) the equation to solve becomes:
</EM>
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray}
{1\over r^2} {d^2 R_{nl}(x)\over d x^2} & = &
{1\over r^2} {d R_{nl}(x)\over d x} +
\left( {l(l+1)\over r^2} +
M(r)\left(V(r)-\epsilon\right) \right) R_{nl}(r) \nonumber \\
& & \mbox{} - {\alpha^2\over 4M(r)} {dV(r)\over dr}
\left({1\over r} {dR_{nl}(x)\over dx} +
\langle\kappa\rangle {R_{nl}(r)\over r}\right).
\end{eqnarray}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img81.png"
ALT="$\displaystyle {d^2 R_{nl}(x)\over d x^2}$"></TD>
<TD WIDTH="10" ALIGN="CENTER" NOWRAP>=</TD>
<TD ALIGN="LEFT" NOWRAP><IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img82.png"
ALT="$\displaystyle {d R_{nl}(x)\over d x}$"> + <IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img63.png"
ALT="$\displaystyle \left(\vphantom{ {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
}\right.$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img30.png"
ALT="$\displaystyle {l(l+1)\over r^2}$"> + <I>M</I>(<I>r</I>)<IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img64.png"
ALT="$\displaystyle \left(\vphantom{V(r)-\epsilon}\right.$"><I>V</I>(<I>r</I>) - <I>ε</I><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img65.png"
ALT="$\displaystyle \left.\vphantom{V(r)-\epsilon}\right)$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img66.png"
ALT="$\displaystyle \left.\vphantom{ {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
}\right)$"><I>R</I><SUB>nl</SUB>(<I>r</I>)</TD>
<TD WIDTH=10 ALIGN="RIGHT">
</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"> </TD>
<TD> </TD>
<TD ALIGN="LEFT" NOWRAP> - <IMG STYLE="height: 5.60ex; vertical-align: -2.27ex; " SRC="img67.png"
ALT="$\displaystyle {\alpha^2\over 4M(r)}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img68.png"
ALT="$\displaystyle {dV(r)\over dr}$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img83.png"
ALT="$\displaystyle \left(\vphantom{{1\over r} {dR_{nl}(x)\over dx} +
\langle\kappa\rangle {R_{nl}(r)\over r}}\right.$"><IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img15.png"
ALT="$\displaystyle {1\over r}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img82.png"
ALT="$\displaystyle {d R_{nl}(x)\over d x}$"> + 〈<I>κ</I>〉<IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img11.png"
ALT="$\displaystyle {R_{nl}(r)\over r}$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img84.png"
ALT="$\displaystyle \left.\vphantom{{1\over r} {dR_{nl}(x)\over dx} +
\langle\kappa\rangle {R_{nl}(r)\over r}}\right)$">.</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(17)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL">
<EM>
This determines <!-- MATH
${d^2 R_{nl}(x)/d x^2}$
-->
<I>d</I><SUP>2</SUP><I>R</I><SUB>nl</SUB>(<I>x</I>)/<I>dx</I><SUP>2</SUP> which is used to
determine <!-- MATH
${d R_{nl}(x)/ dx}$
-->
<I>dR</I><SUB>nl</SUB>(<I>x</I>)/<I>dx</I> which in turn is used to
determine <I>R</I><SUB>nl</SUB>(<I>r</I>), using predictor-corrector or whatever
classical integration method. <!-- MATH
${dV(r)/dr}$
-->
<I>dV</I>(<I>r</I>)/<I>dr</I> is evaluated
numerically from any finite difference method. The series
is started using the known (?) asymptotic behavior of <I>R</I><SUB>nl</SUB>(<I>r</I>)
close to the nucleus (with ionic charge <I>Z</I>)
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
R_{nl}(r)\simeq r^\gamma,\qquad \gamma={l\sqrt{l^2-\alpha^2 Z^2}+
(l+1)\sqrt{(l+1)^2-\alpha^2 Z^2}\over 2l+1}.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>R</I><SUB>nl</SUB>(<I>r</I>) <IMG STYLE="height: 1.05ex; vertical-align: -0.10ex; " SRC="img85.png"
ALT="$\displaystyle \simeq$"> <I>r</I><SUP><I>γ</I></SUP>, <I>γ</I> = <IMG STYLE="height: 5.48ex; vertical-align: -1.87ex; " SRC="img86.png"
ALT="$\displaystyle {l\sqrt{l^2-\alpha^2 Z^2}+
(l+1)\sqrt{(l+1)^2-\alpha^2 Z^2}\over 2l+1}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(18)</TD></TR>
</TABLE>
</DIV><EM>
The number of nodes is counted. If there are too few (many)
nodes, the trial eigenvalue is increased (decreased) and
the procedure is restarted until the correct number <I>n</I> - <I>l</I> - 1
of nodes is reached. Then a second integration is started
inward, starting from a suitably large <!-- MATH
$r\sim 10r_t$
-->
<I>r</I>∼10<I>r</I><SUB>t</SUB> down
to <I>r</I><SUB>t</SUB>, using as a starting point the asymptotic behavior
of <I>R</I><SUB>nl</SUB>(<I>r</I>) at large <I>r</I>:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
R_{nl}(r)\simeq e^{-k(r)r},\qquad
k(r)=\sqrt{{l(l+1)\over r^2} + \left(V(r)-\epsilon\right)}.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>R</I><SUB>nl</SUB>(<I>r</I>) <IMG STYLE="height: 1.05ex; vertical-align: -0.10ex; " SRC="img85.png"
ALT="$\displaystyle \simeq$"> <I>e</I><SUP>-k(r)r</SUP>, <I>k</I>(<I>r</I>) = <IMG STYLE="height: 5.60ex; vertical-align: -1.81ex; " SRC="img87.png"
ALT="$\displaystyle \sqrt{{{l(l+1)\over r^2} + \left(V(r)-\epsilon\right)}}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(19)</TD></TR>
</TABLE>
</DIV><EM>
The two pieces are continuously joined at <I>r</I><SUB>t</SUB> and a correction to the trial
eigenvalue is estimated using perturbation theory (see below). The procedure
is iterated to self-consistency.
</EM>
<P>
<EM>The perturbative estimate of correction to trial eigenvalues is described in
the following for the nonrelativistic case (it is not worth to make relativistic
corrections on top of a correction). The trial eigenvector <I>R</I><SUB>nl</SUB>(<I>r</I>) will have
a cusp at <I>r</I><SUB>t</SUB> if the trial eigenvalue is not a true eigenvalue:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
A = {d R_{nl}(r_t^+)\over dr} - {d R_{nl}(r_t^-)\over dr} \ne 0.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>A</I> = <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img88.png"
ALT="$\displaystyle {d R_{nl}(r_t^+)\over dr}$"> - <IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img89.png"
ALT="$\displaystyle {d R_{nl}(r_t^-)\over dr}$">≠0.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(20)</TD></TR>
</TABLE>
</DIV><EM>
Such discontinuity in the first derivative translates into a
<!-- MATH
$\delta(r_t)$
-->
<I>δ</I>(<I>r</I><SUB>t</SUB>) in the second derivative:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
{d^2 R_{nl}(r)\over dr^2} = {d^2 \widetilde R_{nl}(r)\over dr^2}
+ A \delta(r-r_t)
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img16.png"
ALT="$\displaystyle {d^2 R_{nl}(r)\over dr^2}$"> = <IMG STYLE="height: 5.48ex; vertical-align: -1.69ex; " SRC="img90.png"
ALT="$\displaystyle {d^2 \widetilde R_{nl}(r)\over dr^2}$"> + <I>Aδ</I>(<I>r</I> - <I>r</I><SUB>t</SUB>)
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(21)</TD></TR>
</TABLE>
</DIV><EM>
where the tilde denotes the function obtained by matching the
second derivatives in the <I>r</I> < <I>r</I><SUB>t</SUB> and <I>r</I> > <I>r</I><SUB>t</SUB> regions.
This means that we are actually solving a different problem in which
<I>V</I>(<I>r</I>) is replaced by <!-- MATH
$V(r)+\Delta V(r)$
-->
<I>V</I>(<I>r</I>) + <I>ΔV</I>(<I>r</I>),
given by
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
\Delta V(r) = -{\hbar^2 \over 2m} {A\over R_{nl}(r_t)}\delta(r-r_t).
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>ΔV</I>(<I>r</I>) = - <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img7.png"
ALT="$\displaystyle {\hbar^2\over 2m}$"><IMG STYLE="height: 5.42ex; vertical-align: -2.27ex; " SRC="img91.png"
ALT="$\displaystyle {A\over R_{nl}(r_t)}$"><I>δ</I>(<I>r</I> - <I>r</I><SUB>t</SUB>).
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(22)</TD></TR>
</TABLE>
</DIV><EM>
The energy difference between the solution to such fictitious potential
and the solution to the real potential can be estimated from
perturbation theory:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{equation}
\Delta\epsilon_{nl} = - \langle\psi|\Delta V |\psi\rangle
= {\hbar^2 \over 2m} R_{nl}(r_t) A.
\end{equation}
-->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>Δε</I><SUB>nl</SUB> = - 〈<I>ψ</I>| <I>ΔV</I>| <I>ψ</I>〉 = <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img7.png"
ALT="$\displaystyle {\hbar^2\over 2m}$"><I>R</I><SUB>nl</SUB>(<I>r</I><SUB>t</SUB>)<I>A</I>.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(23)</TD></TR>
</TABLE>
</DIV>
<P><HR>
<!--Navigation Panel-->
<A
HREF="node20.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A>
<A
HREF="node15.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A>
<A
HREF="node18.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A>
<A ID="tex2html136"
HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>
<BR>
<B> Next:</B> <A
HREF="node20.html">B. Equations for the</A>
<B> Up:</B> <A
HREF="node15.html">A. Atomic Calculations</A>
<B> Previous:</B> <A
HREF="node18.html">A..3 Scalar-relativistic case</A>
<B> <A ID="tex2html137"
HREF="node1.html">Contents</A></B>
<!--End of Navigation Panel-->
</BODY>
</HTML>
|