File: node19.html

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (354 lines) | stat: -rw-r--r-- 14,435 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<!--Converted with LaTeX2HTML 2019.2 (Released June 5, 2019) -->
<HTML lang="EN">
<HEAD>
<TITLE>A..4 Numerical solution</TITLE>
<META NAME="description" CONTENT="A..4 Numerical solution">
<META NAME="keywords" CONTENT="pseudo-gen">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<META NAME="Generator" CONTENT="LaTeX2HTML v2019.2">

<LINK REL="STYLESHEET" HREF="pseudo-gen.css">

<LINK REL="previous" HREF="node18.html">
<LINK REL="next" HREF="node20.html">
</HEAD>

<BODY >
<!--Navigation Panel-->
<A
 HREF="node20.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A> 
<A
 HREF="node15.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A> 
<A
 HREF="node18.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A> 
<A ID="tex2html136"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>  
<BR>
<B> Next:</B> <A
 HREF="node20.html">B. Equations for the</A>
<B> Up:</B> <A
 HREF="node15.html">A. Atomic Calculations</A>
<B> Previous:</B> <A
 HREF="node18.html">A..3 Scalar-relativistic case</A>
 &nbsp; <B>  <A ID="tex2html137"
  HREF="node1.html">Contents</A></B> 
<BR>
<BR>
<!--End of Navigation Panel-->

<H2><A ID="SECTION00054000000000000000">
A..4 Numerical solution</A>
</H2>
<P>
<EM>The radial (scalar-relativistic) KS equation is integrated 
on a radial grid. It is convenient to
have a denser grid close to the nucleus and a coarser one far
away. Traditionally a logarithmic grid is used: 
<!-- MATH
 $r_i=r_0\mbox{exp}(i\Delta x)$
 -->
<I>r</I><SUB>i</SUB> = <I>r</I><SUB>0</SUB>exp(<I>iΔx</I>). With this grid, one has
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
\int_0^\infty f(r) d r = \int_0^\infty f(x) r(x) dx
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<IMG STYLE="height: 5.36ex; vertical-align: -2.19ex; " SRC="img73.png"
 ALT="$\displaystyle \int_{0}^{\infty}$"><I>f</I> (<I>r</I>)<I>dr</I> = <IMG STYLE="height: 5.36ex; vertical-align: -2.19ex; " SRC="img73.png"
 ALT="$\displaystyle \int_{0}^{\infty}$"><I>f</I> (<I>x</I>)<I>r</I>(<I>x</I>)<I>dx</I>
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(15)</TD></TR>
</TABLE>
</DIV><EM>
and
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
{d f(r)\over d r}={1\over r} {d f(x)\over d x},\qquad
{d^2 f(r)\over d r^2}=-{1\over r^2} {d f(x)\over d x}
+ {1\over r^2} {d^2 f(x)\over d x^2}.
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img74.png"
 ALT="$\displaystyle {d f(r)\over d r}$"> = <IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img15.png"
 ALT="$\displaystyle {1\over r}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img75.png"
 ALT="$\displaystyle {d f(x)\over d x}$">,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img76.png"
 ALT="$\displaystyle {d^2 f(r)\over d r^2}$"> = - <IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
 ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img75.png"
 ALT="$\displaystyle {d f(x)\over d x}$"> + <IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
 ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img78.png"
 ALT="$\displaystyle {d^2 f(x)\over d x^2}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(16)</TD></TR>
</TABLE>
</DIV><EM>
We start with a given self-consistent potential <I>V</I> and
a trial eigenvalue <I>ε</I>. The equation is integrated
from <I>r</I> = 0 outwards to <I>r</I><SUB>t</SUB>, the outermost classical 
(nonrelativistic for simplicity) turning point, defined
by <!-- MATH
 ${l(l+1) /r_t^2} + \left(V(r_t)-\epsilon\right)=0$
 -->
<I>l</I> (<I>l</I>+1)/<I>r</I><SUB>t</SUB><SUP>2</SUP> + <IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img79.png"
 ALT="$\left(\vphantom{V(r_t)-\epsilon}\right.$"><I>V</I>(<I>r</I><SUB>t</SUB>) - <I>ε</I><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img80.png"
 ALT="$\left.\vphantom{V(r_t)-\epsilon}\right)$"> = 0.
In a logarithmic grid (see above) the equation to solve becomes:
</EM>
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{eqnarray}
{1\over r^2} {d^2 R_{nl}(x)\over d x^2} & = &
  {1\over r^2} {d R_{nl}(x)\over d x} + 
  \left( {l(l+1)\over r^2} + 
  M(r)\left(V(r)-\epsilon\right) \right) R_{nl}(r) \nonumber \\
 & & \mbox{} - {\alpha^2\over 4M(r)} {dV(r)\over dr} 
      \left({1\over r} {dR_{nl}(x)\over dx} +
            \langle\kappa\rangle {R_{nl}(r)\over r}\right).
\end{eqnarray}
 -->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
 ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img81.png"
 ALT="$\displaystyle {d^2 R_{nl}(x)\over d x^2}$"></TD>
<TD WIDTH="10" ALIGN="CENTER" NOWRAP>=</TD>
<TD ALIGN="LEFT" NOWRAP><IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img77.png"
 ALT="$\displaystyle {1\over r^2}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img82.png"
 ALT="$\displaystyle {d R_{nl}(x)\over d x}$"> + <IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img63.png"
 ALT="$\displaystyle \left(\vphantom{ {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
}\right.$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img30.png"
 ALT="$\displaystyle {l(l+1)\over r^2}$"> + <I>M</I>(<I>r</I>)<IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img64.png"
 ALT="$\displaystyle \left(\vphantom{V(r)-\epsilon}\right.$"><I>V</I>(<I>r</I>) - <I>ε</I><IMG STYLE="height: 2.33ex; vertical-align: -0.68ex; " SRC="img65.png"
 ALT="$\displaystyle \left.\vphantom{V(r)-\epsilon}\right)$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img66.png"
 ALT="$\displaystyle \left.\vphantom{ {l(l+1)\over r^2} + M(r)\left(V(r)-\epsilon\right)
}\right)$"><I>R</I><SUB>nl</SUB>(<I>r</I>)</TD>
<TD WIDTH=10 ALIGN="RIGHT">
&nbsp;</TD></TR>
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT">&nbsp;</TD>
<TD>&nbsp;</TD>
<TD ALIGN="LEFT" NOWRAP>&nbsp; - <IMG STYLE="height: 5.60ex; vertical-align: -2.27ex; " SRC="img67.png"
 ALT="$\displaystyle {\alpha^2\over 4M(r)}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img68.png"
 ALT="$\displaystyle {dV(r)\over dr}$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img83.png"
 ALT="$\displaystyle \left(\vphantom{{1\over r} {dR_{nl}(x)\over dx} +
\langle\kappa\rangle {R_{nl}(r)\over r}}\right.$"><IMG STYLE="height: 4.78ex; vertical-align: -1.69ex; " SRC="img15.png"
 ALT="$\displaystyle {1\over r}$"><IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img82.png"
 ALT="$\displaystyle {d R_{nl}(x)\over d x}$"> + 〈<I>κ</I>〉<IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img11.png"
 ALT="$\displaystyle {R_{nl}(r)\over r}$"><IMG STYLE="height: 5.60ex; vertical-align: -2.30ex; " SRC="img84.png"
 ALT="$\displaystyle \left.\vphantom{{1\over r} {dR_{nl}(x)\over dx} +
\langle\kappa\rangle {R_{nl}(r)\over r}}\right)$">.</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(17)</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL">
<EM>
This determines <!-- MATH
 ${d^2 R_{nl}(x)/d x^2}$
 -->
<I>d</I><SUP>2</SUP><I>R</I><SUB>nl</SUB>(<I>x</I>)/<I>dx</I><SUP>2</SUP> which is used to
determine <!-- MATH
 ${d R_{nl}(x)/ dx}$
 -->
<I>dR</I><SUB>nl</SUB>(<I>x</I>)/<I>dx</I> which in turn is used to
determine <I>R</I><SUB>nl</SUB>(<I>r</I>), using predictor-corrector or whatever
classical integration method. <!-- MATH
 ${dV(r)/dr}$
 -->
<I>dV</I>(<I>r</I>)/<I>dr</I> is evaluated
numerically from any finite difference method. The series
is started using the known (?) asymptotic behavior of <I>R</I><SUB>nl</SUB>(<I>r</I>) 
close to the nucleus (with ionic charge <I>Z</I>)
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
R_{nl}(r)\simeq r^\gamma,\qquad \gamma={l\sqrt{l^2-\alpha^2 Z^2}+
(l+1)\sqrt{(l+1)^2-\alpha^2 Z^2}\over 2l+1}.
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>R</I><SUB>nl</SUB>(<I>r</I>) <IMG STYLE="height: 1.05ex; vertical-align: -0.10ex; " SRC="img85.png"
 ALT="$\displaystyle \simeq$"> <I>r</I><SUP><I>γ</I></SUP>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<I>γ</I> = <IMG STYLE="height: 5.48ex; vertical-align: -1.87ex; " SRC="img86.png"
 ALT="$\displaystyle {l\sqrt{l^2-\alpha^2 Z^2}+
(l+1)\sqrt{(l+1)^2-\alpha^2 Z^2}\over 2l+1}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(18)</TD></TR>
</TABLE>
</DIV><EM>
The number of nodes is counted. If there are too few (many)
nodes, the trial eigenvalue is increased (decreased) and
the procedure is restarted until the correct number <I>n</I> - <I>l</I> - 1
of nodes is reached. Then a second integration is started 
inward, starting from a suitably large <!-- MATH
 $r\sim 10r_t$
 -->
<I>r</I>∼10<I>r</I><SUB>t</SUB> down 
to <I>r</I><SUB>t</SUB>, using as a starting point the asymptotic behavior 
of <I>R</I><SUB>nl</SUB>(<I>r</I>) at large <I>r</I>: 
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
R_{nl}(r)\simeq e^{-k(r)r},\qquad
k(r)=\sqrt{{l(l+1)\over r^2} + \left(V(r)-\epsilon\right)}.
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>R</I><SUB>nl</SUB>(<I>r</I>) <IMG STYLE="height: 1.05ex; vertical-align: -0.10ex; " SRC="img85.png"
 ALT="$\displaystyle \simeq$"> <I>e</I><SUP>-k(r)r</SUP>,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<I>k</I>(<I>r</I>) = <IMG STYLE="height: 5.60ex; vertical-align: -1.81ex; " SRC="img87.png"
 ALT="$\displaystyle \sqrt{{{l(l+1)\over r^2} + \left(V(r)-\epsilon\right)}}$">.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(19)</TD></TR>
</TABLE>
</DIV><EM>
The two pieces are continuously joined at <I>r</I><SUB>t</SUB> and a correction to the trial 
eigenvalue is estimated using perturbation theory (see below). The procedure 
is iterated to self-consistency.
</EM>
<P>
<EM>The perturbative estimate of correction to trial eigenvalues is described in
the following for the nonrelativistic case (it is not worth to make relativistic
corrections on top of a correction). The trial eigenvector <I>R</I><SUB>nl</SUB>(<I>r</I>) will have 
a cusp at <I>r</I><SUB>t</SUB> if the trial eigenvalue is not a true eigenvalue:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
A = {d R_{nl}(r_t^+)\over dr} - {d R_{nl}(r_t^-)\over dr} \ne 0.
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>A</I> = <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img88.png"
 ALT="$\displaystyle {d R_{nl}(r_t^+)\over dr}$"> - <IMG STYLE="height: 4.95ex; vertical-align: -1.69ex; " SRC="img89.png"
 ALT="$\displaystyle {d R_{nl}(r_t^-)\over dr}$">≠0.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(20)</TD></TR>
</TABLE>
</DIV><EM>
Such discontinuity in the first derivative translates into a
<!-- MATH
 $\delta(r_t)$
 -->
<I>δ</I>(<I>r</I><SUB>t</SUB>) in the second derivative:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
{d^2  R_{nl}(r)\over dr^2} = {d^2 \widetilde R_{nl}(r)\over dr^2}
  + A \delta(r-r_t)
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img16.png"
 ALT="$\displaystyle {d^2 R_{nl}(r)\over dr^2}$"> = <IMG STYLE="height: 5.48ex; vertical-align: -1.69ex; " SRC="img90.png"
 ALT="$\displaystyle {d^2 \widetilde R_{nl}(r)\over dr^2}$"> + <I>Aδ</I>(<I>r</I> - <I>r</I><SUB>t</SUB>)
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(21)</TD></TR>
</TABLE>
</DIV><EM>
where the tilde denotes the function obtained by matching the
second derivatives in the <I>r</I> &lt; <I>r</I><SUB>t</SUB> and <I>r</I> &gt; <I>r</I><SUB>t</SUB> regions.
This means that we are actually solving a different problem in which 
<I>V</I>(<I>r</I>) is replaced by <!-- MATH
 $V(r)+\Delta V(r)$
 -->
<I>V</I>(<I>r</I>) + <I>ΔV</I>(<I>r</I>), 
given by
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
\Delta V(r) = -{\hbar^2 \over 2m} {A\over R_{nl}(r_t)}\delta(r-r_t).
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>ΔV</I>(<I>r</I>) = - <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img7.png"
 ALT="$\displaystyle {\hbar^2\over 2m}$"><IMG STYLE="height: 5.42ex; vertical-align: -2.27ex; " SRC="img91.png"
 ALT="$\displaystyle {A\over R_{nl}(r_t)}$"><I>δ</I>(<I>r</I> - <I>r</I><SUB>t</SUB>).
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(22)</TD></TR>
</TABLE>
</DIV><EM>
The energy difference between the solution to such fictitious potential 
and the solution to the real potential can be estimated from
perturbation theory:
</EM>
<P></P>
<DIV ALIGN="CENTER">
<!-- MATH
 \begin{equation}
\Delta\epsilon_{nl} = - \langle\psi|\Delta V |\psi\rangle
                     =   {\hbar^2 \over 2m} R_{nl}(r_t) A.
\end{equation}
 -->
<TABLE WIDTH="100%" ALIGN="CENTER">
<TR VALIGN="MIDDLE"><TD ALIGN="CENTER" NOWRAP>
<I>Δε</I><SUB>nl</SUB> = - 〈<I>ψ</I>| <I>ΔV</I>| <I>ψ</I>〉 = <IMG STYLE="height: 5.07ex; vertical-align: -1.69ex; " SRC="img7.png"
 ALT="$\displaystyle {\hbar^2\over 2m}$"><I>R</I><SUB>nl</SUB>(<I>r</I><SUB>t</SUB>)<I>A</I>.
</TD>
<TD WIDTH=10 ALIGN="RIGHT">
(23)</TD></TR>
</TABLE>
</DIV>
<P><HR>
<!--Navigation Panel-->
<A
 HREF="node20.html">
<IMG WIDTH="37" HEIGHT="24" ALT="next" SRC="next.png"></A> 
<A
 HREF="node15.html">
<IMG WIDTH="26" HEIGHT="24" ALT="up" SRC="up.png"></A> 
<A
 HREF="node18.html">
<IMG WIDTH="63" HEIGHT="24" ALT="previous" SRC="prev.png"></A> 
<A ID="tex2html136"
  HREF="node1.html">
<IMG WIDTH="65" HEIGHT="24" ALT="contents" SRC="contents.png"></A>  
<BR>
<B> Next:</B> <A
 HREF="node20.html">B. Equations for the</A>
<B> Up:</B> <A
 HREF="node15.html">A. Atomic Calculations</A>
<B> Previous:</B> <A
 HREF="node18.html">A..3 Scalar-relativistic case</A>
 &nbsp; <B>  <A ID="tex2html137"
  HREF="node1.html">Contents</A></B> 
<!--End of Navigation Panel-->

</BODY>
</HTML>