1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
Program LD1 v.4.2CVS starts on 8Feb2010 at 15:38:27
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please acknowledge
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO
Parallel version (MPI), running on 1 processors
--------------------------- All-electron run ----------------------------
Be
atomic number is 4.00
dft =PBE lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1041 r(mesh) = 100.85720 xmin = -7.00 dx = 0.01250
1 Ry = 13.60569193 eV
n l nl e(Ry) e(Ha) e(eV)
1 0 1S 1( 2.00) -7.8052 -3.9026 -106.1956
2 0 2S 1( 2.00) -0.4122 -0.2061 -5.6089
2 1 2P 1( 0.00) -0.1484 -0.0742 -2.0196
eps = 7.1E-15 iter = 25
Etot = -29.260119 Ry, -14.630059 Ha, -398.104165 eV
Ekin = 29.116605 Ry, 14.558302 Ha, 396.151557 eV
Encl = -67.276014 Ry, -33.638007 Ha, -915.336715 eV
Eh = 14.337510 Ry, 7.168755 Ha, 195.071744 eV
Exc = -5.438220 Ry, -2.719110 Ha, -73.990750 eV
normalization and overlap integrals
s(1S/1S) = 1.000000 <r> = 0.4209 <r2> = 0.2417 r(max) = 0.2661
s(1S/2S) = -0.000000
s(2S/2S) = 1.000000 <r> = 2.6039 <r2> = 8.1486 r(max) = 2.0415
s(2P/2P) = 1.000000 <r> = 3.2182 <r2> = 13.2379 r(max) = 2.2846
------------------------ End of All-electron run ------------------------
--------------------- Generating PAW atomic setup --------------------
Generating local pot.: lloc=2, matching radius rcloc = 1.6000
Computing core charge for nlcc:
r > 1.40 : true rho core
Core charge pseudized with two Bessel functions
Integrated core pseudo-charge : 0.26
Wfc 2S rcut= 1.512 Using Troullier-Martins method
Wfc-us 2S rcutus= 1.590 Estimated cut-off energy= 16.59 Ry
Wfc 2S rcut= 1.512 Using Troullier-Martins method
Wfc-us 2S rcutus= 1.590 Estimated cut-off energy= 18.86 Ry
Wfc 2P rcut= 1.512 Using Troullier-Martins method
Wfc-us 2P rcutus= 1.590 Estimated cut-off energy= 28.77 Ry
Wfc 2P rcut= 1.512 Using Troullier-Martins method
Wfc-us 2P rcutus= 1.590 Estimated cut-off energy= 29.20 Ry
The bmat matrix
0.27995 0.43308 0.00000 0.00000
0.41051 0.64009 0.00000 0.00000
0.00000 0.00000 -0.02217 -0.03323
0.00000 0.00000 -0.03103 -0.04646
The bmat + epsilon qq matrix
0.28319 0.41717 0.00000 0.00000
0.41675 0.61087 0.00000 0.00000
0.00000 0.00000 -0.02305 -0.03234
0.00000 0.00000 -0.03234 -0.04515
The qq matrix
-0.00785 -0.01515 0.00000 0.00000
-0.01515 -0.02783 0.00000 0.00000
0.00000 0.00000 0.00596 0.00883
0.00000 0.00000 0.00883 0.01306
multipoles (all-electron charge) - (pseudo charge)
ns l1:ns1 l2 l=0 l=1 l=2 l=3 l=4 l=5
1 0: 1 0 -0.0079
2 0: 1 0 -0.0154
2 0: 2 0 -0.0278
3 1: 1 0 0.0000 0.0142
3 1: 2 0 0.0000 0.0190
3 1: 3 1 0.0060 0.0000 0.0023
4 1: 1 0 0.0000 0.0200
4 1: 2 0 0.0000 0.0268
4 1: 3 1 0.0088 0.0000 0.0036
4 1: 4 1 0.0131 0.0000 0.0054
Required augmentation: BESSEL
Suggested rho cutoff for augmentation: 27.68 Ry
Estimated PAW energy = -6.542327 Ryd
The PAW screened D coefficients
0.28319 0.41687 0.00000 0.00000
0.41687 0.61087 0.00000 0.00000
0.00000 0.00000 -0.02305 -0.03234
0.00000 0.00000 -0.03234 -0.04515
The PAW descreened D coefficients (US)
0.30124 0.41767 0.00000 0.00000
0.41767 0.57829 0.00000 0.00000
0.00000 0.00000 0.01327 0.02119
0.00000 0.00000 0.02119 0.03364
------------------- End of pseudopotential generation -------------------
--------------------------- All-electron run ----------------------------
Be
atomic number is 4.00
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1041 r(mesh) = 100.85720 xmin = -7.00 dx = 0.01250
1 Ry = 13.60569193 eV
n l nl e(Ry) e(Ha) e(eV)
1 0 1S 1( 2.00) -7.8052 -3.9026 -106.1956
2 0 2S 1( 2.00) -0.4122 -0.2061 -5.6089
2 1 2P 1( 0.00) -0.1484 -0.0742 -2.0196
eps = 7.1E-15 iter = 25
Etot = -29.260119 Ry, -14.630059 Ha, -398.104165 eV
Ekin = 29.116605 Ry, 14.558302 Ha, 396.151557 eV
Encl = -67.276014 Ry, -33.638007 Ha, -915.336715 eV
Eh = 14.337510 Ry, 7.168755 Ha, 195.071744 eV
Exc = -5.438220 Ry, -2.719110 Ha, -73.990750 eV
normalization and overlap integrals
s(1S/1S) = 1.000000 <r> = 0.4209 <r2> = 0.2417 r(max) = 0.2661
s(1S/2S) = -0.000000
s(2S/2S) = 1.000000 <r> = 2.6039 <r2> = 8.1486 r(max) = 2.0415
s(2P/2P) = 1.000000 <r> = 3.2182 <r2> = 13.2379 r(max) = 2.2846
------------------------ End of All-electron run ------------------------
Computing logarithmic derivative in 1.64046
Computing logarithmic derivative in 1.64046
Computing the partial wave expansion
no projector for channel: 2
---------------------- Testing the pseudopotential ----------------------
Be
atomic number is 4.00 valence charge is 2.00
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1041 r(mesh) = 100.85720 xmin = -7.00 dx = 0.01250
n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry)
1 0 2S 1( 2.00) -0.41224 -0.41224 0.00000
2 1 2P 1( 0.00) -0.14844 -0.14843 -0.00000
eps = 4.8E-17 iter = 3
Etot = -29.260119 Ry, -14.630059 Ha, -398.104165 eV
Etotps = -6.542327 Ry, -3.271164 Ha, -89.012888 eV
Ekin = 2.256327 Ry, 1.128163 Ha, 30.698884 eV
Encl = -4.757381 Ry, -2.378690 Ha, -64.727460 eV
Ehrt = 1.396948 Ry, 0.698474 Ha, 19.006441 eV
Ecxc = -5.438221 Ry, -2.719110 Ha, -73.990753 eV
(Ecc = -0.171799 Ry, -0.085900 Ha, -2.337448 eV)
---------------------- End of pseudopotential test ----------------------
|