1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
Program LD1 v.4.2CVS starts on 8Feb2010 at 15:38:41
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please acknowledge
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO
Parallel version (MPI), running on 1 processors
--------------------------- All-electron run ----------------------------
F
atomic number is 9.00
dft =PBE lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250
1 Ry = 13.60569193 eV
n l nl e(Ry) e(Ha) e(eV)
1 0 1S 1( 2.00) -48.7034 -24.3517 -662.6435
2 0 2S 1( 2.00) -2.1917 -1.0959 -29.8198
2 1 2P 1( 5.00) -0.8174 -0.4087 -11.1215
eps = 2.9E-15 iter = 35
Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV
Ekin = 198.789676 Ry, 99.394838 Ha, 2704.671090 eV
Encl = -476.948650 Ry, -238.474325 Ha, -6489.216399 eV
Eh = 99.262081 Ry, 49.631041 Ha, 1350.529297 eV
Exc = -20.405230 Ry, -10.202615 Ha, -277.627269 eV
normalization and overlap integrals
s(1S/1S) = 1.000000 <r> = 0.1765 <r2> = 0.0421 r(max) = 0.1139
s(1S/2S) = -0.000000
s(2S/2S) = 1.000000 <r> = 1.0049 <r2> = 1.2317 r(max) = 0.7617
s(2P/2P) = 1.000000 <r> = 1.1050 <r2> = 1.6382 r(max) = 0.7066
------------------------ End of All-electron run ------------------------
--------------------- Generating PAW atomic setup --------------------
Generating local pot.: lloc=2, matching radius rcloc = 1.3000
Computing core charge for nlcc:
r > 0.80 : true rho core
Core charge pseudized with two Bessel functions
Integrated core pseudo-charge : 0.04
Wfc 2S rcut= 1.003 Using Troullier-Martins method
Wfc-us 2S rcutus= 1.459 Estimated cut-off energy= 23.75 Ry
Wfc 2S rcut= 1.003 Using Troullier-Martins method
Wfc-us 2S rcutus= 1.459 Estimated cut-off energy= 43.61 Ry
Wfc 2P rcut= 1.003 Using Troullier-Martins method
Wfc-us 2P rcutus= 1.612 Estimated cut-off energy= 30.79 Ry
Wfc 2P rcut= 1.003 Using Troullier-Martins method
Wfc-us 2P rcutus= 1.612 Estimated cut-off energy= 44.83 Ry
The bmat matrix
1.95983 1.94888 0.00000 0.00000
1.70002 1.59065 0.00000 0.00000
0.00000 0.00000 -0.54728 -0.48063
0.00000 0.00000 -0.27375 -0.27948
The bmat + epsilon qq matrix
2.10970 1.94333 0.00000 0.00000
1.94336 1.58415 0.00000 0.00000
0.00000 0.00000 -0.82416 -0.45808
0.00000 0.00000 -0.45807 -0.26439
The qq matrix
-0.06838 -0.11103 0.00000 0.00000
-0.11103 -0.13014 0.00000 0.00000
0.00000 0.00000 0.33872 0.22550
0.00000 0.00000 0.22550 0.15091
multipoles (all-electron charge) - (pseudo charge)
ns l1:ns1 l2 l=0 l=1 l=2 l=3 l=4 l=5
1 0: 1 0 -0.0684
2 0: 1 0 -0.1110
2 0: 2 0 -0.1301
3 1: 1 0 0.0000 -0.1186
3 1: 2 0 0.0000 -0.0602
3 1: 3 1 0.3387 0.0000 0.1390
4 1: 1 0 0.0000 -0.0684
4 1: 2 0 0.0000 -0.0332
4 1: 3 1 0.2255 0.0000 0.0859
4 1: 4 1 0.1509 0.0000 0.0536
Required augmentation: BESSEL
Suggested rho cutoff for augmentation: 54.19 Ry
Estimated PAW energy = -59.031316 Ryd
The PAW screened D coefficients
2.10970 1.94333 0.00000 0.00000
1.94333 1.58415 0.00000 0.00000
0.00000 0.00000 -0.82414 -0.45808
0.00000 0.00000 -0.45808 -0.26439
The PAW descreened D coefficients (US)
1.73974 0.97566 0.00000 0.00000
0.97566 0.33310 0.00000 0.00000
0.00000 0.00000 3.39088 2.32633
0.00000 0.00000 2.32633 1.58668
------------------- End of pseudopotential generation -------------------
--------------------------- All-electron run ----------------------------
F
atomic number is 9.00
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250
1 Ry = 13.60569193 eV
n l nl e(Ry) e(Ha) e(eV)
1 0 1S 1( 2.00) -48.7034 -24.3517 -662.6435
2 0 2S 1( 2.00) -2.1917 -1.0959 -29.8198
2 1 2P 1( 5.00) -0.8174 -0.4087 -11.1215
eps = 2.9E-15 iter = 35
Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV
Ekin = 198.789676 Ry, 99.394838 Ha, 2704.671090 eV
Encl = -476.948650 Ry, -238.474325 Ha, -6489.216399 eV
Eh = 99.262081 Ry, 49.631041 Ha, 1350.529297 eV
Exc = -20.405230 Ry, -10.202615 Ha, -277.627269 eV
normalization and overlap integrals
s(1S/1S) = 1.000000 <r> = 0.1765 <r2> = 0.0421 r(max) = 0.1139
s(1S/2S) = -0.000000
s(2S/2S) = 1.000000 <r> = 1.0049 <r2> = 1.2317 r(max) = 0.7617
s(2P/2P) = 1.000000 <r> = 1.1050 <r2> = 1.6382 r(max) = 0.7066
------------------------ End of All-electron run ------------------------
Computing logarithmic derivative in 1.64303
Computing logarithmic derivative in 1.64303
Computing the partial wave expansion
no projector for channel: 2
---------------------- Testing the pseudopotential ----------------------
F
atomic number is 9.00 valence charge is 7.00
dft = SLA PW PBX PBC lsd =0 sic =0 latt =0 beta=0.20 tr2=1.0E-14
mesh =1105 r(mesh) = 99.76081 xmin = -7.00 dx = 0.01250
n l nl e AE (Ry) e PS (Ry) De AE-PS (Ry)
1 0 2S 1( 2.00) -2.19171 -2.19171 0.00000
2 1 2P 1( 5.00) -0.81742 -0.81741 -0.00000
eps = 5.7E-15 iter = 3
Etot = -199.302123 Ry, -99.651061 Ha, -2711.643281 eV
Etotps = -59.031303 Ry, -29.515651 Ha, -803.161722 eV
Ekin = 50.319797 Ry, 25.159898 Ha, 684.635650 eV
Encl = -131.379816 Ry, -65.689908 Ha, -1787.513297 eV
Ehrt = 42.433944 Ry, 21.216972 Ha, 577.343171 eV
Ecxc = -20.405228 Ry, -10.202614 Ha, -277.627246 eV
(Ecc = -0.031434 Ry, -0.015717 Ha, -0.427688 eV)
---------------------- End of pseudopotential test ----------------------
-------------- Test with a basis set of Bessel functions ----------
Box size (a.u.) : 30.0
Cutoff (Ry) : 10.0
N = 1 N = 2 N = 3
E(L=0) = -2.1087 Ry -0.0085 Ry 0.0249 Ry
E(L=1) = -0.5344 Ry 0.0213 Ry 0.0601 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 12.0
N = 1 N = 2 N = 3
E(L=0) = -2.1481 Ry -0.0095 Ry 0.0246 Ry
E(L=1) = -0.6440 Ry 0.0211 Ry 0.0593 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 14.0
N = 1 N = 2 N = 3
E(L=0) = -2.1644 Ry -0.0100 Ry 0.0244 Ry
E(L=1) = -0.7201 Ry 0.0210 Ry 0.0587 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 16.0
N = 1 N = 2 N = 3
E(L=0) = -2.1791 Ry -0.0106 Ry 0.0242 Ry
E(L=1) = -0.7546 Ry 0.0210 Ry 0.0585 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 18.0
N = 1 N = 2 N = 3
E(L=0) = -2.1846 Ry -0.0108 Ry 0.0241 Ry
E(L=1) = -0.7873 Ry 0.0210 Ry 0.0582 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 20.0
N = 1 N = 2 N = 3
E(L=0) = -2.1879 Ry -0.0110 Ry 0.0241 Ry
E(L=1) = -0.7998 Ry 0.0209 Ry 0.0581 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 22.0
N = 1 N = 2 N = 3
E(L=0) = -2.1897 Ry -0.0112 Ry 0.0240 Ry
E(L=1) = -0.8074 Ry 0.0209 Ry 0.0580 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 24.0
N = 1 N = 2 N = 3
E(L=0) = -2.1906 Ry -0.0113 Ry 0.0240 Ry
E(L=1) = -0.8118 Ry 0.0209 Ry 0.0580 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 26.0
N = 1 N = 2 N = 3
E(L=0) = -2.1911 Ry -0.0114 Ry 0.0240 Ry
E(L=1) = -0.8143 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 28.0
N = 1 N = 2 N = 3
E(L=0) = -2.1913 Ry -0.0114 Ry 0.0239 Ry
E(L=1) = -0.8153 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 30.0
N = 1 N = 2 N = 3
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8156 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 32.0
N = 1 N = 2 N = 3
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8158 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 34.0
N = 1 N = 2 N = 3
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8158 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 36.0
N = 1 N = 2 N = 3
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 38.0
N = 1 N = 2 N = 3
E(L=0) = -2.1913 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 40.0
N = 1 N = 2 N = 3
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 42.0
N = 1 N = 2 N = 3
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8159 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 44.0
N = 1 N = 2 N = 3
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8160 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 46.0
N = 1 N = 2 N = 3
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8160 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 48.0
N = 1 N = 2 N = 3
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 50.0
N = 1 N = 2 N = 3
E(L=0) = -2.1914 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 52.0
N = 1 N = 2 N = 3
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 54.0
N = 1 N = 2 N = 3
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 56.0
N = 1 N = 2 N = 3
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8161 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 58.0
N = 1 N = 2 N = 3
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8162 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
Cutoff (Ry) : 60.0
N = 1 N = 2 N = 3
E(L=0) = -2.1915 Ry -0.0115 Ry 0.0239 Ry
E(L=1) = -0.8162 Ry 0.0209 Ry 0.0579 Ry
E(L=2) = 0.0367 Ry 0.0899 Ry 0.1618 Ry
-------------- End of Bessel function test ------------------------
|