File: F.out

package info (click to toggle)
espresso 6.7-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 311,068 kB
  • sloc: f90: 447,429; ansic: 52,566; sh: 40,631; xml: 37,561; tcl: 20,077; lisp: 5,923; makefile: 4,503; python: 4,379; perl: 1,219; cpp: 761; fortran: 618; java: 568; awk: 128
file content (348 lines) | stat: -rw-r--r-- 14,254 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

     Program LD1 v.4.2CVS       starts on  8Feb2010 at 15:38:41 

     This program is part of the open-source Quantum ESPRESSO suite
     for quantum simulation of materials; please acknowledge
         "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
          URL http://www.quantum-espresso.org", 
     in publications or presentations arising from this work. More details at
     http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO

     Parallel version (MPI), running on     1 processors
     --------------------------- All-electron run ----------------------------

     F                                                                          

     atomic number is  9.00
     dft =PBE   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
     mesh =1105 r(mesh) =  99.76081 xmin = -7.00 dx = 0.01250
     1 Ry =  13.60569193 eV

     n l     nl                  e(Ry)          e(Ha)          e(eV)
     1 0     1S 1( 2.00)       -48.7034       -24.3517      -662.6435
     2 0     2S 1( 2.00)        -2.1917        -1.0959       -29.8198
     2 1     2P 1( 5.00)        -0.8174        -0.4087       -11.1215

     eps = 2.9E-15  iter = 35

     Etot =    -199.302123 Ry,     -99.651061 Ha,   -2711.643281 eV

     Ekin =     198.789676 Ry,      99.394838 Ha,    2704.671090 eV
     Encl =    -476.948650 Ry,    -238.474325 Ha,   -6489.216399 eV
     Eh   =      99.262081 Ry,      49.631041 Ha,    1350.529297 eV
     Exc  =     -20.405230 Ry,     -10.202615 Ha,    -277.627269 eV


     normalization and overlap integrals

     s(1S/1S) =  1.000000  <r> =   0.1765  <r2> =    0.0421  r(max) =   0.1139
     s(1S/2S) = -0.000000
     s(2S/2S) =  1.000000  <r> =   1.0049  <r2> =    1.2317  r(max) =   0.7617
     s(2P/2P) =  1.000000  <r> =   1.1050  <r2> =    1.6382  r(max) =   0.7066

     ------------------------ End of All-electron run ------------------------


     --------------------- Generating PAW atomic setup --------------------


      Generating local pot.: lloc=2, matching radius rcloc =   1.3000

      Computing core charge for nlcc: 

       r > 0.80 : true rho core
      Core charge pseudized with two Bessel functions
      Integrated core pseudo-charge :   0.04


      Wfc   2S  rcut= 1.003  Using Troullier-Martins method 
      Wfc-us  2S rcutus= 1.459  Estimated cut-off energy=    23.75 Ry


      Wfc   2S  rcut= 1.003  Using Troullier-Martins method 
      Wfc-us  2S rcutus= 1.459  Estimated cut-off energy=    43.61 Ry


      Wfc   2P  rcut= 1.003  Using Troullier-Martins method 
      Wfc-us  2P rcutus= 1.612  Estimated cut-off energy=    30.79 Ry


      Wfc   2P  rcut= 1.003  Using Troullier-Martins method 
      Wfc-us  2P rcutus= 1.612  Estimated cut-off energy=    44.83 Ry

      The bmat matrix
     1.95983     1.94888     0.00000     0.00000
     1.70002     1.59065     0.00000     0.00000
     0.00000     0.00000    -0.54728    -0.48063
     0.00000     0.00000    -0.27375    -0.27948

      The bmat + epsilon qq matrix
     2.10970     1.94333     0.00000     0.00000
     1.94336     1.58415     0.00000     0.00000
     0.00000     0.00000    -0.82416    -0.45808
     0.00000     0.00000    -0.45807    -0.26439

      The qq matrix
    -0.06838    -0.11103     0.00000     0.00000
    -0.11103    -0.13014     0.00000     0.00000
     0.00000     0.00000     0.33872     0.22550
     0.00000     0.00000     0.22550     0.15091


    multipoles (all-electron charge) - (pseudo charge)
        ns l1:ns1 l2    l=0     l=1     l=2     l=3     l=4     l=5  
         1  0:  1  0 -0.0684
         2  0:  1  0 -0.1110
         2  0:  2  0 -0.1301
         3  1:  1  0  0.0000 -0.1186
         3  1:  2  0  0.0000 -0.0602
         3  1:  3  1  0.3387  0.0000  0.1390
         4  1:  1  0  0.0000 -0.0684
         4  1:  2  0  0.0000 -0.0332
         4  1:  3  1  0.2255  0.0000  0.0859
         4  1:  4  1  0.1509  0.0000  0.0536
     Required augmentation: BESSEL
     Suggested rho cutoff for augmentation:  54.19 Ry

     Estimated PAW energy =  -59.031316 Ryd

     The PAW screened D coefficients
     2.10970     1.94333     0.00000     0.00000
     1.94333     1.58415     0.00000     0.00000
     0.00000     0.00000    -0.82414    -0.45808
     0.00000     0.00000    -0.45808    -0.26439

     The PAW descreened D coefficients (US)
     1.73974     0.97566     0.00000     0.00000
     0.97566     0.33310     0.00000     0.00000
     0.00000     0.00000     3.39088     2.32633
     0.00000     0.00000     2.32633     1.58668

     ------------------- End of pseudopotential generation -------------------

     --------------------------- All-electron run ----------------------------

     F                                                                          

     atomic number is  9.00
     dft = SLA  PW   PBX  PBC   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
     mesh =1105 r(mesh) =  99.76081 xmin = -7.00 dx = 0.01250
     1 Ry =  13.60569193 eV

     n l     nl                  e(Ry)          e(Ha)          e(eV)
     1 0     1S 1( 2.00)       -48.7034       -24.3517      -662.6435
     2 0     2S 1( 2.00)        -2.1917        -1.0959       -29.8198
     2 1     2P 1( 5.00)        -0.8174        -0.4087       -11.1215

     eps = 2.9E-15  iter = 35

     Etot =    -199.302123 Ry,     -99.651061 Ha,   -2711.643281 eV

     Ekin =     198.789676 Ry,      99.394838 Ha,    2704.671090 eV
     Encl =    -476.948650 Ry,    -238.474325 Ha,   -6489.216399 eV
     Eh   =      99.262081 Ry,      49.631041 Ha,    1350.529297 eV
     Exc  =     -20.405230 Ry,     -10.202615 Ha,    -277.627269 eV


     normalization and overlap integrals

     s(1S/1S) =  1.000000  <r> =   0.1765  <r2> =    0.0421  r(max) =   0.1139
     s(1S/2S) = -0.000000
     s(2S/2S) =  1.000000  <r> =   1.0049  <r2> =    1.2317  r(max) =   0.7617
     s(2P/2P) =  1.000000  <r> =   1.1050  <r2> =    1.6382  r(max) =   0.7066

     ------------------------ End of All-electron run ------------------------

     Computing logarithmic derivative in   1.64303
     Computing logarithmic derivative in   1.64303
     Computing the partial wave expansion 
       no projector for channel:   2

     ---------------------- Testing the pseudopotential ----------------------

     F                                                                          

     atomic number is  9.00   valence charge is  7.00
     dft = SLA  PW   PBX  PBC   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
     mesh =1105 r(mesh) =  99.76081 xmin = -7.00 dx = 0.01250

     n l     nl             e AE (Ry)        e PS (Ry)    De AE-PS (Ry) 
     1 0     2S   1( 2.00)       -2.19171       -2.19171        0.00000
     2 1     2P   1( 5.00)       -0.81742       -0.81741       -0.00000

     eps = 5.7E-15  iter =  3

     Etot =    -199.302123 Ry,     -99.651061 Ha,   -2711.643281 eV
     Etotps =   -59.031303 Ry,     -29.515651 Ha,    -803.161722 eV

     Ekin =      50.319797 Ry,      25.159898 Ha,     684.635650 eV
     Encl =    -131.379816 Ry,     -65.689908 Ha,   -1787.513297 eV
     Ehrt =      42.433944 Ry,      21.216972 Ha,     577.343171 eV
     Ecxc =     -20.405228 Ry,     -10.202614 Ha,    -277.627246 eV
     (Ecc =      -0.031434 Ry,      -0.015717 Ha,      -0.427688 eV)

     ---------------------- End of pseudopotential test ----------------------


     -------------- Test with a basis set of Bessel functions ----------

     Box size (a.u.) :   30.0

     Cutoff (Ry) :   10.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1087 Ry   -0.0085 Ry    0.0249 Ry
     E(L=1) =        -0.5344 Ry    0.0213 Ry    0.0601 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   12.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1481 Ry   -0.0095 Ry    0.0246 Ry
     E(L=1) =        -0.6440 Ry    0.0211 Ry    0.0593 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   14.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1644 Ry   -0.0100 Ry    0.0244 Ry
     E(L=1) =        -0.7201 Ry    0.0210 Ry    0.0587 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   16.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1791 Ry   -0.0106 Ry    0.0242 Ry
     E(L=1) =        -0.7546 Ry    0.0210 Ry    0.0585 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   18.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1846 Ry   -0.0108 Ry    0.0241 Ry
     E(L=1) =        -0.7873 Ry    0.0210 Ry    0.0582 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   20.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1879 Ry   -0.0110 Ry    0.0241 Ry
     E(L=1) =        -0.7998 Ry    0.0209 Ry    0.0581 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   22.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1897 Ry   -0.0112 Ry    0.0240 Ry
     E(L=1) =        -0.8074 Ry    0.0209 Ry    0.0580 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   24.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1906 Ry   -0.0113 Ry    0.0240 Ry
     E(L=1) =        -0.8118 Ry    0.0209 Ry    0.0580 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   26.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1911 Ry   -0.0114 Ry    0.0240 Ry
     E(L=1) =        -0.8143 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   28.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1913 Ry   -0.0114 Ry    0.0239 Ry
     E(L=1) =        -0.8153 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   30.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1913 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8156 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   32.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1913 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8158 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   34.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1913 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8158 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   36.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1913 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8159 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   38.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1913 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8159 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   40.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1914 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8159 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   42.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1914 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8159 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   44.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1914 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8160 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   46.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1914 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8160 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   48.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1914 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8161 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   50.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1914 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8161 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   52.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1915 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8161 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   54.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1915 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8161 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   56.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1915 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8161 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   58.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1915 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8162 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     Cutoff (Ry) :   60.0
                           N = 1       N = 2       N = 3
     E(L=0) =        -2.1915 Ry   -0.0115 Ry    0.0239 Ry
     E(L=1) =        -0.8162 Ry    0.0209 Ry    0.0579 Ry
     E(L=2) =         0.0367 Ry    0.0899 Ry    0.1618 Ry

     -------------- End of Bessel function test ------------------------