1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
# Copyright (C) 2016-2018 Quantum ESPRESSO
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License. See the file `License' in the root directory
# of the present distribution.
TEST-SUITE v6.4
------------------
Type 'make' for the list of possible options. Currently only PW, CP, PH, EPW
are supported.
'make compare' compare the latest run of tests (SERIAL or PARALLEl) and
redirect the output to a file called "out.XXX.`date +%Y%m%d_%H%M%S`"
'XXX' is replaced by the name of the package ('PW', 'CP', 'EPW')
Clean all test files and leave only benchmark reference via 'make clean'
command
REFERENCE OUTPUTS
-----------------
Most reference outputs have been computed using GCC 4.8.5 with the following
"configure" options:
./configure --enable-openmp --disable-parallel --with-netlib
DFLAGS = -D__OPENMP -D__GFORTRAN -D__STD_F95 -D__FFTW
CFLAGS = -O3 $(DFLAGS) $(IFLAGS)
F90FLAGS = $(FFLAGS) -x f95-cpp-input -fopenmp
FFLAGS = -O3 -g -fopenmp
FFLAGS_NOOPT = -O0 -g
LD = gfortran
LDFLAGS = -g -pthread -fopenmp
During execution:
OMP_NUM_THREADS = 4
#################################################################################################
# TEST DESCRIPTIONS and what is tested.
#################################################################################################
#################################################################################################
# PWSCF tests
#################################################################################################
######################
# pw_atom : O and Ni #
######################
The following features of the code are tested:
- occupancies from input, also with spin polarization
- PBE and spin-polarized PBE
- PBE and s-PBE stress
- atomic occupations: Ni d8s2 and d9s1
#####################
# pw_berry : PbTiO3 #
#####################
The following features of the code are tested:
- scf: Q function in real space (tqr=.true.)
- nscf: Berry phase calculation (with and without empty bands)
##################
# pw_b3lyp-O : O #
##################
The following features of the code are tested:
- B3LYP hybrid functional (spin polarized), Gamma
##################
# pw_b3lyp-h2o : H2O #
##################
The following features of the code are tested:
- structural optimization with B3LYP, unpolarized, Gamma
##################################
# pw_cluster : N and NH4 and H2O #
##################################
The following features of the code are tested:
- Martyna-Tuckermann method for isolated systems
- Makov-Payne correction for isolated systems
###############
# pw_dft : Si #
###############
The following features of the code are tested:
- Various flavours of XC (GGA, no hybrid-meta-nonlocal XC)
#########################
# pw_dipole : CO and Ni #
#########################
The following features of the code are tested:
- dipole field correction
#####################
# pw_electric : Si #
#####################
The following features of the code are tested:
- finite electric field using Berry's phase approach
#######################
# pw_eval_infix : Si #
#######################
The following features of the code are tested:
- parser
###################
# pw_gau-pbe : Si #
###################
The following features of the code are tested:
-GAU-PBE functional
###############
# pw_hse : Si #
###############
The following features of the code are tested:
- HSE hybrid functional, nq=1
- HSE hybrid functional, nq=2
- HSE hybrid functional, nq=4
####################
# pw_langevin : H2 #
####################
The following features of the code are tested:
- Langevin dynamics, Smart Monte Carlo algorithm
###################
# pw_lattice : H2 #
###################
The following features of the code are tested:
- all bravais lattices, CELL_PARAMETERS, a b c parameters
- Gamma and automatic k-points
##################
# pw_lda+U : FeO #
##################
The following features of the code are tested:
- LDA+U with standard and user-defined occupancies
- forces and stresses, gamma-only case
- lda_plus_u_kind=1, collinear and noncollinear
####################
# pw_lsda : Ni fcc #
####################
The following features of the code are tested:
- LSDA with starting magnetization and free occupancies
- core corrections
- davidson and cg diagonalizations
- simple, TF, local-TF mixing, ndim=4,8
- constrained occupancies: tot_magnetization, nelup+neldw
- LSDA stress
- non-scf calculation
###############
# pw_md : Si #
###############
The following features of the code are tested:
- verlet algorithm
- potential extrapolation
- wavefunction extrapolation
#####################
# pw_metaGGA : C4H6 #
#####################
The following features of the code are tested:
- meta-GGA
#####################
# pw_metal : Al fcc #
#####################
The following features of the code are tested:
- occupancies: all smearing schemes, tetrahedra
- stress in metals
- non-scf calculation with smearing and tetrahedra
########################
# pw_noncolin : Fe bcc #
########################
The following features of the code are tested:
- noncollinear magnetization
- davidson and cg diagonalizations
- constraints: atomic, atomic direction, total magnetization
- noncollinear stress
- non-scf calculation, tetrahedra
- hybrid functionals (norm-conserving)
##########################
# pw_paw-atom : O and Cu #
##########################
The following features of the code are tested:
- PAW
#####################
# pw_paw-bfgs : H2O #
#####################
The following features of the code are tested:
- PAW with bfgs
#######################
# pw_paw-vcbfgs : H2O #
#######################
The following features of the code are tested:
- PAW with variable-cell bfgs
##################
# pw_pbeq2d : Cu #
##################
The following features of the code are tested:
- Modified PBE functional PBEQ2D
###############
# pw_pbe : Si #
###############
The following features of the code are tested:
- BE0 hybrid functional, nq=1
- BE0 hybrid functional, nq=2
- BE0 hybrid functional, nq=4
#########################
# pw_plugin-pw2casino : #
#########################
The following features of the code are tested:
- interface with CASINO
#################
# pw_relax : CO #
#################
The following features of the code are tested:
- forces
- bfgs and damped dynamics
- energies, forces, bfgs with saw-like electric field
- bfgs with external forces
##################
# pw_relax2 : Al #
##################
The following features of the code are tested:
- forces in metals
- bfgs_ndim=3
###################
# pw_scf : Si fcc #
###################
The following features of the code are tested:
- davidson and cg diagonalizations
- simple, TF, local-TF mixing, ndim=4,8
- Gamma, automatic, list of k-points (tpiba, crystal, tpiba_b)
- disk_io, force_symmorphic, use_all_frac options
- stress with k-points and at Gamma
- non-scf calculation
- old "ncpp" format for pseudopotentials
#########################
# pw_spinorbit : Pt fcc #
#########################
The following features of the code are tested:
- spin-orbit + noncollinear magnetization
- spin-orbit stress
- non-scf calculation, tetrahedra
#######################################
# pw_uspp : Cu fcc and H2O and Ni fcc #
#######################################
The following features of the code are tested:
- US PP, both single and double grid
- davidson and cg diagonalizations
- simple, TF, local-TF mixing, ndim=4,8
- stress with single and double grid
- non-scf calculation
- hybrid functionals (pbe0/hse, gamma/k, real/G-space)
- old Vanderbilt format for pseudopotentials
- Fake coulombian (1/r) pseudopotential
- core corrections
- stress with core corrections
- non-scf calculation
####################
# pw_vc-relax : As #
####################
The following features of the code are tested:
- Variable-cell optimization (both damped dynamics and bfgs) at zero pressure and under an external pressure
#################
# pw_vc-md : As #
#################
The following features of the code are tested:
- Variable-cell dynamics (Wentzcovitch dynamics) at zero pressure and under an external pressure
##############
# pw_vdw : C #
##############
The following features of the code are tested:
- Dispersion (van der Waals) interactions with DFT-D2 and DFT-D3 (Grimme)
- As above, with vdW-DF[1-4] (nonlocal) functionals
- As above, with vdW-DF-C09 (nonlocal) functionals
- As above, Tkatchenko-Scheffler
- XDM dispersion correction.
#################################################################################################
# PH tests
#################################################################################################
#######################
# ph_base : Si, C, Ni #
#######################
The following features of the code are tested:
- Calculation of phonon frequencies for insulators and metals, using USPP and PAW
#################
# ph_metal : Al #
#################
The following features of the code are tested:
- Calculation of phonon frequencies, phonon DOS, el-ph for a nonmagnetic metals, using NCPP
######################
# ph_U_metal_us : Fe #
######################
The following features of the code are tested:
- Calculation of phonon frequencies for a ferromagnetic metal, with Hubbard U, using USPP
##########################
# ph_U_insulator_us : BN #
##########################
The following features of the code are tested:
- Calculation of phonon frequencies for a nonmagnetic insulator, with frac. translations,
with Hubbard U, using USPP
#######################
# ph_U_metal_paw : Ni #
#######################
The following features of the code are tested:
- Calculation of phonon frequencies for a ferromagnetic metal, with Hubbard U, using PAW
###########################
# ph_U_insulator_paw : BN #
###########################
The following features of the code are tested:
- Calculation of phonon frequencies for a nonmagnetic insulator, with frac. translations,
with Hubbard U, using PAW
#################################################################################################
# HP tests
#################################################################################################
############################
# hp_insulator_us : LiCoO2 #
############################
The following features of the code are tested:
- Calculation of U for a nonmagnetic insulator, with USPP
#######################################
# hp_insulator_us_intersiteV : LiCoO2 #
#######################################
The following features of the code are tested:
- Calculation of U and V for a nonmagnetic insulator, with USPP
##############################
# hp_insulator_us_magn : NiO #
##############################
The following features of the code are tested:
- Calculation of U for an antiferromagnetic insulator, with USPP
##########################
# hp_insulator_paw : BN #
##########################
The following features of the code are tested:
- Calculation of U for a 2D nonmagnetic insulator, with PAW, with fractional translations
################################
# hp_insulator_paw_magn : CrI3 #
###############################
The following features of the code are tested:
- Calculation of U for a 2D ferromagnetic insulator, with PAW
#########################
# hp_metal_us_magn : Ni #
#########################
The following features of the code are tested:
- Calculation of U for a ferromagnetic metal, with USPP
##########################
# hp_metal_paw_magn : Fe #
##########################
The following features of the code are tested:
- Calculation of U for a ferromagnetic metal, with PAW
#########################################
# hp_metal_paw_magn_intersiteV : LiNiO2 #
#########################################
The following features of the code are tested:
- Calculation of U and V for a ferromagnetic metal (it is a metal even
at the DFT+U+V level for the rhombohedral structure), with PAW
#################################################################################################
# EPW tests
#################################################################################################
#############################
# epw_base: B-doped diamond #
#############################
The following features of the code are tested:
- Correct unfolding from IBZ to full BZ
- Correct Wannier interpolation
- Phonon & electron self-energy
- Eliashberg a2F
- Homogeneous fine k and q-grid integration
- Test nesting function
- Test spectral function
- Test parallel_k (epw1.in)
- Test parallel_q (epw2.in)
- Test restart feature epwread = .true. (epw2.in)
- Test band_plot (epw3.in)
- Test iverbosity = 1 (epw4.in)
- Test phonon spectral function (epw5.in)
- Test band parallelism, etf_mem 2 (epw6.in)
- Test restart feature (epw7.in)
- Test cumulant (epw8.in)
- Test Wannier function plot (epw11.in)
#################
# epw_metal: Pb #
#################
The following features of the code are tested:
- Test metals (epw.in)
- Test crystal ASR (epw2.in)
###############
# epw_mob: Si #
###############
The following features of the code are tested:
- Test crystal ASR and etf_mem 1 (epw1.in)
- Test scattering rates and mobility (epw2.in)
- Test restart option, same input as epw2.in (epw3.in)
- Test indirect absortpion (epw4.in)
####################
# epw_mob_ibte: Si #
####################
The following features of the code are tested:
- Test the iterative BTE without using k-point symmetry (epw2.in)
- Test scissor (epw2.in)
- Test multiple temperature (epw2.in)
- Test 2 Fermi level (VBM and CBM) calculation (epw2.in)
- Test restart feature of IBTE, same input as previous (epw3.in)
- Test the iterative BTE without k-point symmetry (epw4.in)
Note 1: scf.in, nscf.in, ph.in and epw1.in are given but not tested (too long)
Note 2: epw2.in and epw3.in should give the same results but
slightly differs because of convergence and symmetries being not exact
(two k-points related by symmetry do not yield exactly the same results).
##############
# epw_pl: Si #
##############
The following features of the code are tested:
- Test plasmon spectral functions (epw1.in)
##################
# epw_polar: SiC #
##################
The following features of the code are tested:
- Test the polar Wannier interpolation (epw1.in)
- Test band parallelism with polar (epw2.in)
- Test screening (epw3.in)
###############
# epw_soc: Pb #
###############
The following features of the code are tested:
- Test SOC (epw.in)
- Test crystal ASR with SOC (epw2.in)
###################
# epw_super: MgB2 #
###################
The following features of the code are tested:
- Test isotropic Eliashberg superconductivity (epw1.in)
- Test anisotropic Eliashberg superconductivity (epw2.in)
- Test anisotropic Eliashberg superconductivity restart from interrupted q-point while writing ephmat using 'restart.fmt' (epw3.in)
- Test anisotropic Eliashberg superconductivity restart by reading ephmat files (after writing ephmat files) (epw4.in)
#################
# epw_trev: SiC #
#################
The following features of the code are tested:
- Time-reversal symmetry when inversion sym. is not part of the small group of q. (epw.in)
######################
# epw_trev_uspp: SiC #
######################
The following features of the code are tested:
- Time-reversal symmetry when inversion sym. is not part of the small group of q
in calculation using ultrasoft pseudopotentials. (epw.in)
#####################
# epw_trev_paw: SiC #
#####################
The following features of the code are tested:
- Time-reversal symmetry when inversion sym. is not part of the small group of q
in calculation using PAW datasets. (epw.in)
####################
# not_epw_comp: Si #
####################
This test is to compare electron-phonon matrix element produced directly by the phonon code
and by EPW. It requires modification to the phonon code.
Note that this folder is NOT tested in the test-suite but is here as it can be useful.
|