1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
!
! Copyright (C) 2001-2007 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine read_ncpp (iunps, np, upf)
!-----------------------------------------------------------------------
!
USE upf_kinds, only: dp
USE upf_params, ONLY: lmaxx
USE pseudo_types
implicit none
!
TYPE (pseudo_upf) :: upf
integer :: iunps, np
!
real(DP) :: cc(2), alpc(2), aps(6,0:3), alps(3,0:3), &
a_nlcc, b_nlcc, alpha_nlcc
real(DP) :: x, vll
real(DP), allocatable:: vnl(:,:)
real(DP), parameter :: rcut = 10.d0, e2 = 2.d0
real(DP), external :: upf_erf
integer :: nlc, nnl, lmax, lloc, ll(1)
integer :: nb, i, l, ir, ios=0
logical :: bhstype, numeric
!
!====================================================================
! read norm-conserving PPs
!
read (iunps, *, end=300, err=300, iostat=ios) upf%dft
if (upf%dft(1:2) .eq.'**') upf%dft = 'PZ'
read (iunps, *, err=300, iostat=ios) upf%psd, upf%zp, lmax, nlc, &
nnl, upf%nlcc, lloc, bhstype
if (nlc > 2 .or. nnl > 3) &
call upf_error ('read_ncpp', 'Wrong nlc or nnl', np)
if (nlc*nnl < 0) call upf_error ('read_ncpp', 'nlc*nnl < 0 ? ', np)
if (upf%zp <= 0d0 .or. upf%zp > 100 ) &
call upf_error ('read_ncpp', 'Wrong zp ', np)
!
! In numeric pseudopotentials both nlc and nnl are zero.
!
numeric = (nlc <= 0) .and. (nnl <= 0)
!
if (lloc == -1000) lloc = lmax
if (lloc < 0 .or. lmax < 0 .or. &
.not.numeric .and. (lloc > min(lmax+1,lmaxx+1) .or. &
lmax > max(lmaxx,lloc)) .or. &
numeric .and. (lloc > lmax .or. lmax > lmaxx) ) &
call upf_error ('read_ncpp', 'wrong lmax and/or lloc', np)
if (.not.numeric ) then
!
! read here pseudopotentials in analytic form
!
read (iunps, *, err=300, iostat=ios) &
(alpc(i), i=1,2), (cc(i), i=1,2)
if (abs (cc(1)+cc(2)-1.d0) > 1.0d-6) &
call upf_error ('read_ncpp', 'wrong pseudopotential coefficients', 1)
do l = 0, lmax
read (iunps, *, err=300, iostat=ios) (alps(i,l), i=1,3), &
(aps(i,l), i=1,6)
enddo
if (upf%nlcc ) then
read (iunps, *, err=300, iostat=ios) &
a_nlcc, b_nlcc, alpha_nlcc
if (alpha_nlcc <= 0.d0) call upf_error('read_ncpp','alpha_nlcc=0',np)
endif
endif
read (iunps, *, err=300, iostat=ios) upf%zmesh, upf%xmin, upf%dx, &
upf%mesh, upf%nwfc
if ( upf%mesh <= 0) &
call upf_error ('read_ncpp', 'wrong number of mesh points', np)
if ( upf%nwfc < 0 .or. &
(upf%nwfc < lmax .and. lloc == lmax) .or. &
(upf%nwfc < lmax+1 .and. lloc /= lmax) ) &
call upf_error ('read_ncpp', 'wrong no. of wfcts', np)
!
! Here pseudopotentials in numeric form are read
!
ALLOCATE ( upf%chi(upf%mesh,upf%nwfc), upf%rho_atc(upf%mesh) )
upf%rho_atc(:) = 0.d0
ALLOCATE ( upf%lchi(upf%nwfc), upf%oc(upf%nwfc) )
allocate (vnl(upf%mesh, 0:lmax))
if (numeric ) then
do l = 0, lmax
read (iunps, '(a)', err=300, iostat=ios)
read (iunps, *, err=300, iostat=ios) (vnl(ir,l), ir=1,upf%mesh )
enddo
if ( upf%nlcc ) then
read (iunps, *, err=300, iostat=ios) (upf%rho_atc(ir), ir=1,upf%mesh)
endif
endif
!
! Here pseudowavefunctions (in numeric form) are read
!
do nb = 1, upf%nwfc
read (iunps, '(a)', err=300, iostat=ios)
read (iunps, *, err=300, iostat=ios) upf%lchi(nb), upf%oc(nb)
!
! Test lchi and occupation numbers
!
if (nb <= lmax .and. upf%lchi(nb)+1 /= nb) &
call upf_error ('read_ncpp', 'order of wavefunctions', 1)
if (upf%lchi(nb) > lmaxx .or. upf%lchi(nb) < 0) &
call upf_error ('read_ncpp', 'wrong lchi', np)
if (upf%oc(nb) < 0.d0 .or. upf%oc(nb) > 2.d0*(2*upf%lchi(nb)+1)) &
call upf_error ('read_ncpp', 'wrong oc', np)
read (iunps, *, err=300, iostat=ios) ( upf%chi(ir,nb), ir=1,upf%mesh )
enddo
!
!====================================================================
! PP read: now setup
!
IF ( numeric ) THEN
upf%generated='Generated by old ld1 code (numerical format)'
ELSE
upf%generated='From published tables, or generated by old fitcar code (analytical format)'
END IF
!
! calculate the number of beta functions
!
upf%nbeta = 0
do l = 0, lmax
if (l /= lloc ) upf%nbeta = upf%nbeta + 1
enddo
ALLOCATE ( upf%lll(upf%nbeta) )
nb = 0
do l = 0, lmax
if (l /= lloc ) then
nb = nb + 1
upf%lll (nb) = l
end if
enddo
!
! compute the radial mesh
!
ALLOCATE ( upf%r(upf%mesh), upf%rab(upf%mesh) )
do ir = 1, upf%mesh
x = upf%xmin + DBLE (ir - 1) * upf%dx
upf%r(ir) = exp (x) / upf%zmesh
upf%rab(ir) = upf%dx * upf%r(ir)
enddo
do ir = 1, upf%mesh
if ( upf%r(ir) > rcut) then
upf%kkbeta = ir
go to 5
end if
end do
upf%kkbeta = upf%mesh
!
! ... force kkbeta to be odd for simpson integration (obsolete?)
!
5 upf%kkbeta = 2 * ( ( upf%kkbeta + 1 ) / 2) - 1
!
ALLOCATE ( upf%kbeta(upf%nbeta) )
upf%kbeta(:) = upf%kkbeta
ALLOCATE ( upf%vloc(upf%mesh) )
upf%vloc (:) = 0.d0
!
if (.not. numeric) then
!
! bring analytic potentials into numerical form
!
IF ( nlc == 2 .AND. nnl == 3 .AND. bhstype ) THEN
ll(1) = lmax ! workaround for NAG compiler
CALL bachel( alps(1,0), aps(1,0), 1, ll )
END IF
!
do i = 1, nlc
do ir = 1, upf%kkbeta
upf%vloc (ir) = upf%vloc (ir) - upf%zp * e2 * cc (i) * &
upf_erf ( sqrt (alpc(i)) * upf%r(ir) ) / upf%r(ir)
end do
end do
do l = 0, lmax
vnl (:, l) = upf%vloc (1:upf%mesh)
do i = 1, nnl
vnl (:, l) = vnl (:, l) + e2 * (aps (i, l) + &
aps (i + 3, l) * upf%r (:) **2) * &
exp ( - upf%r(:) **2 * alps (i, l) )
enddo
enddo
if ( upf%nlcc ) then
upf%rho_atc(:) = ( a_nlcc + b_nlcc*upf%r(:)**2 ) * &
exp ( -upf%r(:)**2 * alpha_nlcc )
end if
!
end if
!
! assume l=lloc as local part and subtract from the other channels
!
if (lloc <= lmax ) &
upf%vloc (:) = vnl (:, lloc)
! lloc > lmax is allowed for PP in analytical form only
! it means that only the erf part is taken as local part
do l = 0, lmax
if (l /= lloc) vnl (:, l) = vnl(:, l) - upf%vloc(:)
enddo
!
! compute the atomic charges
!
ALLOCATE ( upf%rho_at (upf%mesh) )
upf%rho_at(:) = 0.d0
do nb = 1, upf%nwfc
if ( upf%oc(nb) > 0.d0) then
do ir = 1, upf%mesh
upf%rho_at(ir) = upf%rho_at(ir) + upf%oc(nb) * upf%chi(ir,nb)**2
enddo
endif
enddo
!====================================================================
! convert to separable (KB) form
!
ALLOCATE ( upf%beta (upf%mesh, upf%nbeta) )
ALLOCATE ( upf%dion (upf%nbeta,upf%nbeta) )
upf%dion (:,:) = 0.d0
nb = 0
do l = 0, lmax
if (l /= lloc ) then
nb = nb + 1
! upf%beta is used here as work space
do ir = 1, upf%kkbeta
upf%beta (ir, nb) = upf%chi(ir, l+1) **2 * vnl(ir, l)
end do
call simpson (upf%kkbeta, upf%beta (1, nb), upf%rab, vll )
upf%dion (nb, nb) = 1.d0 / vll
! upf%beta stores projectors |beta(r)> = |V_nl(r)phi(r)>
do ir = 1, upf%kkbeta
upf%beta (ir, nb) = vnl (ir, l) * upf%chi (ir, l + 1)
enddo
upf%lll (nb) = l
endif
enddo
deallocate (vnl)
!
! for compatibility with USPP and other formats
!
upf%nqf = 0
upf%nqlc= 0
upf%tvanp =.false.
upf%tpawp =.false.
upf%has_so=.false.
upf%has_wfc=.false.
upf%has_gipaw=.false.
upf%tcoulombp=.false.
upf%is_gth=.false.
upf%is_multiproj=.false.
!
! Set additional, not present, variables to dummy values
allocate(upf%els(upf%nwfc))
upf%els(:) = 'nX'
allocate(upf%els_beta(upf%nbeta))
upf%els_beta(:) = 'nX'
allocate(upf%rcut(upf%nbeta), upf%rcutus(upf%nbeta))
upf%rcut(:) = 0._dp
upf%rcutus(:) = 0._dp
!
return
300 call upf_error ('read_ncpp', 'pseudo file is empty or wrong', abs (np) )
end subroutine read_ncpp
!
!----------------------------------------------------------------------
subroutine bachel (alps, aps, npseu, lmax)
!----------------------------------------------------------------------
!
USE upf_kinds, ONLY : DP
USE upf_const, ONLY : pi
implicit none
!
! First I/O variables
!
integer :: npseu, lmax (npseu)
! input: number of pseudopotential
! input: max. angul. momentum of the ps
real(DP) :: alps (3, 0:3, npseu), aps (6, 0:3, npseu)
! input: the b_l coefficient
! in/out: the a_l coefficient
!
! Here local variables
!
integer :: np, lmx, l, i, j, k, ia, ka, nik
! counter on number of pseudopot.
! aux. var. (max. ang. mom. of a fix. ps
! counter on angular momentum
real(DP) :: s (6, 6), alpl, alpi, ail
! auxiliary array
! first real aux. var. (fix. value of al
! second real aux. var. (fix. value of a
! third real aux. var.
!
do np = 1, npseu
lmx = lmax (np)
do l = 0, lmx
do k = 1, 6
ka = mod (k - 1, 3) + 1
alpl = alps (ka, l, np)
do i = 1, k
ia = mod (i - 1, 3) + 1
alpi = alps (ia, l, np)
ail = alpi + alpl
s (i, k) = sqrt (pi / ail) / 4.d0 / ail
nik = int ( (k - 1) / 3) + int ( (i - 1) / 3) + 1
do j = 2, nik
s (i, k) = s (i, k) / 2.d0 / ail * (2 * j - 1)
enddo
enddo
enddo
!
do i = 1, 6
do j = i, 6
do k = 1, i - 1
s (i, j) = s (i, j) - s (k, i) * s (k, j)
enddo
if (i.eq.j) then
s (i, i) = sqrt (s (i, i) )
else
s (i, j) = s (i, j) / s (i, i)
endif
enddo
enddo
!
aps (6, l, np) = - aps (6, l, np) / s (6, 6)
do i = 5, 1, - 1
aps (i, l, np) = - aps (i, l, np)
do k = i + 1, 6
aps (i, l, np) = aps (i, l, np) - aps (k, l, np) * s (i, k)
enddo
aps (i, l, np) = aps (i, l, np) / s (i, i)
enddo
enddo
enddo
return
end subroutine bachel
|