File: esptool.py

package info (click to toggle)
esptool 2.8%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,248 kB
  • sloc: ansic: 5,093; python: 3,817; makefile: 103; sh: 50
file content (3101 lines) | stat: -rwxr-xr-x 127,873 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
#!/usr/bin/python3
#
# ESP8266 & ESP32 ROM Bootloader Utility
# Copyright (C) 2014-2016 Fredrik Ahlberg, Angus Gratton, Espressif Systems (Shanghai) PTE LTD, other contributors as noted.
# https://github.com/espressif/esptool
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301 USA.

from __future__ import division, print_function

import argparse
import base64
import binascii
import copy
import hashlib
import inspect
import io
import os
import shlex
import struct
import sys
import time
import zlib
import string

try:
    import serial
except ImportError:
    print("Pyserial is not installed for %s. Check the README for installation instructions." % (sys.executable))
    raise

# check 'serial' is 'pyserial' and not 'serial' https://github.com/espressif/esptool/issues/269
try:
    if "serialization" in serial.__doc__ and "deserialization" in serial.__doc__:
        raise ImportError("""
esptool.py depends on pyserial, but there is a conflict with a currently installed package named 'serial'.

You may be able to work around this by 'pip uninstall serial; pip install pyserial' \
but this may break other installed Python software that depends on 'serial'.

There is no good fix for this right now, apart from configuring virtualenvs. \
See https://github.com/espressif/esptool/issues/269#issuecomment-385298196 for discussion of the underlying issue(s).""")
except TypeError:
    pass  # __doc__ returns None for pyserial

try:
    import serial.tools.list_ports as list_ports
except ImportError:
    print("The installed version (%s) of pyserial appears to be too old for esptool.py (Python interpreter %s). "
          "Check the README for installation instructions." % (sys.VERSION, sys.executable))
    raise

__version__ = "2.8"

MAX_UINT32 = 0xffffffff
MAX_UINT24 = 0xffffff

DEFAULT_TIMEOUT = 3                   # timeout for most flash operations
START_FLASH_TIMEOUT = 20              # timeout for starting flash (may perform erase)
CHIP_ERASE_TIMEOUT = 120              # timeout for full chip erase
MAX_TIMEOUT = CHIP_ERASE_TIMEOUT * 2  # longest any command can run
SYNC_TIMEOUT = 0.1                    # timeout for syncing with bootloader
MD5_TIMEOUT_PER_MB = 8                # timeout (per megabyte) for calculating md5sum
ERASE_REGION_TIMEOUT_PER_MB = 30      # timeout (per megabyte) for erasing a region
MEM_END_ROM_TIMEOUT = 0.05            # special short timeout for ESP_MEM_END, as it may never respond
DEFAULT_SERIAL_WRITE_TIMEOUT = 10     # timeout for serial port write


def timeout_per_mb(seconds_per_mb, size_bytes):
    """ Scales timeouts which are size-specific """
    result = seconds_per_mb * (size_bytes / 1e6)
    if result < DEFAULT_TIMEOUT:
        return DEFAULT_TIMEOUT
    return result


DETECTED_FLASH_SIZES = {0x12: '256KB', 0x13: '512KB', 0x14: '1MB',
                        0x15: '2MB', 0x16: '4MB', 0x17: '8MB', 0x18: '16MB'}


def check_supported_function(func, check_func):
    """
    Decorator implementation that wraps a check around an ESPLoader
    bootloader function to check if it's supported.

    This is used to capture the multidimensional differences in
    functionality between the ESP8266 & ESP32 ROM loaders, and the
    software stub that runs on both. Not possible to do this cleanly
    via inheritance alone.
    """
    def inner(*args, **kwargs):
        obj = args[0]
        if check_func(obj):
            return func(*args, **kwargs)
        else:
            raise NotImplementedInROMError(obj, func)
    return inner


def stub_function_only(func):
    """ Attribute for a function only supported in the software stub loader """
    return check_supported_function(func, lambda o: o.IS_STUB)


def stub_and_esp32_function_only(func):
    """ Attribute for a function only supported by software stubs or ESP32 ROM """
    return check_supported_function(func, lambda o: o.IS_STUB or o.CHIP_NAME == "ESP32")


PYTHON2 = sys.version_info[0] < 3  # True if on pre-Python 3

# Function to return nth byte of a bitstring
# Different behaviour on Python 2 vs 3
if PYTHON2:
    def byte(bitstr, index):
        return ord(bitstr[index])
else:
    def byte(bitstr, index):
        return bitstr[index]

# Provide a 'basestring' class on Python 3
try:
    basestring
except NameError:
    basestring = str


def _mask_to_shift(mask):
    """ Return the index of the least significant bit in the mask """
    shift = 0
    while mask & 0x1 == 0:
        shift += 1
        mask >>= 1
    return shift


def esp8266_function_only(func):
    """ Attribute for a function only supported on ESP8266 """
    return check_supported_function(func, lambda o: o.CHIP_NAME == "ESP8266")


class ESPLoader(object):
    """ Base class providing access to ESP ROM & software stub bootloaders.
    Subclasses provide ESP8266 & ESP32 specific functionality.

    Don't instantiate this base class directly, either instantiate a subclass or
    call ESPLoader.detect_chip() which will interrogate the chip and return the
    appropriate subclass instance.

    """
    CHIP_NAME = "Espressif device"
    IS_STUB = False

    DEFAULT_PORT = "/dev/ttyUSB0"

    # Commands supported by ESP8266 ROM bootloader
    ESP_FLASH_BEGIN = 0x02
    ESP_FLASH_DATA  = 0x03
    ESP_FLASH_END   = 0x04
    ESP_MEM_BEGIN   = 0x05
    ESP_MEM_END     = 0x06
    ESP_MEM_DATA    = 0x07
    ESP_SYNC        = 0x08
    ESP_WRITE_REG   = 0x09
    ESP_READ_REG    = 0x0a

    # Some comands supported by ESP32 ROM bootloader (or -8266 w/ stub)
    ESP_SPI_SET_PARAMS = 0x0B
    ESP_SPI_ATTACH     = 0x0D
    ESP_CHANGE_BAUDRATE = 0x0F
    ESP_FLASH_DEFL_BEGIN = 0x10
    ESP_FLASH_DEFL_DATA  = 0x11
    ESP_FLASH_DEFL_END   = 0x12
    ESP_SPI_FLASH_MD5    = 0x13

    # Some commands supported by stub only
    ESP_ERASE_FLASH = 0xD0
    ESP_ERASE_REGION = 0xD1
    ESP_READ_FLASH = 0xD2
    ESP_RUN_USER_CODE = 0xD3

    # Flash encryption debug more command
    ESP_FLASH_ENCRYPT_DATA = 0xD4

    # Maximum block sized for RAM and Flash writes, respectively.
    ESP_RAM_BLOCK   = 0x1800

    FLASH_WRITE_SIZE = 0x400

    # Default baudrate. The ROM auto-bauds, so we can use more or less whatever we want.
    ESP_ROM_BAUD    = 115200

    # First byte of the application image
    ESP_IMAGE_MAGIC = 0xe9

    # Initial state for the checksum routine
    ESP_CHECKSUM_MAGIC = 0xef

    # Flash sector size, minimum unit of erase.
    FLASH_SECTOR_SIZE = 0x1000

    # This register happens to exist on both ESP8266 & ESP32
    UART_DATA_REG_ADDR = 0x60000078

    UART_CLKDIV_MASK = 0xFFFFF

    # Memory addresses
    IROM_MAP_START = 0x40200000
    IROM_MAP_END = 0x40300000

    # The number of bytes in the UART response that signify command status
    STATUS_BYTES_LENGTH = 2

    def __init__(self, port=DEFAULT_PORT, baud=ESP_ROM_BAUD, trace_enabled=False):
        """Base constructor for ESPLoader bootloader interaction

        Don't call this constructor, either instantiate ESP8266ROM
        or ESP32ROM, or use ESPLoader.detect_chip().

        This base class has all of the instance methods for bootloader
        functionality supported across various chips & stub
        loaders. Subclasses replace the functions they don't support
        with ones which throw NotImplementedInROMError().

        """
        if isinstance(port, basestring):
            self._port = serial.serial_for_url(port)
        else:
            self._port = port
        self._slip_reader = slip_reader(self._port, self.trace)
        # setting baud rate in a separate step is a workaround for
        # CH341 driver on some Linux versions (this opens at 9600 then
        # sets), shouldn't matter for other platforms/drivers. See
        # https://github.com/espressif/esptool/issues/44#issuecomment-107094446
        self._set_port_baudrate(baud)
        self._trace_enabled = trace_enabled
        # set write timeout, to prevent esptool blocked at write forever.
        try:
            self._port.write_timeout = DEFAULT_SERIAL_WRITE_TIMEOUT
        except NotImplementedError:
            # no write timeout for RFC2217 ports
            # need to set the property back to None or it will continue to fail
            self._port.write_timeout = None

    def _set_port_baudrate(self, baud):
        try:
            self._port.baudrate = baud
        except IOError:
            raise FatalError("Failed to set baud rate %d. The driver may not support this rate." % baud)

    @staticmethod
    def detect_chip(port=DEFAULT_PORT, baud=ESP_ROM_BAUD, connect_mode='default_reset', trace_enabled=False):
        """ Use serial access to detect the chip type.

        We use the UART's datecode register for this, it's mapped at
        the same address on ESP8266 & ESP32 so we can use one
        memory read and compare to the datecode register for each chip
        type.

        This routine automatically performs ESPLoader.connect() (passing
        connect_mode parameter) as part of querying the chip.
        """
        detect_port = ESPLoader(port, baud, trace_enabled=trace_enabled)
        detect_port.connect(connect_mode)
        try:
            print('Detecting chip type...', end='')
            sys.stdout.flush()
            date_reg = detect_port.read_reg(ESPLoader.UART_DATA_REG_ADDR)

            for cls in [ESP8266ROM, ESP32ROM]:
                if date_reg == cls.DATE_REG_VALUE:
                    # don't connect a second time
                    inst = cls(detect_port._port, baud, trace_enabled=trace_enabled)
                    print(' %s' % inst.CHIP_NAME, end='')
                    return inst
        finally:
            print('')  # end line
        raise FatalError("Unexpected UART datecode value 0x%08x. Failed to autodetect chip type." % date_reg)

    """ Read a SLIP packet from the serial port """
    def read(self):
        return next(self._slip_reader)

    """ Write bytes to the serial port while performing SLIP escaping """
    def write(self, packet):
        buf = b'\xc0' \
              + (packet.replace(b'\xdb',b'\xdb\xdd').replace(b'\xc0',b'\xdb\xdc')) \
              + b'\xc0'
        self.trace("Write %d bytes: %s", len(buf), HexFormatter(buf))
        self._port.write(buf)

    def trace(self, message, *format_args):
        if self._trace_enabled:
            now = time.time()
            try:

                delta = now - self._last_trace
            except AttributeError:
                delta = 0.0
            self._last_trace = now
            prefix = "TRACE +%.3f " % delta
            print(prefix + (message % format_args))

    """ Calculate checksum of a blob, as it is defined by the ROM """
    @staticmethod
    def checksum(data, state=ESP_CHECKSUM_MAGIC):
        for b in data:
            if type(b) is int:  # python 2/3 compat
                state ^= b
            else:
                state ^= ord(b)

        return state

    """ Send a request and read the response """
    def command(self, op=None, data=b"", chk=0, wait_response=True, timeout=DEFAULT_TIMEOUT):
        saved_timeout = self._port.timeout
        new_timeout = min(timeout, MAX_TIMEOUT)
        if new_timeout != saved_timeout:
            self._port.timeout = new_timeout

        try:
            if op is not None:
                self.trace("command op=0x%02x data len=%s wait_response=%d timeout=%.3f data=%s",
                           op, len(data), 1 if wait_response else 0, timeout, HexFormatter(data))
                pkt = struct.pack(b'<BBHI', 0x00, op, len(data), chk) + data
                self.write(pkt)

            if not wait_response:
                return

            # tries to get a response until that response has the
            # same operation as the request or a retries limit has
            # exceeded. This is needed for some esp8266s that
            # reply with more sync responses than expected.
            for retry in range(100):
                p = self.read()
                if len(p) < 8:
                    continue
                (resp, op_ret, len_ret, val) = struct.unpack('<BBHI', p[:8])
                if resp != 1:
                    continue
                data = p[8:]
                if op is None or op_ret == op:
                    return val, data
        finally:
            if new_timeout != saved_timeout:
                self._port.timeout = saved_timeout

        raise FatalError("Response doesn't match request")

    def check_command(self, op_description, op=None, data=b'', chk=0, timeout=DEFAULT_TIMEOUT):
        """
        Execute a command with 'command', check the result code and throw an appropriate
        FatalError if it fails.

        Returns the "result" of a successful command.
        """
        val, data = self.command(op, data, chk, timeout=timeout)

        # things are a bit weird here, bear with us

        # the status bytes are the last 2/4 bytes in the data (depending on chip)
        if len(data) < self.STATUS_BYTES_LENGTH:
            raise FatalError("Failed to %s. Only got %d byte status response." % (op_description, len(data)))
        status_bytes = data[-self.STATUS_BYTES_LENGTH:]
        # we only care if the first one is non-zero. If it is, the second byte is a reason.
        if byte(status_bytes, 0) != 0:
            raise FatalError.WithResult('Failed to %s' % op_description, status_bytes)

        # if we had more data than just the status bytes, return it as the result
        # (this is used by the md5sum command, maybe other commands?)
        if len(data) > self.STATUS_BYTES_LENGTH:
            return data[:-self.STATUS_BYTES_LENGTH]
        else:  # otherwise, just return the 'val' field which comes from the reply header (this is used by read_reg)
            return val

    def flush_input(self):
        self._port.flushInput()
        self._slip_reader = slip_reader(self._port, self.trace)

    def sync(self):
        self.command(self.ESP_SYNC, b'\x07\x07\x12\x20' + 32 * b'\x55',
                     timeout=SYNC_TIMEOUT)
        for i in range(7):
            self.command()

    def _setDTR(self, state):
        self._port.setDTR(state)

    def _setRTS(self, state):
        self._port.setRTS(state)
        # Work-around for adapters on Windows using the usbser.sys driver:
        # generate a dummy change to DTR so that the set-control-line-state
        # request is sent with the updated RTS state and the same DTR state
        self._port.setDTR(self._port.dtr)

    def _connect_attempt(self, mode='default_reset', esp32r0_delay=False):
        """ A single connection attempt, with esp32r0 workaround options """
        # esp32r0_delay is a workaround for bugs with the most common auto reset
        # circuit and Windows, if the EN pin on the dev board does not have
        # enough capacitance.
        #
        # Newer dev boards shouldn't have this problem (higher value capacitor
        # on the EN pin), and ESP32 revision 1 can't use this workaround as it
        # relies on a silicon bug.
        #
        # Details: https://github.com/espressif/esptool/issues/136
        last_error = None

        # If we're doing no_sync, we're likely communicating as a pass through
        # with an intermediate device to the ESP32
        if mode == "no_reset_no_sync":
            return last_error

        # issue reset-to-bootloader:
        # RTS = either CH_PD/EN or nRESET (both active low = chip in reset
        # DTR = GPIO0 (active low = boot to flasher)
        #
        # DTR & RTS are active low signals,
        # ie True = pin @ 0V, False = pin @ VCC.
        if mode != 'no_reset':
            self._setDTR(False)  # IO0=HIGH
            self._setRTS(True)   # EN=LOW, chip in reset
            time.sleep(0.1)
            if esp32r0_delay:
                # Some chips are more likely to trigger the esp32r0
                # watchdog reset silicon bug if they're held with EN=LOW
                # for a longer period
                time.sleep(1.2)
            self._setDTR(True)   # IO0=LOW
            self._setRTS(False)  # EN=HIGH, chip out of reset
            if esp32r0_delay:
                # Sleep longer after reset.
                # This workaround only works on revision 0 ESP32 chips,
                # it exploits a silicon bug spurious watchdog reset.
                time.sleep(0.4)  # allow watchdog reset to occur
            time.sleep(0.05)
            self._setDTR(False)  # IO0=HIGH, done

        for _ in range(5):
            try:
                self.flush_input()
                self._port.flushOutput()
                self.sync()
                return None
            except FatalError as e:
                if esp32r0_delay:
                    print('_', end='')
                else:
                    print('.', end='')
                sys.stdout.flush()
                time.sleep(0.05)
                last_error = e
        return last_error

    def connect(self, mode='default_reset'):
        """ Try connecting repeatedly until successful, or giving up """
        print('Connecting...', end='')
        sys.stdout.flush()
        last_error = None

        try:
            for _ in range(7):
                last_error = self._connect_attempt(mode=mode, esp32r0_delay=False)
                if last_error is None:
                    return
                last_error = self._connect_attempt(mode=mode, esp32r0_delay=True)
                if last_error is None:
                    return
        finally:
            print('')  # end 'Connecting...' line
        raise FatalError('Failed to connect to %s: %s' % (self.CHIP_NAME, last_error))

    def read_reg(self, addr):
        """ Read memory address in target """
        # we don't call check_command here because read_reg() function is called
        # when detecting chip type, and the way we check for success (STATUS_BYTES_LENGTH) is different
        # for different chip types (!)
        val, data = self.command(self.ESP_READ_REG, struct.pack('<I', addr))
        if byte(data, 0) != 0:
            raise FatalError.WithResult("Failed to read register address %08x" % addr, data)
        return val

    def write_reg(self, addr, value, mask=0xFFFFFFFF, delay_us=0):
        """ Write to memory address in target

        Note: mask option is not supported by stub loaders, use update_reg() function.
        """
        return self.check_command("write target memory", self.ESP_WRITE_REG,
                                  struct.pack('<IIII', addr, value, mask, delay_us))

    def update_reg(self, addr, mask, new_val):
        """ Update register at 'addr', replace the bits masked out by 'mask'
        with new_val. new_val is shifted left to match the LSB of 'mask'

        Returns just-written value of register.
        """
        shift = _mask_to_shift(mask)
        val = self.read_reg(addr)
        val &= ~mask
        val |= (new_val << shift) & mask
        self.write_reg(addr, val)

        return val

    """ Start downloading an application image to RAM """
    def mem_begin(self, size, blocks, blocksize, offset):
        if self.IS_STUB:  # check we're not going to overwrite a running stub with this data
            stub = self.STUB_CODE
            load_start = offset
            load_end = offset + size
            for (start, end) in [(stub["data_start"], stub["data_start"] + len(stub["data"])),
                                 (stub["text_start"], stub["text_start"] + len(stub["text"]))]:
                if load_start < end and load_end > start:
                    raise FatalError(("Software loader is resident at 0x%08x-0x%08x. " +
                                      "Can't load binary at overlapping address range 0x%08x-0x%08x. " +
                                      "Either change binary loading address, or use the --no-stub " +
                                      "option to disable the software loader.") % (start, end, load_start, load_end))

        return self.check_command("enter RAM download mode", self.ESP_MEM_BEGIN,
                                  struct.pack('<IIII', size, blocks, blocksize, offset))

    """ Send a block of an image to RAM """
    def mem_block(self, data, seq):
        return self.check_command("write to target RAM", self.ESP_MEM_DATA,
                                  struct.pack('<IIII', len(data), seq, 0, 0) + data,
                                  self.checksum(data))

    """ Leave download mode and run the application """
    def mem_finish(self, entrypoint=0):
        # Sending ESP_MEM_END usually sends a correct response back, however sometimes
        # (with ROM loader) the executed code may reset the UART or change the baud rate
        # before the transmit FIFO is empty. So in these cases we set a short timeout and
        # ignore errors.
        timeout = DEFAULT_TIMEOUT if self.IS_STUB else MEM_END_ROM_TIMEOUT
        data = struct.pack('<II', int(entrypoint == 0), entrypoint)
        try:
            return self.check_command("leave RAM download mode", self.ESP_MEM_END,
                                      data=data, timeout=timeout)
        except FatalError:
            if self.IS_STUB:
                raise
            pass

    """ Start downloading to Flash (performs an erase)

    Returns number of blocks (of size self.FLASH_WRITE_SIZE) to write.
    """
    def flash_begin(self, size, offset):
        num_blocks = (size + self.FLASH_WRITE_SIZE - 1) // self.FLASH_WRITE_SIZE
        erase_size = self.get_erase_size(offset, size)

        t = time.time()
        if self.IS_STUB:
            timeout = DEFAULT_TIMEOUT
        else:
            timeout = timeout_per_mb(ERASE_REGION_TIMEOUT_PER_MB, size)  # ROM performs the erase up front
        self.check_command("enter Flash download mode", self.ESP_FLASH_BEGIN,
                           struct.pack('<IIII', erase_size, num_blocks, self.FLASH_WRITE_SIZE, offset),
                           timeout=timeout)
        if size != 0 and not self.IS_STUB:
            print("Took %.2fs to erase flash block" % (time.time() - t))
        return num_blocks

    """ Write block to flash """
    def flash_block(self, data, seq, timeout=DEFAULT_TIMEOUT):
        self.check_command("write to target Flash after seq %d" % seq,
                           self.ESP_FLASH_DATA,
                           struct.pack('<IIII', len(data), seq, 0, 0) + data,
                           self.checksum(data),
                           timeout=timeout)

    """ Encrypt before writing to flash """
    def flash_encrypt_block(self, data, seq, timeout=DEFAULT_TIMEOUT):
        self.check_command("Write encrypted to target Flash after seq %d" % seq,
                           self.ESP_FLASH_ENCRYPT_DATA,
                           struct.pack('<IIII', len(data), seq, 0, 0) + data,
                           self.checksum(data),
                           timeout=timeout)

    """ Leave flash mode and run/reboot """
    def flash_finish(self, reboot=False):
        pkt = struct.pack('<I', int(not reboot))
        # stub sends a reply to this command
        self.check_command("leave Flash mode", self.ESP_FLASH_END, pkt)

    """ Run application code in flash """
    def run(self, reboot=False):
        # Fake flash begin immediately followed by flash end
        self.flash_begin(0, 0)
        self.flash_finish(reboot)

    """ Read SPI flash manufacturer and device id """
    def flash_id(self):
        SPIFLASH_RDID = 0x9F
        return self.run_spiflash_command(SPIFLASH_RDID, b"", 24)

    def parse_flash_size_arg(self, arg):
        try:
            return self.FLASH_SIZES[arg]
        except KeyError:
            raise FatalError("Flash size '%s' is not supported by this chip type. Supported sizes: %s"
                             % (arg, ", ".join(self.FLASH_SIZES.keys())))

    def run_stub(self, stub=None):
        if stub is None:
            if self.IS_STUB:
                raise FatalError("Not possible for a stub to load another stub (memory likely to overlap.)")
            stub = self.STUB_CODE

        # Upload
        print("Uploading stub...")
        for field in ['text', 'data']:
            if field in stub:
                offs = stub[field + "_start"]
                length = len(stub[field])
                blocks = (length + self.ESP_RAM_BLOCK - 1) // self.ESP_RAM_BLOCK
                self.mem_begin(length, blocks, self.ESP_RAM_BLOCK, offs)
                for seq in range(blocks):
                    from_offs = seq * self.ESP_RAM_BLOCK
                    to_offs = from_offs + self.ESP_RAM_BLOCK
                    self.mem_block(stub[field][from_offs:to_offs], seq)
        print("Running stub...")
        self.mem_finish(stub['entry'])

        p = self.read()
        if p != b'OHAI':
            raise FatalError("Failed to start stub. Unexpected response: %s" % p)
        print("Stub running...")
        return self.STUB_CLASS(self)

    @stub_and_esp32_function_only
    def flash_defl_begin(self, size, compsize, offset):
        """ Start downloading compressed data to Flash (performs an erase)

        Returns number of blocks (size self.FLASH_WRITE_SIZE) to write.
        """
        num_blocks = (compsize + self.FLASH_WRITE_SIZE - 1) // self.FLASH_WRITE_SIZE
        erase_blocks = (size + self.FLASH_WRITE_SIZE - 1) // self.FLASH_WRITE_SIZE

        t = time.time()
        if self.IS_STUB:
            write_size = size  # stub expects number of bytes here, manages erasing internally
            timeout = DEFAULT_TIMEOUT
        else:
            write_size = erase_blocks * self.FLASH_WRITE_SIZE  # ROM expects rounded up to erase block size
            timeout = timeout_per_mb(ERASE_REGION_TIMEOUT_PER_MB, write_size)  # ROM performs the erase up front
        print("Compressed %d bytes to %d..." % (size, compsize))
        self.check_command("enter compressed flash mode", self.ESP_FLASH_DEFL_BEGIN,
                           struct.pack('<IIII', write_size, num_blocks, self.FLASH_WRITE_SIZE, offset),
                           timeout=timeout)
        if size != 0 and not self.IS_STUB:
            # (stub erases as it writes, but ROM loaders erase on begin)
            print("Took %.2fs to erase flash block" % (time.time() - t))
        return num_blocks

    """ Write block to flash, send compressed """
    @stub_and_esp32_function_only
    def flash_defl_block(self, data, seq, timeout=DEFAULT_TIMEOUT):
        self.check_command("write compressed data to flash after seq %d" % seq,
                           self.ESP_FLASH_DEFL_DATA, struct.pack('<IIII', len(data), seq, 0, 0) + data, self.checksum(data), timeout=timeout)

    """ Leave compressed flash mode and run/reboot """
    @stub_and_esp32_function_only
    def flash_defl_finish(self, reboot=False):
        if not reboot and not self.IS_STUB:
            # skip sending flash_finish to ROM loader, as this
            # exits the bootloader. Stub doesn't do this.
            return
        pkt = struct.pack('<I', int(not reboot))
        self.check_command("leave compressed flash mode", self.ESP_FLASH_DEFL_END, pkt)
        self.in_bootloader = False

    @stub_and_esp32_function_only
    def flash_md5sum(self, addr, size):
        # the MD5 command returns additional bytes in the standard
        # command reply slot
        timeout = timeout_per_mb(MD5_TIMEOUT_PER_MB, size)
        res = self.check_command('calculate md5sum', self.ESP_SPI_FLASH_MD5, struct.pack('<IIII', addr, size, 0, 0),
                                 timeout=timeout)

        if len(res) == 32:
            return res.decode("utf-8")  # already hex formatted
        elif len(res) == 16:
            return hexify(res).lower()
        else:
            raise FatalError("MD5Sum command returned unexpected result: %r" % res)

    @stub_and_esp32_function_only
    def change_baud(self, baud):
        print("Changing baud rate to %d" % baud)
        # stub takes the new baud rate and the old one
        second_arg = self._port.baudrate if self.IS_STUB else 0
        self.command(self.ESP_CHANGE_BAUDRATE, struct.pack('<II', baud, second_arg))
        print("Changed.")
        self._set_port_baudrate(baud)
        time.sleep(0.05)  # get rid of crap sent during baud rate change
        self.flush_input()

    @stub_function_only
    def erase_flash(self):
        # depending on flash chip model the erase may take this long (maybe longer!)
        self.check_command("erase flash", self.ESP_ERASE_FLASH,
                           timeout=CHIP_ERASE_TIMEOUT)

    @stub_function_only
    def erase_region(self, offset, size):
        if offset % self.FLASH_SECTOR_SIZE != 0:
            raise FatalError("Offset to erase from must be a multiple of 4096")
        if size % self.FLASH_SECTOR_SIZE != 0:
            raise FatalError("Size of data to erase must be a multiple of 4096")
        timeout = timeout_per_mb(ERASE_REGION_TIMEOUT_PER_MB, size)
        self.check_command("erase region", self.ESP_ERASE_REGION, struct.pack('<II', offset, size), timeout=timeout)

    @stub_function_only
    def read_flash(self, offset, length, progress_fn=None):
        # issue a standard bootloader command to trigger the read
        self.check_command("read flash", self.ESP_READ_FLASH,
                           struct.pack('<IIII',
                                       offset,
                                       length,
                                       self.FLASH_SECTOR_SIZE,
                                       64))
        # now we expect (length // block_size) SLIP frames with the data
        data = b''
        while len(data) < length:
            p = self.read()
            data += p
            if len(data) < length and len(p) < self.FLASH_SECTOR_SIZE:
                raise FatalError('Corrupt data, expected 0x%x bytes but received 0x%x bytes' % (self.FLASH_SECTOR_SIZE, len(p)))
            self.write(struct.pack('<I', len(data)))
            if progress_fn and (len(data) % 1024 == 0 or len(data) == length):
                progress_fn(len(data), length)
        if progress_fn:
            progress_fn(len(data), length)
        if len(data) > length:
            raise FatalError('Read more than expected')

        digest_frame = self.read()
        if len(digest_frame) != 16:
            raise FatalError('Expected digest, got: %s' % hexify(digest_frame))
        expected_digest = hexify(digest_frame).upper()
        digest = hashlib.md5(data).hexdigest().upper()
        if digest != expected_digest:
            raise FatalError('Digest mismatch: expected %s, got %s' % (expected_digest, digest))
        return data

    def flash_spi_attach(self, hspi_arg):
        """Send SPI attach command to enable the SPI flash pins

        ESP8266 ROM does this when you send flash_begin, ESP32 ROM
        has it as a SPI command.
        """
        # last 3 bytes in ESP_SPI_ATTACH argument are reserved values
        arg = struct.pack('<I', hspi_arg)
        if not self.IS_STUB:
            # ESP32 ROM loader takes additional 'is legacy' arg, which is not
            # currently supported in the stub loader or esptool.py (as it's not usually needed.)
            is_legacy = 0
            arg += struct.pack('BBBB', is_legacy, 0, 0, 0)
        self.check_command("configure SPI flash pins", ESP32ROM.ESP_SPI_ATTACH, arg)

    def flash_set_parameters(self, size):
        """Tell the ESP bootloader the parameters of the chip

        Corresponds to the "flashchip" data structure that the ROM
        has in RAM.

        'size' is in bytes.

        All other flash parameters are currently hardcoded (on ESP8266
        these are mostly ignored by ROM code, on ESP32 I'm not sure.)
        """
        fl_id = 0
        total_size = size
        block_size = 64 * 1024
        sector_size = 4 * 1024
        page_size = 256
        status_mask = 0xffff
        self.check_command("set SPI params", ESP32ROM.ESP_SPI_SET_PARAMS,
                           struct.pack('<IIIIII', fl_id, total_size, block_size, sector_size, page_size, status_mask))

    def run_spiflash_command(self, spiflash_command, data=b"", read_bits=0):
        """Run an arbitrary SPI flash command.

        This function uses the "USR_COMMAND" functionality in the ESP
        SPI hardware, rather than the precanned commands supported by
        hardware. So the value of spiflash_command is an actual command
        byte, sent over the wire.

        After writing command byte, writes 'data' to MOSI and then
        reads back 'read_bits' of reply on MISO. Result is a number.
        """

        # SPI_USR register flags
        SPI_USR_COMMAND = (1 << 31)
        SPI_USR_MISO    = (1 << 28)
        SPI_USR_MOSI    = (1 << 27)

        # SPI registers, base address differs ESP32 vs 8266
        base = self.SPI_REG_BASE
        SPI_CMD_REG       = base + 0x00
        SPI_USR_REG       = base + 0x1C
        SPI_USR1_REG      = base + 0x20
        SPI_USR2_REG      = base + 0x24
        SPI_W0_REG        = base + self.SPI_W0_OFFS

        # following two registers are ESP32 only
        if self.SPI_HAS_MOSI_DLEN_REG:
            # ESP32 has a more sophisticated wayto set up "user" commands
            def set_data_lengths(mosi_bits, miso_bits):
                SPI_MOSI_DLEN_REG = base + 0x28
                SPI_MISO_DLEN_REG = base + 0x2C
                if mosi_bits > 0:
                    self.write_reg(SPI_MOSI_DLEN_REG, mosi_bits - 1)
                if miso_bits > 0:
                    self.write_reg(SPI_MISO_DLEN_REG, miso_bits - 1)
        else:

            def set_data_lengths(mosi_bits, miso_bits):
                SPI_DATA_LEN_REG = SPI_USR1_REG
                SPI_MOSI_BITLEN_S = 17
                SPI_MISO_BITLEN_S = 8
                mosi_mask = 0 if (mosi_bits == 0) else (mosi_bits - 1)
                miso_mask = 0 if (miso_bits == 0) else (miso_bits - 1)
                self.write_reg(SPI_DATA_LEN_REG,
                               (miso_mask << SPI_MISO_BITLEN_S) | (
                                   mosi_mask << SPI_MOSI_BITLEN_S))

        # SPI peripheral "command" bitmasks for SPI_CMD_REG
        SPI_CMD_USR  = (1 << 18)

        # shift values
        SPI_USR2_DLEN_SHIFT = 28

        if read_bits > 32:
            raise FatalError("Reading more than 32 bits back from a SPI flash operation is unsupported")
        if len(data) > 64:
            raise FatalError("Writing more than 64 bytes of data with one SPI command is unsupported")

        data_bits = len(data) * 8
        old_spi_usr = self.read_reg(SPI_USR_REG)
        old_spi_usr2 = self.read_reg(SPI_USR2_REG)
        flags = SPI_USR_COMMAND
        if read_bits > 0:
            flags |= SPI_USR_MISO
        if data_bits > 0:
            flags |= SPI_USR_MOSI
        set_data_lengths(data_bits, read_bits)
        self.write_reg(SPI_USR_REG, flags)
        self.write_reg(SPI_USR2_REG,
                       (7 << SPI_USR2_DLEN_SHIFT) | spiflash_command)
        if data_bits == 0:
            self.write_reg(SPI_W0_REG, 0)  # clear data register before we read it
        else:
            data = pad_to(data, 4, b'\00')  # pad to 32-bit multiple
            words = struct.unpack("I" * (len(data) // 4), data)
            next_reg = SPI_W0_REG
            for word in words:
                self.write_reg(next_reg, word)
                next_reg += 4
        self.write_reg(SPI_CMD_REG, SPI_CMD_USR)

        def wait_done():
            for _ in range(10):
                if (self.read_reg(SPI_CMD_REG) & SPI_CMD_USR) == 0:
                    return
            raise FatalError("SPI command did not complete in time")
        wait_done()

        status = self.read_reg(SPI_W0_REG)
        # restore some SPI controller registers
        self.write_reg(SPI_USR_REG, old_spi_usr)
        self.write_reg(SPI_USR2_REG, old_spi_usr2)
        return status

    def read_status(self, num_bytes=2):
        """Read up to 24 bits (num_bytes) of SPI flash status register contents
        via RDSR, RDSR2, RDSR3 commands

        Not all SPI flash supports all three commands. The upper 1 or 2
        bytes may be 0xFF.
        """
        SPIFLASH_RDSR  = 0x05
        SPIFLASH_RDSR2 = 0x35
        SPIFLASH_RDSR3 = 0x15

        status = 0
        shift = 0
        for cmd in [SPIFLASH_RDSR, SPIFLASH_RDSR2, SPIFLASH_RDSR3][0:num_bytes]:
            status += self.run_spiflash_command(cmd, read_bits=8) << shift
            shift += 8
        return status

    def write_status(self, new_status, num_bytes=2, set_non_volatile=False):
        """Write up to 24 bits (num_bytes) of new status register

        num_bytes can be 1, 2 or 3.

        Not all flash supports the additional commands to write the
        second and third byte of the status register. When writing 2
        bytes, esptool also sends a 16-byte WRSR command (as some
        flash types use this instead of WRSR2.)

        If the set_non_volatile flag is set, non-volatile bits will
        be set as well as volatile ones (WREN used instead of WEVSR).

        """
        SPIFLASH_WRSR = 0x01
        SPIFLASH_WRSR2 = 0x31
        SPIFLASH_WRSR3 = 0x11
        SPIFLASH_WEVSR = 0x50
        SPIFLASH_WREN = 0x06
        SPIFLASH_WRDI = 0x04

        enable_cmd = SPIFLASH_WREN if set_non_volatile else SPIFLASH_WEVSR

        # try using a 16-bit WRSR (not supported by all chips)
        # this may be redundant, but shouldn't hurt
        if num_bytes == 2:
            self.run_spiflash_command(enable_cmd)
            self.run_spiflash_command(SPIFLASH_WRSR, struct.pack("<H", new_status))

        # also try using individual commands (also not supported by all chips for num_bytes 2 & 3)
        for cmd in [SPIFLASH_WRSR, SPIFLASH_WRSR2, SPIFLASH_WRSR3][0:num_bytes]:
            self.run_spiflash_command(enable_cmd)
            self.run_spiflash_command(cmd, struct.pack("B", new_status & 0xFF))
            new_status >>= 8

        self.run_spiflash_command(SPIFLASH_WRDI)

    def get_crystal_freq(self):
        # Figure out the crystal frequency from the UART clock divider
        # Returns a normalized value in integer MHz (40 or 26 are the only supported values)
        #
        # The logic here is:
        # - We know that our baud rate and the ESP UART baud rate are roughly the same, or we couldn't communicate
        # - We can read the UART clock divider register to know how the ESP derives this from the APB bus frequency
        # - Multiplying these two together gives us the bus frequency which is either the crystal frequency (ESP32)
        #   or double the crystal frequency (ESP8266). See the self.XTAL_CLK_DIVIDER parameter for this factor.
        uart_div = self.read_reg(self.UART_CLKDIV_REG) & self.UART_CLKDIV_MASK
        est_xtal = (self._port.baudrate * uart_div) / 1e6 / self.XTAL_CLK_DIVIDER
        norm_xtal = 40 if est_xtal > 33 else 26
        if abs(norm_xtal - est_xtal) > 1:
            print("WARNING: Detected crystal freq %.2fMHz is quite different to normalized freq %dMHz. Unsupported crystal in use?" % (est_xtal, norm_xtal))
        return norm_xtal

    def hard_reset(self):
        self._setRTS(True)  # EN->LOW
        time.sleep(0.1)
        self._setRTS(False)

    def soft_reset(self, stay_in_bootloader):
        if not self.IS_STUB:
            if stay_in_bootloader:
                return  # ROM bootloader is already in bootloader!
            else:
                # 'run user code' is as close to a soft reset as we can do
                self.flash_begin(0, 0)
                self.flash_finish(False)
        else:
            if stay_in_bootloader:
                # soft resetting from the stub loader
                # will re-load the ROM bootloader
                self.flash_begin(0, 0)
                self.flash_finish(True)
            elif self.CHIP_NAME != "ESP8266":
                raise FatalError("Soft resetting is currently only supported on ESP8266")
            else:
                # running user code from stub loader requires some hacks
                # in the stub loader
                self.command(self.ESP_RUN_USER_CODE, wait_response=False)


class ESP8266ROM(ESPLoader):
    """ Access class for ESP8266 ROM bootloader
    """
    CHIP_NAME = "ESP8266"
    IS_STUB = False

    DATE_REG_VALUE = 0x00062000

    # OTP ROM addresses
    ESP_OTP_MAC0    = 0x3ff00050
    ESP_OTP_MAC1    = 0x3ff00054
    ESP_OTP_MAC3    = 0x3ff0005c

    SPI_REG_BASE    = 0x60000200
    SPI_W0_OFFS     = 0x40
    SPI_HAS_MOSI_DLEN_REG = False

    UART_CLKDIV_REG = 0x60000014

    XTAL_CLK_DIVIDER = 2

    FLASH_SIZES = {
        '512KB':0x00,
        '256KB':0x10,
        '1MB':0x20,
        '2MB':0x30,
        '4MB':0x40,
        '2MB-c1': 0x50,
        '4MB-c1':0x60,
        '8MB':0x80,
        '16MB':0x90,
    }

    BOOTLOADER_FLASH_OFFSET = 0

    MEMORY_MAP = [[0x3FF00000, 0x3FF00010, "DPORT"],
                  [0x3FFE8000, 0x40000000, "DRAM"],
                  [0x40100000, 0x40108000, "IRAM"],
                  [0x40201010, 0x402E1010, "IROM"]]

    def get_efuses(self):
        # Return the 128 bits of ESP8266 efuse as a single Python integer
        return (self.read_reg(0x3ff0005c) << 96 |
                self.read_reg(0x3ff00058) << 64 |
                self.read_reg(0x3ff00054) << 32 |
                self.read_reg(0x3ff00050))

    def get_chip_description(self):
        efuses = self.get_efuses()
        is_8285 = (efuses & ((1 << 4) | 1 << 80)) != 0  # One or the other efuse bit is set for ESP8285
        return "ESP8285" if is_8285 else "ESP8266EX"

    def get_chip_features(self):
        features = ["WiFi"]
        if self.get_chip_description() == "ESP8285":
            features += ["Embedded Flash"]
        return features

    def flash_spi_attach(self, hspi_arg):
        if self.IS_STUB:
            super(ESP8266ROM, self).flash_spi_attach(hspi_arg)
        else:
            # ESP8266 ROM has no flash_spi_attach command in serial protocol,
            # but flash_begin will do it
            self.flash_begin(0, 0)

    def flash_set_parameters(self, size):
        # not implemented in ROM, but OK to silently skip for ROM
        if self.IS_STUB:
            super(ESP8266ROM, self).flash_set_parameters(size)

    def chip_id(self):
        """ Read Chip ID from efuse - the equivalent of the SDK system_get_chip_id() function """
        id0 = self.read_reg(self.ESP_OTP_MAC0)
        id1 = self.read_reg(self.ESP_OTP_MAC1)
        return (id0 >> 24) | ((id1 & MAX_UINT24) << 8)

    def read_mac(self):
        """ Read MAC from OTP ROM """
        mac0 = self.read_reg(self.ESP_OTP_MAC0)
        mac1 = self.read_reg(self.ESP_OTP_MAC1)
        mac3 = self.read_reg(self.ESP_OTP_MAC3)
        if (mac3 != 0):
            oui = ((mac3 >> 16) & 0xff, (mac3 >> 8) & 0xff, mac3 & 0xff)
        elif ((mac1 >> 16) & 0xff) == 0:
            oui = (0x18, 0xfe, 0x34)
        elif ((mac1 >> 16) & 0xff) == 1:
            oui = (0xac, 0xd0, 0x74)
        else:
            raise FatalError("Unknown OUI")
        return oui + ((mac1 >> 8) & 0xff, mac1 & 0xff, (mac0 >> 24) & 0xff)

    def get_erase_size(self, offset, size):
        """ Calculate an erase size given a specific size in bytes.

        Provides a workaround for the bootloader erase bug."""

        sectors_per_block = 16
        sector_size = self.FLASH_SECTOR_SIZE
        num_sectors = (size + sector_size - 1) // sector_size
        start_sector = offset // sector_size

        head_sectors = sectors_per_block - (start_sector % sectors_per_block)
        if num_sectors < head_sectors:
            head_sectors = num_sectors

        if num_sectors < 2 * head_sectors:
            return (num_sectors + 1) // 2 * sector_size
        else:
            return (num_sectors - head_sectors) * sector_size

    def override_vddsdio(self, new_voltage):
        raise NotImplementedInROMError("Overriding VDDSDIO setting only applies to ESP32")


class ESP8266StubLoader(ESP8266ROM):
    """ Access class for ESP8266 stub loader, runs on top of ROM.
    """
    FLASH_WRITE_SIZE = 0x4000  # matches MAX_WRITE_BLOCK in stub_loader.c
    IS_STUB = True

    def __init__(self, rom_loader):
        self._port = rom_loader._port
        self._trace_enabled = rom_loader._trace_enabled
        self.flush_input()  # resets _slip_reader

    def get_erase_size(self, offset, size):
        return size  # stub doesn't have same size bug as ROM loader


ESP8266ROM.STUB_CLASS = ESP8266StubLoader


class ESP32ROM(ESPLoader):
    """Access class for ESP32 ROM bootloader

    """
    CHIP_NAME = "ESP32"
    IMAGE_CHIP_ID = 0
    IS_STUB = False

    DATE_REG_VALUE = 0x15122500

    IROM_MAP_START = 0x400d0000
    IROM_MAP_END   = 0x40400000
    DROM_MAP_START = 0x3F400000
    DROM_MAP_END   = 0x3F800000

    # ESP32 uses a 4 byte status reply
    STATUS_BYTES_LENGTH = 4

    SPI_REG_BASE   = 0x60002000
    EFUSE_REG_BASE = 0x6001a000

    DR_REG_SYSCON_BASE = 0x3ff66000

    SPI_W0_OFFS = 0x80
    SPI_HAS_MOSI_DLEN_REG = True

    UART_CLKDIV_REG = 0x3ff40014

    XTAL_CLK_DIVIDER = 1

    FLASH_SIZES = {
        '1MB':0x00,
        '2MB':0x10,
        '4MB':0x20,
        '8MB':0x30,
        '16MB':0x40
    }

    BOOTLOADER_FLASH_OFFSET = 0x1000

    OVERRIDE_VDDSDIO_CHOICES = ["1.8V", "1.9V", "OFF"]

    MEMORY_MAP = [[0x3F400000, 0x3F800000, "DROM"],
                  [0x3F800000, 0x3FC00000, "EXTRAM_DATA"],
                  [0x3FF80000, 0x3FF82000, "RTC_DRAM"],
                  [0x3FF90000, 0x40000000, "BYTE_ACCESSIBLE"],
                  [0x3FFAE000, 0x40000000, "DRAM"],
                  [0x3FFAE000, 0x40000000, "DMA"],
                  [0x3FFE0000, 0x3FFFFFFC, "DIRAM_DRAM"],
                  [0x40000000, 0x40070000, "IROM"],
                  [0x40070000, 0x40078000, "CACHE_PRO"],
                  [0x40078000, 0x40080000, "CACHE_APP"],
                  [0x40080000, 0x400A0000, "IRAM"],
                  [0x400A0000, 0x400BFFFC, "DIRAM_IRAM"],
                  [0x400C0000, 0x400C2000, "RTC_IRAM"],
                  [0x400D0000, 0x40400000, "IROM"],
                  [0x50000000, 0x50002000, "RTC_DATA"]]

    """ Try to read the BLOCK1 (encryption key) and check if it is valid """

    def is_flash_encryption_key_valid(self):

        """ Bit 0 of efuse_rd_disable[3:0] is mapped to BLOCK1
        this bit is at position 16 in EFUSE_BLK0_RDATA0_REG """
        word0 = self.read_efuse(0)
        rd_disable = (word0 >> 16) & 0x1

        # reading of BLOCK1 is NOT ALLOWED so we assume valid key is programmed
        if rd_disable:
            return True
        else:
            """ reading of BLOCK1 is ALLOWED so we will read and verify for non-zero.
            When ESP32 has not generated AES/encryption key in BLOCK1, the contents will be readable and 0.
            If the flash encryption is enabled it is expected to have a valid non-zero key. We break out on
            first occurance of non-zero value """
            key_word = [0] * 7
            for i in range(len(key_word)):
                key_word[i] = self.read_efuse(14 + i)
                # key is non-zero so break & return
                if key_word[i] != 0:
                    return True
            return False

    """ For flash encryption related commands we need to make sure
    user has programmed all the relevant efuse correctly so at
    the end of write_flash_encrypt esptool will verify the values
    of flash_crypt_config to be non zero if they are not read
    protected. If the values are zero a warning will be printed
    """

    def get_flash_crypt_config(self):
        """ bit 3 in efuse_rd_disable[3:0] is mapped to flash_crypt_config
        this bit is at position 19 in EFUSE_BLK0_RDATA0_REG """
        word0 = self.read_efuse(0)
        rd_disable = (word0 >> 19) & 0x1

        if rd_disable == 0:
            """ we can read the flash_crypt_config efuse value
            so go & read it (EFUSE_BLK0_RDATA5_REG[31:28]) """
            word5 = self.read_efuse(5)
            word5 = (word5 >> 28) & 0xF
            return word5
        else:
            # if read of the efuse is disabled we assume it is set correctly
            return 0xF

    def get_chip_description(self):
        word3 = self.read_efuse(3)
        word5 = self.read_efuse(5)
        apb_ctl_date = self.read_reg(self.DR_REG_SYSCON_BASE + 0x7C)
        rev_bit0 = (word3 >> 15) & 0x1
        rev_bit1 = (word5 >> 20) & 0x1
        rev_bit2 = (apb_ctl_date >> 31) & 0x1
        pkg_version = (word3 >> 9) & 0x07

        chip_name = {
            0: "ESP32D0WDQ6",
            1: "ESP32D0WDQ5",
            2: "ESP32D2WDQ5",
            5: "ESP32-PICO-D4",
        }.get(pkg_version, "unknown ESP32")

        chip_revision = 0
        if rev_bit0:
            if rev_bit1:
                if rev_bit2:
                    chip_revision = 3
                else:
                    chip_revision = 2
            else:
                chip_revision = 1
        return "%s (revision %d)" % (chip_name, chip_revision)

    def get_chip_features(self):
        features = ["WiFi"]
        word3 = self.read_efuse(3)

        # names of variables in this section are lowercase
        #  versions of EFUSE names as documented in TRM and
        # ESP-IDF efuse_reg.h

        chip_ver_dis_bt = word3 & (1 << 1)
        if chip_ver_dis_bt == 0:
            features += ["BT"]

        chip_ver_dis_app_cpu = word3 & (1 << 0)
        if chip_ver_dis_app_cpu:
            features += ["Single Core"]
        else:
            features += ["Dual Core"]

        chip_cpu_freq_rated = word3 & (1 << 13)
        if chip_cpu_freq_rated:
            chip_cpu_freq_low = word3 & (1 << 12)
            if chip_cpu_freq_low:
                features += ["160MHz"]
            else:
                features += ["240MHz"]

        pkg_version = (word3 >> 9) & 0x07
        if pkg_version in [2, 4, 5]:
            features += ["Embedded Flash"]

        word4 = self.read_efuse(4)
        adc_vref = (word4 >> 8) & 0x1F
        if adc_vref:
            features += ["VRef calibration in efuse"]

        blk3_part_res = word3 >> 14 & 0x1
        if blk3_part_res:
            features += ["BLK3 partially reserved"]

        word6 = self.read_efuse(6)
        coding_scheme = word6 & 0x3
        features += ["Coding Scheme %s" % {
            0: "None",
            1: "3/4",
            2: "Repeat (UNSUPPORTED)",
            3: "Invalid"}[coding_scheme]]

        return features

    def read_efuse(self, n):
        """ Read the nth word of the ESP3x EFUSE region. """
        return self.read_reg(self.EFUSE_REG_BASE + (4 * n))

    def chip_id(self):
        raise NotSupportedError(self, "chip_id")

    def read_mac(self):
        """ Read MAC from EFUSE region """
        words = [self.read_efuse(2), self.read_efuse(1)]
        bitstring = struct.pack(">II", *words)
        bitstring = bitstring[2:8]  # trim the 2 byte CRC
        try:
            return tuple(ord(b) for b in bitstring)
        except TypeError:  # Python 3, bitstring elements are already bytes
            return tuple(bitstring)

    def get_erase_size(self, offset, size):
        return size

    def override_vddsdio(self, new_voltage):
        new_voltage = new_voltage.upper()
        if new_voltage not in self.OVERRIDE_VDDSDIO_CHOICES:
            raise FatalError("The only accepted VDDSDIO overrides are '1.8V', '1.9V' and 'OFF'")
        RTC_CNTL_SDIO_CONF_REG = 0x3ff48074
        RTC_CNTL_XPD_SDIO_REG = (1 << 31)
        RTC_CNTL_DREFH_SDIO_M = (3 << 29)
        RTC_CNTL_DREFM_SDIO_M = (3 << 27)
        RTC_CNTL_DREFL_SDIO_M = (3 << 25)
        # RTC_CNTL_SDIO_TIEH = (1 << 23)  # not used here, setting TIEH=1 would set 3.3V output, not safe for esptool.py to do
        RTC_CNTL_SDIO_FORCE = (1 << 22)
        RTC_CNTL_SDIO_PD_EN = (1 << 21)

        reg_val = RTC_CNTL_SDIO_FORCE  # override efuse setting
        reg_val |= RTC_CNTL_SDIO_PD_EN
        if new_voltage != "OFF":
            reg_val |= RTC_CNTL_XPD_SDIO_REG  # enable internal LDO
        if new_voltage == "1.9V":
            reg_val |= (RTC_CNTL_DREFH_SDIO_M | RTC_CNTL_DREFM_SDIO_M | RTC_CNTL_DREFL_SDIO_M)  # boost voltage
        self.write_reg(RTC_CNTL_SDIO_CONF_REG, reg_val)
        print("VDDSDIO regulator set to %s" % new_voltage)


class ESP32StubLoader(ESP32ROM):
    """ Access class for ESP32 stub loader, runs on top of ROM.
    """
    FLASH_WRITE_SIZE = 0x4000  # matches MAX_WRITE_BLOCK in stub_loader.c
    STATUS_BYTES_LENGTH = 2  # same as ESP8266, different to ESP32 ROM
    IS_STUB = True

    def __init__(self, rom_loader):
        self._port = rom_loader._port
        self._trace_enabled = rom_loader._trace_enabled
        self.flush_input()  # resets _slip_reader


ESP32ROM.STUB_CLASS = ESP32StubLoader


class ESPBOOTLOADER(object):
    """ These are constants related to software ESP bootloader, working with 'v2' image files """

    # First byte of the "v2" application image
    IMAGE_V2_MAGIC = 0xea

    # First 'segment' value in a "v2" application image, appears to be a constant version value?
    IMAGE_V2_SEGMENT = 4


def LoadFirmwareImage(chip, filename):
    """ Load a firmware image. Can be for ESP8266 or ESP32. ESP8266 images will be examined to determine if they are
        original ROM firmware images (ESP8266ROMFirmwareImage) or "v2" OTA bootloader images.

        Returns a BaseFirmwareImage subclass, either ESP8266ROMFirmwareImage (v1) or ESP8266V2FirmwareImage (v2).
    """
    with open(filename, 'rb') as f:
        if chip.lower() == 'esp32':
            return ESP32FirmwareImage(f)
        else:  # Otherwise, ESP8266 so look at magic to determine the image type
            magic = ord(f.read(1))
            f.seek(0)
            if magic == ESPLoader.ESP_IMAGE_MAGIC:
                return ESP8266ROMFirmwareImage(f)
            elif magic == ESPBOOTLOADER.IMAGE_V2_MAGIC:
                return ESP8266V2FirmwareImage(f)
            else:
                raise FatalError("Invalid image magic number: %d" % magic)


class ImageSegment(object):
    """ Wrapper class for a segment in an ESP image
    (very similar to a section in an ELFImage also) """
    def __init__(self, addr, data, file_offs=None):
        self.addr = addr
        self.data = data
        self.file_offs = file_offs
        self.include_in_checksum = True
        if self.addr != 0:
            self.pad_to_alignment(4)  # pad all "real" ImageSegments 4 byte aligned length

    def copy_with_new_addr(self, new_addr):
        """ Return a new ImageSegment with same data, but mapped at
        a new address. """
        return ImageSegment(new_addr, self.data, 0)

    def split_image(self, split_len):
        """ Return a new ImageSegment which splits "split_len" bytes
        from the beginning of the data. Remaining bytes are kept in
        this segment object (and the start address is adjusted to match.) """
        result = copy.copy(self)
        result.data = self.data[:split_len]
        self.data = self.data[split_len:]
        self.addr += split_len
        self.file_offs = None
        result.file_offs = None
        return result

    def __repr__(self):
        r = "len 0x%05x load 0x%08x" % (len(self.data), self.addr)
        if self.file_offs is not None:
            r += " file_offs 0x%08x" % (self.file_offs)
        return r

    def pad_to_alignment(self, alignment):
        self.data = pad_to(self.data, alignment, b'\x00')


class ELFSection(ImageSegment):
    """ Wrapper class for a section in an ELF image, has a section
    name as well as the common properties of an ImageSegment. """
    def __init__(self, name, addr, data):
        super(ELFSection, self).__init__(addr, data)
        self.name = name.decode("utf-8")

    def __repr__(self):
        return "%s %s" % (self.name, super(ELFSection, self).__repr__())


class BaseFirmwareImage(object):
    SEG_HEADER_LEN = 8
    SHA256_DIGEST_LEN = 32

    """ Base class with common firmware image functions """
    def __init__(self):
        self.segments = []
        self.entrypoint = 0
        self.elf_sha256 = None
        self.elf_sha256_offset = 0

    def load_common_header(self, load_file, expected_magic):
        (magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack('<BBBBI', load_file.read(8))

        if magic != expected_magic:
            raise FatalError('Invalid firmware image magic=0x%x' % (magic))
        return segments

    def verify(self):
        if len(self.segments) > 16:
            raise FatalError('Invalid segment count %d (max 16). Usually this indicates a linker script problem.' % len(self.segments))

    def load_segment(self, f, is_irom_segment=False):
        """ Load the next segment from the image file """
        file_offs = f.tell()
        (offset, size) = struct.unpack('<II', f.read(8))
        self.warn_if_unusual_segment(offset, size, is_irom_segment)
        segment_data = f.read(size)
        if len(segment_data) < size:
            raise FatalError('End of file reading segment 0x%x, length %d (actual length %d)' % (offset, size, len(segment_data)))
        segment = ImageSegment(offset, segment_data, file_offs)
        self.segments.append(segment)
        return segment

    def warn_if_unusual_segment(self, offset, size, is_irom_segment):
        if not is_irom_segment:
            if offset > 0x40200000 or offset < 0x3ffe0000 or size > 65536:
                print('WARNING: Suspicious segment 0x%x, length %d' % (offset, size))

    def maybe_patch_segment_data(self, f, segment_data):
        """If SHA256 digest of the ELF file needs to be inserted into this segment, do so. Returns segment data."""
        segment_len = len(segment_data)
        file_pos = f.tell()  # file_pos is position in the .bin file
        if self.elf_sha256_offset >= file_pos and self.elf_sha256_offset < file_pos + segment_len:
            # SHA256 digest needs to be patched into this binary segment,
            # calculate offset of the digest inside the binary segment.
            patch_offset = self.elf_sha256_offset - file_pos
            # Sanity checks
            if patch_offset < self.SEG_HEADER_LEN or patch_offset + self.SHA256_DIGEST_LEN > segment_len:
                raise FatalError('Cannot place SHA256 digest on segment boundary' +
                                 '(elf_sha256_offset=%d, file_pos=%d, segment_size=%d)' %
                                 (self.elf_sha256_offset, file_pos, segment_len))
            if segment_data[patch_offset:patch_offset + self.SHA256_DIGEST_LEN] != b'\x00' * self.SHA256_DIGEST_LEN:
                raise FatalError('Contents of segment at SHA256 digest offset 0x%x are not all zero. Refusing to overwrite.' %
                                 self.elf_sha256_offset)
            assert(len(self.elf_sha256) == self.SHA256_DIGEST_LEN)
            # offset relative to the data part
            patch_offset -= self.SEG_HEADER_LEN
            segment_data = segment_data[0:patch_offset] + self.elf_sha256 + \
                segment_data[patch_offset + self.SHA256_DIGEST_LEN:]
        return segment_data

    def save_segment(self, f, segment, checksum=None):
        """ Save the next segment to the image file, return next checksum value if provided """
        segment_data = self.maybe_patch_segment_data(f, segment.data)
        f.write(struct.pack('<II', segment.addr, len(segment_data)))
        f.write(segment_data)
        if checksum is not None:
            return ESPLoader.checksum(segment_data, checksum)

    def read_checksum(self, f):
        """ Return ESPLoader checksum from end of just-read image """
        # Skip the padding. The checksum is stored in the last byte so that the
        # file is a multiple of 16 bytes.
        align_file_position(f, 16)
        return ord(f.read(1))

    def calculate_checksum(self):
        """ Calculate checksum of loaded image, based on segments in
        segment array.
        """
        checksum = ESPLoader.ESP_CHECKSUM_MAGIC
        for seg in self.segments:
            if seg.include_in_checksum:
                checksum = ESPLoader.checksum(seg.data, checksum)
        return checksum

    def append_checksum(self, f, checksum):
        """ Append ESPLoader checksum to the just-written image """
        align_file_position(f, 16)
        f.write(struct.pack(b'B', checksum))

    def write_common_header(self, f, segments):
        f.write(struct.pack('<BBBBI', ESPLoader.ESP_IMAGE_MAGIC, len(segments),
                            self.flash_mode, self.flash_size_freq, self.entrypoint))

    def is_irom_addr(self, addr):
        """ Returns True if an address starts in the irom region.
        Valid for ESP8266 only.
        """
        return ESP8266ROM.IROM_MAP_START <= addr < ESP8266ROM.IROM_MAP_END

    def get_irom_segment(self):
        irom_segments = [s for s in self.segments if self.is_irom_addr(s.addr)]
        if len(irom_segments) > 0:
            if len(irom_segments) != 1:
                raise FatalError('Found %d segments that could be irom0. Bad ELF file?' % len(irom_segments))
            return irom_segments[0]
        return None

    def get_non_irom_segments(self):
        irom_segment = self.get_irom_segment()
        return [s for s in self.segments if s != irom_segment]


class ESP8266ROMFirmwareImage(BaseFirmwareImage):
    """ 'Version 1' firmware image, segments loaded directly by the ROM bootloader. """

    ROM_LOADER = ESP8266ROM

    def __init__(self, load_file=None):
        super(ESP8266ROMFirmwareImage, self).__init__()
        self.flash_mode = 0
        self.flash_size_freq = 0
        self.version = 1

        if load_file is not None:
            segments = self.load_common_header(load_file, ESPLoader.ESP_IMAGE_MAGIC)

            for _ in range(segments):
                self.load_segment(load_file)
            self.checksum = self.read_checksum(load_file)

            self.verify()

    def default_output_name(self, input_file):
        """ Derive a default output name from the ELF name. """
        return input_file + '-'

    def save(self, basename):
        """ Save a set of V1 images for flashing. Parameter is a base filename. """
        # IROM data goes in its own plain binary file
        irom_segment = self.get_irom_segment()
        if irom_segment is not None:
            with open("%s0x%05x.bin" % (basename, irom_segment.addr - ESP8266ROM.IROM_MAP_START), "wb") as f:
                f.write(irom_segment.data)

        # everything but IROM goes at 0x00000 in an image file
        normal_segments = self.get_non_irom_segments()
        with open("%s0x00000.bin" % basename, 'wb') as f:
            self.write_common_header(f, normal_segments)
            checksum = ESPLoader.ESP_CHECKSUM_MAGIC
            for segment in normal_segments:
                checksum = self.save_segment(f, segment, checksum)
            self.append_checksum(f, checksum)


ESP8266ROM.BOOTLOADER_IMAGE = ESP8266ROMFirmwareImage


class ESP8266V2FirmwareImage(BaseFirmwareImage):
    """ 'Version 2' firmware image, segments loaded by software bootloader stub
        (ie Espressif bootloader or rboot)
    """

    ROM_LOADER = ESP8266ROM

    def __init__(self, load_file=None):
        super(ESP8266V2FirmwareImage, self).__init__()
        self.version = 2
        if load_file is not None:
            segments = self.load_common_header(load_file, ESPBOOTLOADER.IMAGE_V2_MAGIC)
            if segments != ESPBOOTLOADER.IMAGE_V2_SEGMENT:
                # segment count is not really segment count here, but we expect to see '4'
                print('Warning: V2 header has unexpected "segment" count %d (usually 4)' % segments)

            # irom segment comes before the second header
            #
            # the file is saved in the image with a zero load address
            # in the header, so we need to calculate a load address
            irom_segment = self.load_segment(load_file, True)
            irom_segment.addr = 0  # for actual mapped addr, add ESP8266ROM.IROM_MAP_START + flashing_addr + 8
            irom_segment.include_in_checksum = False

            first_flash_mode = self.flash_mode
            first_flash_size_freq = self.flash_size_freq
            first_entrypoint = self.entrypoint
            # load the second header

            segments = self.load_common_header(load_file, ESPLoader.ESP_IMAGE_MAGIC)

            if first_flash_mode != self.flash_mode:
                print('WARNING: Flash mode value in first header (0x%02x) disagrees with second (0x%02x). Using second value.'
                      % (first_flash_mode, self.flash_mode))
            if first_flash_size_freq != self.flash_size_freq:
                print('WARNING: Flash size/freq value in first header (0x%02x) disagrees with second (0x%02x). Using second value.'
                      % (first_flash_size_freq, self.flash_size_freq))
            if first_entrypoint != self.entrypoint:
                print('WARNING: Entrypoint address in first header (0x%08x) disagrees with second header (0x%08x). Using second value.'
                      % (first_entrypoint, self.entrypoint))

            # load all the usual segments
            for _ in range(segments):
                self.load_segment(load_file)
            self.checksum = self.read_checksum(load_file)

            self.verify()

    def default_output_name(self, input_file):
        """ Derive a default output name from the ELF name. """
        irom_segment = self.get_irom_segment()
        if irom_segment is not None:
            irom_offs = irom_segment.addr - ESP8266ROM.IROM_MAP_START
        else:
            irom_offs = 0
        return "%s-0x%05x.bin" % (os.path.splitext(input_file)[0],
                                  irom_offs & ~(ESPLoader.FLASH_SECTOR_SIZE - 1))

    def save(self, filename):
        with open(filename, 'wb') as f:
            # Save first header for irom0 segment
            f.write(struct.pack(b'<BBBBI', ESPBOOTLOADER.IMAGE_V2_MAGIC, ESPBOOTLOADER.IMAGE_V2_SEGMENT,
                                self.flash_mode, self.flash_size_freq, self.entrypoint))

            irom_segment = self.get_irom_segment()
            if irom_segment is not None:
                # save irom0 segment, make sure it has load addr 0 in the file
                irom_segment = irom_segment.copy_with_new_addr(0)
                irom_segment.pad_to_alignment(16)  # irom_segment must end on a 16 byte boundary
                self.save_segment(f, irom_segment)

            # second header, matches V1 header and contains loadable segments
            normal_segments = self.get_non_irom_segments()
            self.write_common_header(f, normal_segments)
            checksum = ESPLoader.ESP_CHECKSUM_MAGIC
            for segment in normal_segments:
                checksum = self.save_segment(f, segment, checksum)
            self.append_checksum(f, checksum)

        # calculate a crc32 of entire file and append
        # (algorithm used by recent 8266 SDK bootloaders)
        with open(filename, 'rb') as f:
            crc = esp8266_crc32(f.read())
        with open(filename, 'ab') as f:
            f.write(struct.pack(b'<I', crc))


# Backwards compatibility for previous API, remove in esptool.py V3
ESPFirmwareImage = ESP8266ROMFirmwareImage
OTAFirmwareImage = ESP8266V2FirmwareImage


def esp8266_crc32(data):
    """
    CRC32 algorithm used by 8266 SDK bootloader (and gen_appbin.py).
    """
    crc = binascii.crc32(data, 0) & 0xFFFFFFFF
    if crc & 0x80000000:
        return crc ^ 0xFFFFFFFF
    else:
        return crc + 1


class ESP32FirmwareImage(BaseFirmwareImage):
    """ ESP32 firmware image is very similar to V1 ESP8266 image,
    except with an additional 16 byte reserved header at top of image,
    and because of new flash mapping capabilities the flash-mapped regions
    can be placed in the normal image (just @ 64kB padded offsets).
    """

    ROM_LOADER = ESP32ROM

    # ROM bootloader will read the wp_pin field if SPI flash
    # pins are remapped via flash. IDF actually enables QIO only
    # from software bootloader, so this can be ignored. But needs
    # to be set to this value so ROM bootloader will skip it.
    WP_PIN_DISABLED = 0xEE

    EXTENDED_HEADER_STRUCT_FMT = "<BBBBHB" + ("B" * 8) + "B"

    IROM_ALIGN = 65536

    def __init__(self, load_file=None):
        super(ESP32FirmwareImage, self).__init__()
        self.secure_pad = False
        self.flash_mode = 0
        self.flash_size_freq = 0
        self.version = 1
        self.wp_pin = self.WP_PIN_DISABLED
        # SPI pin drive levels
        self.clk_drv = 0
        self.q_drv = 0
        self.d_drv = 0
        self.cs_drv = 0
        self.hd_drv = 0
        self.wp_drv = 0
        self.min_rev = 0

        self.append_digest = True

        if load_file is not None:
            start = load_file.tell()

            segments = self.load_common_header(load_file, ESPLoader.ESP_IMAGE_MAGIC)
            self.load_extended_header(load_file)

            for _ in range(segments):
                self.load_segment(load_file)
            self.checksum = self.read_checksum(load_file)

            if self.append_digest:
                end = load_file.tell()
                self.stored_digest = load_file.read(32)
                load_file.seek(start)
                calc_digest = hashlib.sha256()
                calc_digest.update(load_file.read(end - start))
                self.calc_digest = calc_digest.digest()  # TODO: decide what to do here?

            self.verify()

    def is_flash_addr(self, addr):
        return (ESP32ROM.IROM_MAP_START <= addr < ESP32ROM.IROM_MAP_END) \
            or (ESP32ROM.DROM_MAP_START <= addr < ESP32ROM.DROM_MAP_END)

    def default_output_name(self, input_file):
        """ Derive a default output name from the ELF name. """
        return "%s.bin" % (os.path.splitext(input_file)[0])

    def warn_if_unusual_segment(self, offset, size, is_irom_segment):
        pass  # TODO: add warnings for ESP32 segment offset/size combinations that are wrong

    def save(self, filename):
        total_segments = 0
        with io.BytesIO() as f:  # write file to memory first
            self.write_common_header(f, self.segments)

            # first 4 bytes of header are read by ROM bootloader for SPI
            # config, but currently unused
            self.save_extended_header(f)

            checksum = ESPLoader.ESP_CHECKSUM_MAGIC

            # split segments into flash-mapped vs ram-loaded, and take copies so we can mutate them
            flash_segments = [copy.deepcopy(s) for s in sorted(self.segments, key=lambda s:s.addr) if self.is_flash_addr(s.addr)]
            ram_segments = [copy.deepcopy(s) for s in sorted(self.segments, key=lambda s:s.addr) if not self.is_flash_addr(s.addr)]

            # check for multiple ELF sections that are mapped in the same flash mapping region.
            # this is usually a sign of a broken linker script, but if you have a legitimate
            # use case then let us know (we can merge segments here, but as a rule you probably
            # want to merge them in your linker script.)
            if len(flash_segments) > 0:
                last_addr = flash_segments[0].addr
                for segment in flash_segments[1:]:
                    if segment.addr // self.IROM_ALIGN == last_addr // self.IROM_ALIGN:
                        raise FatalError(("Segment loaded at 0x%08x lands in same 64KB flash mapping as segment loaded at 0x%08x. " +
                                          "Can't generate binary. Suggest changing linker script or ELF to merge sections.") %
                                         (segment.addr, last_addr))
                    last_addr = segment.addr

            def get_alignment_data_needed(segment):
                # Actual alignment (in data bytes) required for a segment header: positioned so that
                # after we write the next 8 byte header, file_offs % IROM_ALIGN == segment.addr % IROM_ALIGN
                #
                # (this is because the segment's vaddr may not be IROM_ALIGNed, more likely is aligned
                # IROM_ALIGN+0x18 to account for the binary file header
                align_past = (segment.addr % self.IROM_ALIGN) - self.SEG_HEADER_LEN
                pad_len = (self.IROM_ALIGN - (f.tell() % self.IROM_ALIGN)) + align_past
                if pad_len == 0 or pad_len == self.IROM_ALIGN:
                    return 0  # already aligned

                # subtract SEG_HEADER_LEN a second time, as the padding block has a header as well
                pad_len -= self.SEG_HEADER_LEN
                if pad_len < 0:
                    pad_len += self.IROM_ALIGN
                return pad_len

            # try to fit each flash segment on a 64kB aligned boundary
            # by padding with parts of the non-flash segments...
            while len(flash_segments) > 0:
                segment = flash_segments[0]
                pad_len = get_alignment_data_needed(segment)
                if pad_len > 0:  # need to pad
                    if len(ram_segments) > 0 and pad_len > self.SEG_HEADER_LEN:
                        pad_segment = ram_segments[0].split_image(pad_len)
                        if len(ram_segments[0].data) == 0:
                            ram_segments.pop(0)
                    else:
                        pad_segment = ImageSegment(0, b'\x00' * pad_len, f.tell())
                    checksum = self.save_segment(f, pad_segment, checksum)
                    total_segments += 1
                else:
                    # write the flash segment
                    assert (f.tell() + 8) % self.IROM_ALIGN == segment.addr % self.IROM_ALIGN
                    checksum = self.save_flash_segment(f, segment, checksum)
                    flash_segments.pop(0)
                    total_segments += 1

            # flash segments all written, so write any remaining RAM segments
            for segment in ram_segments:
                checksum = self.save_segment(f, segment, checksum)
                total_segments += 1

            if self.secure_pad:
                # pad the image so that after signing it will end on a a 64KB boundary.
                # This ensures all mapped flash content will be verified.
                if not self.append_digest:
                    raise FatalError("secure_pad only applies if a SHA-256 digest is also appended to the image")
                align_past = (f.tell() + self.SEG_HEADER_LEN) % self.IROM_ALIGN
                # 16 byte aligned checksum (force the alignment to simplify calculations)
                checksum_space = 16
                # after checksum: SHA-256 digest + (to be added by signing process) version, signature + 12 trailing bytes due to alignment
                space_after_checksum = 32 + 4 + 64 + 12
                pad_len = (self.IROM_ALIGN - align_past - checksum_space - space_after_checksum) % self.IROM_ALIGN
                pad_segment = ImageSegment(0, b'\x00' * pad_len, f.tell())

                checksum = self.save_segment(f, pad_segment, checksum)
                total_segments += 1

            # done writing segments
            self.append_checksum(f, checksum)
            image_length = f.tell()

            if self.secure_pad:
                assert ((image_length + space_after_checksum) % self.IROM_ALIGN) == 0

            # kinda hacky: go back to the initial header and write the new segment count
            # that includes padding segments. This header is not checksummed
            f.seek(1)
            try:
                f.write(chr(total_segments))
            except TypeError:  # Python 3
                f.write(bytes([total_segments]))

            if self.append_digest:
                # calculate the SHA256 of the whole file and append it
                f.seek(0)
                digest = hashlib.sha256()
                digest.update(f.read(image_length))
                f.write(digest.digest())

            with open(filename, 'wb') as real_file:
                real_file.write(f.getvalue())

    def save_flash_segment(self, f, segment, checksum=None):
        """ Save the next segment to the image file, return next checksum value if provided """
        segment_end_pos = f.tell() + len(segment.data) + self.SEG_HEADER_LEN
        segment_len_remainder = segment_end_pos % self.IROM_ALIGN
        if segment_len_remainder < 0x24:
            # Work around a bug in ESP-IDF 2nd stage bootloader, that it didn't map the
            # last MMU page, if an IROM/DROM segment was < 0x24 bytes over the page boundary.
            segment.data += b'\x00' * (0x24 - segment_len_remainder)
        return self.save_segment(f, segment, checksum)

    def load_extended_header(self, load_file):
        def split_byte(n):
            return (n & 0x0F, (n >> 4) & 0x0F)

        fields = list(struct.unpack(self.EXTENDED_HEADER_STRUCT_FMT, load_file.read(16)))

        self.wp_pin = fields[0]

        # SPI pin drive stengths are two per byte
        self.clk_drv, self.q_drv = split_byte(fields[1])
        self.d_drv, self.cs_drv = split_byte(fields[2])
        self.hd_drv, self.wp_drv = split_byte(fields[3])

        chip_id = fields[4]
        if chip_id != self.ROM_LOADER.IMAGE_CHIP_ID:
            print(("Unexpected chip id in image. Expected %d but value was %d. " +
                  "Is this image for a different chip model?") % (self.ROM_LOADER.IMAGE_CHIP_ID, chip_id))

        # reserved fields in the middle should all be zero
        if any(f for f in fields[6:-1] if f != 0):
            print("Warning: some reserved header fields have non-zero values. This image may be from a newer esptool.py?")

        append_digest = fields[-1]  # last byte is append_digest
        if append_digest in [0, 1]:
            self.append_digest = (append_digest == 1)
        else:
            raise RuntimeError("Invalid value for append_digest field (0x%02x). Should be 0 or 1.", append_digest)

    def save_extended_header(self, save_file):
        def join_byte(ln,hn):
            return (ln & 0x0F) + ((hn & 0x0F) << 4)

        append_digest = 1 if self.append_digest else 0

        fields = [self.wp_pin,
                  join_byte(self.clk_drv, self.q_drv),
                  join_byte(self.d_drv, self.cs_drv),
                  join_byte(self.hd_drv, self.wp_drv),
                  self.ROM_LOADER.IMAGE_CHIP_ID,
                  self.min_rev]
        fields += [0] * 8  # padding
        fields += [append_digest]

        packed = struct.pack(self.EXTENDED_HEADER_STRUCT_FMT, *fields)
        save_file.write(packed)


ESP32ROM.BOOTLOADER_IMAGE = ESP32FirmwareImage


class ELFFile(object):
    SEC_TYPE_PROGBITS = 0x01
    SEC_TYPE_STRTAB = 0x03

    LEN_SEC_HEADER = 0x28

    def __init__(self, name):
        # Load sections from the ELF file
        self.name = name
        with open(self.name, 'rb') as f:
            self._read_elf_file(f)

    def get_section(self, section_name):
        for s in self.sections:
            if s.name == section_name:
                return s
        raise ValueError("No section %s in ELF file" % section_name)

    def _read_elf_file(self, f):
        # read the ELF file header
        LEN_FILE_HEADER = 0x34
        try:
            (ident,_type,machine,_version,
             self.entrypoint,_phoff,shoff,_flags,
             _ehsize, _phentsize,_phnum, shentsize,
             shnum,shstrndx) = struct.unpack("<16sHHLLLLLHHHHHH", f.read(LEN_FILE_HEADER))
        except struct.error as e:
            raise FatalError("Failed to read a valid ELF header from %s: %s" % (self.name, e))

        if byte(ident, 0) != 0x7f or ident[1:4] != b'ELF':
            raise FatalError("%s has invalid ELF magic header" % self.name)
        if machine != 0x5e:
            raise FatalError("%s does not appear to be an Xtensa ELF file. e_machine=%04x" % (self.name, machine))
        if shentsize != self.LEN_SEC_HEADER:
            raise FatalError("%s has unexpected section header entry size 0x%x (not 0x28)" % (self.name, shentsize, self.LEN_SEC_HEADER))
        if shnum == 0:
            raise FatalError("%s has 0 section headers" % (self.name))
        self._read_sections(f, shoff, shnum, shstrndx)

    def _read_sections(self, f, section_header_offs, section_header_count, shstrndx):
        f.seek(section_header_offs)
        len_bytes = section_header_count * self.LEN_SEC_HEADER
        section_header = f.read(len_bytes)
        if len(section_header) == 0:
            raise FatalError("No section header found at offset %04x in ELF file." % section_header_offs)
        if len(section_header) != (len_bytes):
            raise FatalError("Only read 0x%x bytes from section header (expected 0x%x.) Truncated ELF file?" % (len(section_header), len_bytes))

        # walk through the section header and extract all sections
        section_header_offsets = range(0, len(section_header), self.LEN_SEC_HEADER)

        def read_section_header(offs):
            name_offs,sec_type,_flags,lma,sec_offs,size = struct.unpack_from("<LLLLLL", section_header[offs:])
            return (name_offs, sec_type, lma, size, sec_offs)
        all_sections = [read_section_header(offs) for offs in section_header_offsets]
        prog_sections = [s for s in all_sections if s[1] == ELFFile.SEC_TYPE_PROGBITS]

        # search for the string table section
        if not (shstrndx * self.LEN_SEC_HEADER) in section_header_offsets:
            raise FatalError("ELF file has no STRTAB section at shstrndx %d" % shstrndx)
        _,sec_type,_,sec_size,sec_offs = read_section_header(shstrndx * self.LEN_SEC_HEADER)
        if sec_type != ELFFile.SEC_TYPE_STRTAB:
            print('WARNING: ELF file has incorrect STRTAB section type 0x%02x' % sec_type)
        f.seek(sec_offs)
        string_table = f.read(sec_size)

        # build the real list of ELFSections by reading the actual section names from the
        # string table section, and actual data for each section from the ELF file itself
        def lookup_string(offs):
            raw = string_table[offs:]
            return raw[:raw.index(b'\x00')]

        def read_data(offs,size):
            f.seek(offs)
            return f.read(size)

        prog_sections = [ELFSection(lookup_string(n_offs), lma, read_data(offs, size)) for (n_offs, _type, lma, size, offs) in prog_sections
                         if lma != 0 and size > 0]
        self.sections = prog_sections

    def sha256(self):
        # return SHA256 hash of the input ELF file
        sha256 = hashlib.sha256()
        with open(self.name, 'rb') as f:
            sha256.update(f.read())
        return sha256.digest()


def slip_reader(port, trace_function):
    """Generator to read SLIP packets from a serial port.
    Yields one full SLIP packet at a time, raises exception on timeout or invalid data.

    Designed to avoid too many calls to serial.read(1), which can bog
    down on slow systems.
    """
    partial_packet = None
    in_escape = False
    while True:
        waiting = port.inWaiting()
        read_bytes = port.read(1 if waiting == 0 else waiting)
        if read_bytes == b'':
            waiting_for = "header" if partial_packet is None else "content"
            trace_function("Timed out waiting for packet %s", waiting_for)
            raise FatalError("Timed out waiting for packet %s" % waiting_for)
        trace_function("Read %d bytes: %s", len(read_bytes), HexFormatter(read_bytes))
        for b in read_bytes:
            if type(b) is int:
                b = bytes([b])  # python 2/3 compat

            if partial_packet is None:  # waiting for packet header
                if b == b'\xc0':
                    partial_packet = b""
                else:
                    trace_function("Read invalid data: %s", HexFormatter(read_bytes))
                    trace_function("Remaining data in serial buffer: %s", HexFormatter(port.read(port.inWaiting())))
                    raise FatalError('Invalid head of packet (0x%s)' % hexify(b))
            elif in_escape:  # part-way through escape sequence
                in_escape = False
                if b == b'\xdc':
                    partial_packet += b'\xc0'
                elif b == b'\xdd':
                    partial_packet += b'\xdb'
                else:
                    trace_function("Read invalid data: %s", HexFormatter(read_bytes))
                    trace_function("Remaining data in serial buffer: %s", HexFormatter(port.read(port.inWaiting())))
                    raise FatalError('Invalid SLIP escape (0xdb, 0x%s)' % (hexify(b)))
            elif b == b'\xdb':  # start of escape sequence
                in_escape = True
            elif b == b'\xc0':  # end of packet
                trace_function("Received full packet: %s", HexFormatter(partial_packet))
                yield partial_packet
                partial_packet = None
            else:  # normal byte in packet
                partial_packet += b


def arg_auto_int(x):
    return int(x, 0)


def div_roundup(a, b):
    """ Return a/b rounded up to nearest integer,
    equivalent result to int(math.ceil(float(int(a)) / float(int(b))), only
    without possible floating point accuracy errors.
    """
    return (int(a) + int(b) - 1) // int(b)


def align_file_position(f, size):
    """ Align the position in the file to the next block of specified size """
    align = (size - 1) - (f.tell() % size)
    f.seek(align, 1)


def flash_size_bytes(size):
    """ Given a flash size of the type passed in args.flash_size
    (ie 512KB or 1MB) then return the size in bytes.
    """
    if "MB" in size:
        return int(size[:size.index("MB")]) * 1024 * 1024
    elif "KB" in size:
        return int(size[:size.index("KB")]) * 1024
    else:
        raise FatalError("Unknown size %s" % size)


def hexify(s, uppercase=True):
    format_str = '%02X' if uppercase else '%02x'
    if not PYTHON2:
        return ''.join(format_str % c for c in s)
    else:
        return ''.join(format_str % ord(c) for c in s)


class HexFormatter(object):
    """
    Wrapper class which takes binary data in its constructor
    and returns a hex string as it's __str__ method.

    This is intended for "lazy formatting" of trace() output
    in hex format. Avoids overhead (significant on slow computers)
    of generating long hex strings even if tracing is disabled.

    Note that this doesn't save any overhead if passed as an
    argument to "%", only when passed to trace()

    If auto_split is set (default), any long line (> 16 bytes) will be
    printed as separately indented lines, with ASCII decoding at the end
    of each line.
    """
    def __init__(self, binary_string, auto_split=True):
        self._s = binary_string
        self._auto_split = auto_split

    def __str__(self):
        if self._auto_split and len(self._s) > 16:
            result = ""
            s = self._s
            while len(s) > 0:
                line = s[:16]
                ascii_line = "".join(c if (c == ' ' or (c in string.printable and c not in string.whitespace))
                                     else '.' for c in line.decode('ascii', 'replace'))
                s = s[16:]
                result += "\n    %-16s %-16s | %s" % (hexify(line[:8], False), hexify(line[8:], False), ascii_line)
            return result
        else:
            return hexify(self._s, False)


def pad_to(data, alignment, pad_character=b'\xFF'):
    """ Pad to the next alignment boundary """
    pad_mod = len(data) % alignment
    if pad_mod != 0:
        data += pad_character * (alignment - pad_mod)
    return data


class FatalError(RuntimeError):
    """
    Wrapper class for runtime errors that aren't caused by internal bugs, but by
    ESP8266 responses or input content.
    """
    def __init__(self, message):
        RuntimeError.__init__(self, message)

    @staticmethod
    def WithResult(message, result):
        """
        Return a fatal error object that appends the hex values of
        'result' as a string formatted argument.
        """
        message += " (result was %s)" % hexify(result)
        return FatalError(message)


class NotImplementedInROMError(FatalError):
    """
    Wrapper class for the error thrown when a particular ESP bootloader function
    is not implemented in the ROM bootloader.
    """
    def __init__(self, bootloader, func):
        FatalError.__init__(self, "%s ROM does not support function %s." % (bootloader.CHIP_NAME, func.__name__))


class NotSupportedError(FatalError):
    def __init__(self, esp, function_name):
        FatalError.__init__(self, "Function %s is not supported for %s." % (function_name, esp.CHIP_NAME))

# "Operation" commands, executable at command line. One function each
#
# Each function takes either two args (<ESPLoader instance>, <args>) or a single <args>
# argument.


def load_ram(esp, args):
    image = LoadFirmwareImage(esp.CHIP_NAME, args.filename)

    print('RAM boot...')
    for seg in image.segments:
        size = len(seg.data)
        print('Downloading %d bytes at %08x...' % (size, seg.addr), end=' ')
        sys.stdout.flush()
        esp.mem_begin(size, div_roundup(size, esp.ESP_RAM_BLOCK), esp.ESP_RAM_BLOCK, seg.addr)

        seq = 0
        while len(seg.data) > 0:
            esp.mem_block(seg.data[0:esp.ESP_RAM_BLOCK], seq)
            seg.data = seg.data[esp.ESP_RAM_BLOCK:]
            seq += 1
        print('done!')

    print('All segments done, executing at %08x' % image.entrypoint)
    esp.mem_finish(image.entrypoint)


def read_mem(esp, args):
    print('0x%08x = 0x%08x' % (args.address, esp.read_reg(args.address)))


def write_mem(esp, args):
    esp.write_reg(args.address, args.value, args.mask, 0)
    print('Wrote %08x, mask %08x to %08x' % (args.value, args.mask, args.address))


def dump_mem(esp, args):
    with open(args.filename, 'wb') as f:
        for i in range(args.size // 4):
            d = esp.read_reg(args.address + (i * 4))
            f.write(struct.pack(b'<I', d))
            if f.tell() % 1024 == 0:
                print('\r%d bytes read... (%d %%)' % (f.tell(),
                                                      f.tell() * 100 // args.size),
                      end=' ')
            sys.stdout.flush()
    print('Done!')


def detect_flash_size(esp, args):
    if args.flash_size == 'detect':
        flash_id = esp.flash_id()
        size_id = flash_id >> 16
        args.flash_size = DETECTED_FLASH_SIZES.get(size_id)
        if args.flash_size is None:
            print('Warning: Could not auto-detect Flash size (FlashID=0x%x, SizeID=0x%x), defaulting to 4MB' % (flash_id, size_id))
            args.flash_size = '4MB'
        else:
            print('Auto-detected Flash size:', args.flash_size)


def _update_image_flash_params(esp, address, args, image):
    """ Modify the flash mode & size bytes if this looks like an executable bootloader image  """
    if len(image) < 8:
        return image  # not long enough to be a bootloader image

    # unpack the (potential) image header
    magic, _, flash_mode, flash_size_freq = struct.unpack("BBBB", image[:4])
    if address != esp.BOOTLOADER_FLASH_OFFSET:
        return image  # not flashing bootloader offset, so don't modify this

    if (args.flash_mode, args.flash_freq, args.flash_size) == ('keep',) * 3:
        return image  # all settings are 'keep', not modifying anything

    # easy check if this is an image: does it start with a magic byte?
    if magic != esp.ESP_IMAGE_MAGIC:
        print("Warning: Image file at 0x%x doesn't look like an image file, so not changing any flash settings." % address)
        return image

    # make sure this really is an image, and not just data that
    # starts with esp.ESP_IMAGE_MAGIC (mostly a problem for encrypted
    # images that happen to start with a magic byte
    try:
        test_image = esp.BOOTLOADER_IMAGE(io.BytesIO(image))
        test_image.verify()
    except Exception:
        print("Warning: Image file at 0x%x is not a valid %s image, so not changing any flash settings." % (address,esp.CHIP_NAME))
        return image

    if args.flash_mode != 'keep':
        flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]

    flash_freq = flash_size_freq & 0x0F
    if args.flash_freq != 'keep':
        flash_freq = {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]

    flash_size = flash_size_freq & 0xF0
    if args.flash_size != 'keep':
        flash_size = esp.parse_flash_size_arg(args.flash_size)

    flash_params = struct.pack(b'BB', flash_mode, flash_size + flash_freq)
    if flash_params != image[2:4]:
        print('Flash params set to 0x%04x' % struct.unpack(">H", flash_params))
        image = image[0:2] + flash_params + image[4:]
    return image


def write_flash(esp, args):
    # set args.compress based on default behaviour:
    # -> if either --compress or --no-compress is set, honour that
    # -> otherwise, set --compress unless --no-stub is set
    if args.compress is None and not args.no_compress:
        args.compress = not args.no_stub

    # For encrypt option we do few sanity checks before actual flash write
    if args.encrypt:
        do_write = True
        crypt_cfg_efuse = esp.get_flash_crypt_config()

        if crypt_cfg_efuse != 0xF:
            print('\nWARNING: Unexpected FLASH_CRYPT_CONFIG value', hex(crypt_cfg_efuse))
            print('\nMake sure flash encryption is enabled correctly, refer to Flash Encryption documentation')
            do_write = False

        enc_key_valid = esp.is_flash_encryption_key_valid()

        if not enc_key_valid:
            print('\nFlash encryption key is not programmed')
            print('\nMake sure flash encryption is enabled correctly, refer to Flash Encryption documentation')
            do_write = False

        if (esp.FLASH_WRITE_SIZE % 32) != 0:
            print('\nWARNING - Flash write address is not aligned to the recommeded 32 bytes')
            do_write = False

        if not do_write and not args.ignore_flash_encryption_efuse_setting:
            raise FatalError("Incorrect efuse setting: aborting flash write")

    # verify file sizes fit in flash
    if args.flash_size != 'keep':  # TODO: check this even with 'keep'
        flash_end = flash_size_bytes(args.flash_size)
        for address, argfile in args.addr_filename:
            argfile.seek(0,2)  # seek to end
            if address + argfile.tell() > flash_end:
                raise FatalError(("File %s (length %d) at offset %d will not fit in %d bytes of flash. " +
                                  "Use --flash-size argument, or change flashing address.")
                                 % (argfile.name, argfile.tell(), address, flash_end))
            argfile.seek(0)

    if args.erase_all:
        erase_flash(esp, args)

    if args.encrypt and args.compress:
        print('\nWARNING: - compress and encrypt options are mutually exclusive ')
        print('Will flash uncompressed')
        args.compress = False

    for address, argfile in args.addr_filename:
        if args.no_stub:
            print('Erasing flash...')
        image = pad_to(argfile.read(), 32 if args.encrypt else 4)
        if len(image) == 0:
            print('WARNING: File %s is empty' % argfile.name)
            continue
        image = _update_image_flash_params(esp, address, args, image)
        calcmd5 = hashlib.md5(image).hexdigest()
        uncsize = len(image)
        if args.compress:
            uncimage = image
            image = zlib.compress(uncimage, 9)
            ratio = uncsize / len(image)
            blocks = esp.flash_defl_begin(uncsize, len(image), address)
        else:
            ratio = 1.0
            blocks = esp.flash_begin(uncsize, address)
        argfile.seek(0)  # in case we need it again
        seq = 0
        written = 0
        t = time.time()
        while len(image) > 0:
            print('\rWriting at 0x%08x... (%d %%)' % (address + seq * esp.FLASH_WRITE_SIZE, 100 * (seq + 1) // blocks), end='')
            sys.stdout.flush()
            block = image[0:esp.FLASH_WRITE_SIZE]
            if args.compress:
                esp.flash_defl_block(block, seq, timeout=DEFAULT_TIMEOUT * ratio * 2)
            else:
                # Pad the last block
                block = block + b'\xff' * (esp.FLASH_WRITE_SIZE - len(block))
                if args.encrypt:
                    esp.flash_encrypt_block(block, seq)
                else:
                    esp.flash_block(block, seq)
            image = image[esp.FLASH_WRITE_SIZE:]
            seq += 1
            written += len(block)
        t = time.time() - t
        speed_msg = ""
        if args.compress:
            if t > 0.0:
                speed_msg = " (effective %.1f kbit/s)" % (uncsize / t * 8 / 1000)
            print('\rWrote %d bytes (%d compressed) at 0x%08x in %.1f seconds%s...' % (uncsize, written, address, t, speed_msg))
        else:
            if t > 0.0:
                speed_msg = " (%.1f kbit/s)" % (written / t * 8 / 1000)
            print('\rWrote %d bytes at 0x%08x in %.1f seconds%s...' % (written, address, t, speed_msg))

        if not args.encrypt:
            try:
                res = esp.flash_md5sum(address, uncsize)
                if res != calcmd5:
                    print('File  md5: %s' % calcmd5)
                    print('Flash md5: %s' % res)
                    print('MD5 of 0xFF is %s' % (hashlib.md5(b'\xFF' * uncsize).hexdigest()))
                    raise FatalError("MD5 of file does not match data in flash!")
                else:
                    print('Hash of data verified.')
            except NotImplementedInROMError:
                pass

    print('\nLeaving...')

    if esp.IS_STUB:
        # skip sending flash_finish to ROM loader here,
        # as it causes the loader to exit and run user code
        esp.flash_begin(0, 0)
        if args.compress:
            esp.flash_defl_finish(False)
        else:
            esp.flash_finish(False)

    if args.verify:
        print('Verifying just-written flash...')
        print('(This option is deprecated, flash contents are now always read back after flashing.)')
        verify_flash(esp, args)


def image_info(args):
    image = LoadFirmwareImage(args.chip, args.filename)
    print('Image version: %d' % image.version)
    print('Entry point: %08x' % image.entrypoint if image.entrypoint != 0 else 'Entry point not set')
    print('%d segments' % len(image.segments))
    print()
    idx = 0
    for seg in image.segments:
        idx += 1
        seg_name = ", ".join([seg_range[2] for seg_range in image.ROM_LOADER.MEMORY_MAP if seg_range[0] <= seg.addr < seg_range[1]])
        print('Segment %d: %r [%s]' % (idx, seg, seg_name))
    calc_checksum = image.calculate_checksum()
    print('Checksum: %02x (%s)' % (image.checksum,
                                   'valid' if image.checksum == calc_checksum else 'invalid - calculated %02x' % calc_checksum))
    try:
        digest_msg = 'Not appended'
        if image.append_digest:
            is_valid = image.stored_digest == image.calc_digest
            digest_msg = "%s (%s)" % (hexify(image.calc_digest).lower(),
                                      "valid" if is_valid else "invalid")
            print('Validation Hash: %s' % digest_msg)
    except AttributeError:
        pass  # ESP8266 image has no append_digest field


def make_image(args):
    image = ESP8266ROMFirmwareImage()
    if len(args.segfile) == 0:
        raise FatalError('No segments specified')
    if len(args.segfile) != len(args.segaddr):
        raise FatalError('Number of specified files does not match number of specified addresses')
    for (seg, addr) in zip(args.segfile, args.segaddr):
        with open(seg, 'rb') as f:
            data = f.read()
            image.segments.append(ImageSegment(addr, data))
    image.entrypoint = args.entrypoint
    image.save(args.output)


def elf2image(args):
    e = ELFFile(args.input)
    if args.chip == 'auto':  # Default to ESP8266 for backwards compatibility
        print("Creating image for ESP8266...")
        args.chip = 'esp8266'

    if args.chip == 'esp32':
        image = ESP32FirmwareImage()
        image.secure_pad = args.secure_pad
        image.min_rev = int(args.min_rev)
    elif args.version == '1':  # ESP8266
        image = ESP8266ROMFirmwareImage()
    else:
        image = ESP8266V2FirmwareImage()
    image.entrypoint = e.entrypoint
    image.segments = e.sections  # ELFSection is a subclass of ImageSegment
    image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
    image.flash_size_freq = image.ROM_LOADER.FLASH_SIZES[args.flash_size]
    image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]

    if args.elf_sha256_offset:
        image.elf_sha256 = e.sha256()
        image.elf_sha256_offset = args.elf_sha256_offset

    image.verify()

    if args.output is None:
        args.output = image.default_output_name(args.input)
    image.save(args.output)


def read_mac(esp, args):
    mac = esp.read_mac()

    def print_mac(label, mac):
        print('%s: %s' % (label, ':'.join(map(lambda x: '%02x' % x, mac))))
    print_mac("MAC", mac)


def chip_id(esp, args):
    try:
        chipid = esp.chip_id()
        print('Chip ID: 0x%08x' % chipid)
    except NotSupportedError:
        print('Warning: %s has no Chip ID. Reading MAC instead.' % esp.CHIP_NAME)
        read_mac(esp, args)


def erase_flash(esp, args):
    print('Erasing flash (this may take a while)...')
    t = time.time()
    esp.erase_flash()
    print('Chip erase completed successfully in %.1fs' % (time.time() - t))


def erase_region(esp, args):
    print('Erasing region (may be slow depending on size)...')
    t = time.time()
    esp.erase_region(args.address, args.size)
    print('Erase completed successfully in %.1f seconds.' % (time.time() - t))


def run(esp, args):
    esp.run()


def flash_id(esp, args):
    flash_id = esp.flash_id()
    print('Manufacturer: %02x' % (flash_id & 0xff))
    flid_lowbyte = (flash_id >> 16) & 0xFF
    print('Device: %02x%02x' % ((flash_id >> 8) & 0xff, flid_lowbyte))
    print('Detected flash size: %s' % (DETECTED_FLASH_SIZES.get(flid_lowbyte, "Unknown")))


def read_flash(esp, args):
    if args.no_progress:
        flash_progress = None
    else:
        def flash_progress(progress, length):
            msg = '%d (%d %%)' % (progress, progress * 100.0 / length)
            padding = '\b' * len(msg)
            if progress == length:
                padding = '\n'
            sys.stdout.write(msg + padding)
            sys.stdout.flush()
    t = time.time()
    data = esp.read_flash(args.address, args.size, flash_progress)
    t = time.time() - t
    print('\rRead %d bytes at 0x%x in %.1f seconds (%.1f kbit/s)...'
          % (len(data), args.address, t, len(data) / t * 8 / 1000))
    with open(args.filename, 'wb') as f:
        f.write(data)


def verify_flash(esp, args):
    differences = False

    for address, argfile in args.addr_filename:
        image = pad_to(argfile.read(), 4)
        argfile.seek(0)  # rewind in case we need it again

        image = _update_image_flash_params(esp, address, args, image)

        image_size = len(image)
        print('Verifying 0x%x (%d) bytes @ 0x%08x in flash against %s...' % (image_size, image_size, address, argfile.name))
        # Try digest first, only read if there are differences.
        digest = esp.flash_md5sum(address, image_size)
        expected_digest = hashlib.md5(image).hexdigest()
        if digest == expected_digest:
            print('-- verify OK (digest matched)')
            continue
        else:
            differences = True
            if getattr(args, 'diff', 'no') != 'yes':
                print('-- verify FAILED (digest mismatch)')
                continue

        flash = esp.read_flash(address, image_size)
        assert flash != image
        diff = [i for i in range(image_size) if flash[i] != image[i]]
        print('-- verify FAILED: %d differences, first @ 0x%08x' % (len(diff), address + diff[0]))
        for d in diff:
            flash_byte = flash[d]
            image_byte = image[d]
            if PYTHON2:
                flash_byte = ord(flash_byte)
                image_byte = ord(image_byte)
            print('   %08x %02x %02x' % (address + d, flash_byte, image_byte))
    if differences:
        raise FatalError("Verify failed.")


def read_flash_status(esp, args):
    print('Status value: 0x%04x' % esp.read_status(args.bytes))


def write_flash_status(esp, args):
    fmt = "0x%%0%dx" % (args.bytes * 2)
    args.value = args.value & ((1 << (args.bytes * 8)) - 1)
    print(('Initial flash status: ' + fmt) % esp.read_status(args.bytes))
    print(('Setting flash status: ' + fmt) % args.value)
    esp.write_status(args.value, args.bytes, args.non_volatile)
    print(('After flash status:   ' + fmt) % esp.read_status(args.bytes))


def version(args):
    print(__version__)

#
# End of operations functions
#


def main(custom_commandline=None):
    """
    Main function for esptool

    custom_commandline - Optional override for default arguments parsing (that uses sys.argv), can be a list of custom arguments
    as strings. Arguments and their values need to be added as individual items to the list e.g. "-b 115200" thus
    becomes ['-b', '115200'].
    """
    parser = argparse.ArgumentParser(description='esptool.py v%s - ESP8266 ROM Bootloader Utility' % __version__, prog='esptool')

    parser.add_argument('--chip', '-c',
                        help='Target chip type',
                        choices=['auto', 'esp8266', 'esp32'],
                        default=os.environ.get('ESPTOOL_CHIP', 'auto'))

    parser.add_argument(
        '--port', '-p',
        help='Serial port device',
        default=os.environ.get('ESPTOOL_PORT', None))

    parser.add_argument(
        '--baud', '-b',
        help='Serial port baud rate used when flashing/reading',
        type=arg_auto_int,
        default=os.environ.get('ESPTOOL_BAUD', ESPLoader.ESP_ROM_BAUD))

    parser.add_argument(
        '--before',
        help='What to do before connecting to the chip',
        choices=['default_reset', 'no_reset', 'no_reset_no_sync'],
        default=os.environ.get('ESPTOOL_BEFORE', 'default_reset'))

    parser.add_argument(
        '--after', '-a',
        help='What to do after esptool.py is finished',
        choices=['hard_reset', 'soft_reset', 'no_reset'],
        default=os.environ.get('ESPTOOL_AFTER', 'hard_reset'))

    parser.add_argument(
        '--no-stub',
        help="Disable launching the flasher stub, only talk to ROM bootloader. Some features will not be available.",
        action='store_true')

    parser.add_argument(
        '--trace', '-t',
        help="Enable trace-level output of esptool.py interactions.",
        action='store_true')

    parser.add_argument(
        '--override-vddsdio',
        help="Override ESP32 VDDSDIO internal voltage regulator (use with care)",
        choices=ESP32ROM.OVERRIDE_VDDSDIO_CHOICES,
        nargs='?')

    subparsers = parser.add_subparsers(
        dest='operation',
        help='Run esptool {command} -h for additional help')

    def add_spi_connection_arg(parent):
        parent.add_argument('--spi-connection', '-sc', help='ESP32-only argument. Override default SPI Flash connection. ' +
                            'Value can be SPI, HSPI or a comma-separated list of 5 I/O numbers to use for SPI flash (CLK,Q,D,HD,CS).',
                            action=SpiConnectionAction)

    parser_load_ram = subparsers.add_parser(
        'load_ram',
        help='Download an image to RAM and execute')
    parser_load_ram.add_argument('filename', help='Firmware image')

    parser_dump_mem = subparsers.add_parser(
        'dump_mem',
        help='Dump arbitrary memory to disk')
    parser_dump_mem.add_argument('address', help='Base address', type=arg_auto_int)
    parser_dump_mem.add_argument('size', help='Size of region to dump', type=arg_auto_int)
    parser_dump_mem.add_argument('filename', help='Name of binary dump')

    parser_read_mem = subparsers.add_parser(
        'read_mem',
        help='Read arbitrary memory location')
    parser_read_mem.add_argument('address', help='Address to read', type=arg_auto_int)

    parser_write_mem = subparsers.add_parser(
        'write_mem',
        help='Read-modify-write to arbitrary memory location')
    parser_write_mem.add_argument('address', help='Address to write', type=arg_auto_int)
    parser_write_mem.add_argument('value', help='Value', type=arg_auto_int)
    parser_write_mem.add_argument('mask', help='Mask of bits to write', type=arg_auto_int)

    def add_spi_flash_subparsers(parent, is_elf2image):
        """ Add common parser arguments for SPI flash properties """
        extra_keep_args = [] if is_elf2image else ['keep']
        auto_detect = not is_elf2image

        if auto_detect:
            extra_fs_message = ", detect, or keep"
        else:
            extra_fs_message = ""

        parent.add_argument('--flash_freq', '-ff', help='SPI Flash frequency',
                            choices=extra_keep_args + ['40m', '26m', '20m', '80m'],
                            default=os.environ.get('ESPTOOL_FF', '40m' if is_elf2image else 'keep'))
        parent.add_argument('--flash_mode', '-fm', help='SPI Flash mode',
                            choices=extra_keep_args + ['qio', 'qout', 'dio', 'dout'],
                            default=os.environ.get('ESPTOOL_FM', 'qio' if is_elf2image else 'keep'))
        parent.add_argument('--flash_size', '-fs', help='SPI Flash size in MegaBytes (1MB, 2MB, 4MB, 8MB, 16M)'
                            ' plus ESP8266-only (256KB, 512KB, 2MB-c1, 4MB-c1)' + extra_fs_message,
                            action=FlashSizeAction, auto_detect=auto_detect,
                            default=os.environ.get('ESPTOOL_FS', 'detect' if auto_detect else '1MB'))
        add_spi_connection_arg(parent)

    parser_write_flash = subparsers.add_parser(
        'write_flash',
        help='Write a binary blob to flash')

    parser_write_flash.add_argument('addr_filename', metavar='<address> <filename>', help='Address followed by binary filename, separated by space',
                                    action=AddrFilenamePairAction)
    parser_write_flash.add_argument('--erase-all', '-e',
                                    help='Erase all regions of flash (not just write areas) before programming',
                                    action="store_true")

    add_spi_flash_subparsers(parser_write_flash, is_elf2image=False)
    parser_write_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true")
    parser_write_flash.add_argument('--verify', help='Verify just-written data on flash ' +
                                    '(mostly superfluous, data is read back during flashing)', action='store_true')
    parser_write_flash.add_argument('--encrypt', help='Encrypt before write ',
                                    action='store_true')
    parser_write_flash.add_argument('--ignore-flash-encryption-efuse-setting', help='Ignore flash encryption efuse settings ',
                                    action='store_true')

    compress_args = parser_write_flash.add_mutually_exclusive_group(required=False)
    compress_args.add_argument('--compress', '-z', help='Compress data in transfer (default unless --no-stub is specified)',action="store_true", default=None)
    compress_args.add_argument('--no-compress', '-u', help='Disable data compression during transfer (default if --no-stub is specified)',action="store_true")

    subparsers.add_parser(
        'run',
        help='Run application code in flash')

    parser_image_info = subparsers.add_parser(
        'image_info',
        help='Dump headers from an application image')
    parser_image_info.add_argument('filename', help='Image file to parse')

    parser_make_image = subparsers.add_parser(
        'make_image',
        help='Create an application image from binary files')
    parser_make_image.add_argument('output', help='Output image file')
    parser_make_image.add_argument('--segfile', '-f', action='append', help='Segment input file')
    parser_make_image.add_argument('--segaddr', '-a', action='append', help='Segment base address', type=arg_auto_int)
    parser_make_image.add_argument('--entrypoint', '-e', help='Address of entry point', type=arg_auto_int, default=0)

    parser_elf2image = subparsers.add_parser(
        'elf2image',
        help='Create an application image from ELF file')
    parser_elf2image.add_argument('input', help='Input ELF file')
    parser_elf2image.add_argument('--output', '-o', help='Output filename prefix (for version 1 image), or filename (for version 2 single image)', type=str)
    parser_elf2image.add_argument('--version', '-e', help='Output image version', choices=['1','2'], default='1')
    parser_elf2image.add_argument('--min-rev', '-r', help='Minimum chip revision', choices=['0','1','2','3'], default='0')
    parser_elf2image.add_argument('--secure-pad', action='store_true', help='Pad image so once signed it will end on a 64KB boundary. For ESP32 images only.')
    parser_elf2image.add_argument('--elf-sha256-offset', help='If set, insert SHA256 hash (32 bytes) of the input ELF file at specified offset in the binary.',
                                  type=arg_auto_int, default=None)

    add_spi_flash_subparsers(parser_elf2image, is_elf2image=True)

    subparsers.add_parser(
        'read_mac',
        help='Read MAC address from OTP ROM')

    subparsers.add_parser(
        'chip_id',
        help='Read Chip ID from OTP ROM')

    parser_flash_id = subparsers.add_parser(
        'flash_id',
        help='Read SPI flash manufacturer and device ID')
    add_spi_connection_arg(parser_flash_id)

    parser_read_status = subparsers.add_parser(
        'read_flash_status',
        help='Read SPI flash status register')

    add_spi_connection_arg(parser_read_status)
    parser_read_status.add_argument('--bytes', help='Number of bytes to read (1-3)', type=int, choices=[1,2,3], default=2)

    parser_write_status = subparsers.add_parser(
        'write_flash_status',
        help='Write SPI flash status register')

    add_spi_connection_arg(parser_write_status)
    parser_write_status.add_argument('--non-volatile', help='Write non-volatile bits (use with caution)', action='store_true')
    parser_write_status.add_argument('--bytes', help='Number of status bytes to write (1-3)', type=int, choices=[1,2,3], default=2)
    parser_write_status.add_argument('value', help='New value', type=arg_auto_int)

    parser_read_flash = subparsers.add_parser(
        'read_flash',
        help='Read SPI flash content')
    add_spi_connection_arg(parser_read_flash)
    parser_read_flash.add_argument('address', help='Start address', type=arg_auto_int)
    parser_read_flash.add_argument('size', help='Size of region to dump', type=arg_auto_int)
    parser_read_flash.add_argument('filename', help='Name of binary dump')
    parser_read_flash.add_argument('--no-progress', '-p', help='Suppress progress output', action="store_true")

    parser_verify_flash = subparsers.add_parser(
        'verify_flash',
        help='Verify a binary blob against flash')
    parser_verify_flash.add_argument('addr_filename', help='Address and binary file to verify there, separated by space',
                                     action=AddrFilenamePairAction)
    parser_verify_flash.add_argument('--diff', '-d', help='Show differences',
                                     choices=['no', 'yes'], default='no')
    add_spi_flash_subparsers(parser_verify_flash, is_elf2image=False)

    parser_erase_flash = subparsers.add_parser(
        'erase_flash',
        help='Perform Chip Erase on SPI flash')
    add_spi_connection_arg(parser_erase_flash)

    parser_erase_region = subparsers.add_parser(
        'erase_region',
        help='Erase a region of the flash')
    add_spi_connection_arg(parser_erase_region)
    parser_erase_region.add_argument('address', help='Start address (must be multiple of 4096)', type=arg_auto_int)
    parser_erase_region.add_argument('size', help='Size of region to erase (must be multiple of 4096)', type=arg_auto_int)

    subparsers.add_parser(
        'version', help='Print esptool version')

    # internal sanity check - every operation matches a module function of the same name
    for operation in subparsers.choices.keys():
        assert operation in globals(), "%s should be a module function" % operation

    expand_file_arguments()

    args = parser.parse_args(custom_commandline)

    print('esptool.py v%s' % __version__)

    args.no_stub = True

    # operation function can take 1 arg (args), 2 args (esp, arg)
    # or be a member function of the ESPLoader class.

    if args.operation is None:
        parser.print_help()
        sys.exit(1)

    operation_func = globals()[args.operation]

    if PYTHON2:
        # This function is depreciated in Python3
        operation_args = inspect.getargspec(operation_func).args
    else:
        operation_args = inspect.getfullargspec(operation_func).args

    if operation_args[0] == 'esp':  # operation function takes an ESPLoader connection object
        if args.before != "no_reset_no_sync":
            initial_baud = min(ESPLoader.ESP_ROM_BAUD, args.baud)  # don't sync faster than the default baud rate
        else:
            initial_baud = args.baud

        if args.port is None:
            ser_list = sorted(ports.device for ports in list_ports.comports())
            print("Found %d serial ports" % len(ser_list))
        else:
            ser_list = [args.port]
        esp = None
        for each_port in reversed(ser_list):
            print("Serial port %s" % each_port)
            try:
                if args.chip == 'auto':
                    esp = ESPLoader.detect_chip(each_port, initial_baud, args.before, args.trace)
                else:
                    chip_class = {
                        'esp8266': ESP8266ROM,
                        'esp32': ESP32ROM,
                    }[args.chip]
                    esp = chip_class(each_port, initial_baud, args.trace)
                    esp.connect(args.before)
                break
            except (FatalError, OSError) as err:
                if args.port is not None:
                    raise
                print("%s failed to connect: %s" % (each_port, err))
                esp = None
        if esp is None:
            raise FatalError("Could not connect to an Espressif device on any of the %d available serial ports." % len(ser_list))

        print("Chip is %s" % (esp.get_chip_description()))

        print("Features: %s" % ", ".join(esp.get_chip_features()))

        print("Crystal is %dMHz" % esp.get_crystal_freq())

        read_mac(esp, args)

        if not args.no_stub:
            esp = esp.run_stub()

        if args.override_vddsdio:
            esp.override_vddsdio(args.override_vddsdio)

        if args.baud > initial_baud:
            try:
                esp.change_baud(args.baud)
            except NotImplementedInROMError:
                print("WARNING: ROM doesn't support changing baud rate. Keeping initial baud rate %d" % initial_baud)

        # override common SPI flash parameter stuff if configured to do so
        if hasattr(args, "spi_connection") and args.spi_connection is not None:
            if esp.CHIP_NAME != "ESP32":
                raise FatalError("Chip %s does not support --spi-connection option." % esp.CHIP_NAME)
            print("Configuring SPI flash mode...")
            esp.flash_spi_attach(args.spi_connection)
        elif args.no_stub:
            print("Enabling default SPI flash mode...")
            # ROM loader doesn't enable flash unless we explicitly do it
            esp.flash_spi_attach(0)

        if hasattr(args, "flash_size"):
            print("Configuring flash size...")
            detect_flash_size(esp, args)
            if args.flash_size != 'keep':  # TODO: should set this even with 'keep'
                esp.flash_set_parameters(flash_size_bytes(args.flash_size))

        try:
            operation_func(esp, args)
        finally:
            try:  # Clean up AddrFilenamePairAction files
                for address, argfile in args.addr_filename:
                    argfile.close()
            except AttributeError:
                pass

        # Handle post-operation behaviour (reset or other)
        if operation_func == load_ram:
            # the ESP is now running the loaded image, so let it run
            print('Exiting immediately.')
        elif args.after == 'hard_reset':
            print('Hard resetting via RTS pin...')
            esp.hard_reset()
        elif args.after == 'soft_reset':
            print('Soft resetting...')
            # flash_finish will trigger a soft reset
            esp.soft_reset(False)
        else:
            print('Staying in bootloader.')
            if esp.IS_STUB:
                esp.soft_reset(True)  # exit stub back to ROM loader

        esp._port.close()

    else:
        operation_func(args)


def expand_file_arguments():
    """ Any argument starting with "@" gets replaced with all values read from a text file.
    Text file arguments can be split by newline or by space.
    Values are added "as-is", as if they were specified in this order on the command line.
    """
    new_args = []
    expanded = False
    for arg in sys.argv:
        if arg.startswith("@"):
            expanded = True
            with open(arg[1:],"r") as f:
                for line in f.readlines():
                    new_args += shlex.split(line)
        else:
            new_args.append(arg)
    if expanded:
        print("esptool.py %s" % (" ".join(new_args[1:])))
        sys.argv = new_args


class FlashSizeAction(argparse.Action):
    """ Custom flash size parser class to support backwards compatibility with megabit size arguments.

    (At next major relase, remove deprecated sizes and this can become a 'normal' choices= argument again.)
    """
    def __init__(self, option_strings, dest, nargs=1, auto_detect=False, **kwargs):
        super(FlashSizeAction, self).__init__(option_strings, dest, nargs, **kwargs)
        self._auto_detect = auto_detect

    def __call__(self, parser, namespace, values, option_string=None):
        try:
            value = {
                '2m': '256KB',
                '4m': '512KB',
                '8m': '1MB',
                '16m': '2MB',
                '32m': '4MB',
                '16m-c1': '2MB-c1',
                '32m-c1': '4MB-c1',
            }[values[0]]
            print("WARNING: Flash size arguments in megabits like '%s' are deprecated." % (values[0]))
            print("Please use the equivalent size '%s'." % (value))
            print("Megabit arguments may be removed in a future release.")
        except KeyError:
            value = values[0]

        known_sizes = dict(ESP8266ROM.FLASH_SIZES)
        known_sizes.update(ESP32ROM.FLASH_SIZES)
        if self._auto_detect:
            known_sizes['detect'] = 'detect'
            known_sizes['keep'] = 'keep'
        if value not in known_sizes:
            raise argparse.ArgumentError(self, '%s is not a known flash size. Known sizes: %s' % (value, ", ".join(known_sizes.keys())))
        setattr(namespace, self.dest, value)


class SpiConnectionAction(argparse.Action):
    """ Custom action to parse 'spi connection' override. Values are SPI, HSPI, or a sequence of 5 pin numbers separated by commas.
    """
    def __call__(self, parser, namespace, value, option_string=None):
        if value.upper() == "SPI":
            value = 0
        elif value.upper() == "HSPI":
            value = 1
        elif "," in value:
            values = value.split(",")
            if len(values) != 5:
                raise argparse.ArgumentError(self, '%s is not a valid list of comma-separate pin numbers. Must be 5 numbers - CLK,Q,D,HD,CS.' % value)
            try:
                values = tuple(int(v,0) for v in values)
            except ValueError:
                raise argparse.ArgumentError(self, '%s is not a valid argument. All pins must be numeric values' % values)
            if any([v for v in values if v > 33 or v < 0]):
                raise argparse.ArgumentError(self, 'Pin numbers must be in the range 0-33.')
            # encode the pin numbers as a 32-bit integer with packed 6-bit values, the same way ESP32 ROM takes them
            # TODO: make this less ESP32 ROM specific somehow...
            clk,q,d,hd,cs = values
            value = (hd << 24) | (cs << 18) | (d << 12) | (q << 6) | clk
        else:
            raise argparse.ArgumentError(self, '%s is not a valid spi-connection value. ' +
                                         'Values are SPI, HSPI, or a sequence of 5 pin numbers CLK,Q,D,HD,CS).' % value)
        setattr(namespace, self.dest, value)


class AddrFilenamePairAction(argparse.Action):
    """ Custom parser class for the address/filename pairs passed as arguments """
    def __init__(self, option_strings, dest, nargs='+', **kwargs):
        super(AddrFilenamePairAction, self).__init__(option_strings, dest, nargs, **kwargs)

    def __call__(self, parser, namespace, values, option_string=None):
        # validate pair arguments
        pairs = []
        for i in range(0,len(values),2):
            try:
                address = int(values[i],0)
            except ValueError:
                raise argparse.ArgumentError(self,'Address "%s" must be a number' % values[i])
            try:
                argfile = open(values[i + 1], 'rb')
            except IOError as e:
                raise argparse.ArgumentError(self, e)
            except IndexError:
                raise argparse.ArgumentError(self,'Must be pairs of an address and the binary filename to write there')
            pairs.append((address, argfile))

        # Sort the addresses and check for overlapping
        end = 0
        for address, argfile in sorted(pairs):
            argfile.seek(0,2)  # seek to end
            size = argfile.tell()
            argfile.seek(0)
            sector_start = address & ~(ESPLoader.FLASH_SECTOR_SIZE - 1)
            sector_end = ((address + size + ESPLoader.FLASH_SECTOR_SIZE - 1) & ~(ESPLoader.FLASH_SECTOR_SIZE - 1)) - 1
            if sector_start < end:
                message = 'Detected overlap at address: 0x%x for file: %s' % (address, argfile.name)
                raise argparse.ArgumentError(self, message)
            end = sector_end
        setattr(namespace, self.dest, pairs)


# Binary stub code purged due to DFSG

def _main():
    try:
        main()
    except FatalError as e:
        print('\nA fatal error occurred: %s' % e)
        sys.exit(2)


if __name__ == '__main__':
    _main()