1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2011 by The University of Queensland //
// Earth Systems Science Computational Centre (ESSCC) //
// http://www.uq.edu.au/esscc //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.opensource.org/licenses/osl-3.0.php //
// //
/////////////////////////////////////////////////////////////
#ifndef ESYS_LSMGRIDITERATOR_H
#define ESYS_LSMGRIDITERATOR_H
#include "Foundation/BoundingBox.h"
#include "Foundation/vec3.h"
namespace esys
{
namespace lsm
{
/**
* Class for iterating over the centre-points of spheres arranged
* in a regular lattice within a specified bounding box.
*/
class GridIterator
{
public:
inline GridIterator()
: m_sphereRadius(0.0),
m_minI(0),
m_minJ(0),
m_minK(0),
m_maxI(0),
m_maxJ(0),
m_maxK(0),
m_i(0),
m_j(0),
m_k(0),
m_centrePtBBox()
{
}
inline GridIterator(int numPtsX, int numPtsY, int numPtsZ, double
sphereRadius)
: m_sphereRadius(sphereRadius),
m_minI(0),
m_minJ(0),
m_minK(0),
m_maxI(numPtsX),
m_maxJ(numPtsZ),
m_maxK(numPtsY),
m_i(0),
m_j(0),
m_k(0),
m_centrePtBBox()
{
Vec3 minPt;
Vec3 maxPt;
if (numPtsZ > 1)
{
minPt = Vec3(0,0,0) + sphereRadius;
maxPt =
Vec3(
(numPtsX-1)*2.0*sphereRadius
+
(
(numPtsZ > 1)
?
sphereRadius
:
0.0
)
+
(
(numPtsY > 1)
?
sphereRadius
:
0.0
),
(numPtsY-1)*(sphereRadius*2.0*sqrt(2.0/3.0)),
(numPtsZ-1)*(sphereRadius*sqrt(3.0))
+
((numPtsY > 1) ? sphereRadius*sqrt(3.0)/3.0 : 0.0)
);
} else {
minPt = Vec3(sphereRadius, sphereRadius, 0);
maxPt =
Vec3(
(numPtsX-1)*2.0*sphereRadius
+
(
(numPtsY > 1)
?
sphereRadius :
0.0
),
(numPtsY-1)*(sphereRadius*sqrt(3.0)),
0
);
m_minJ = m_maxJ;
}
m_centrePtBBox = BoundingBox(minPt, (minPt + maxPt));
}
/*!
setup GridIterator from bounding box and sphere radius
*/
inline GridIterator(const BoundingBox &particleBBox, double sphereRadius, bool hard_limit=false)
: m_sphereRadius(sphereRadius),
m_minI(0),
m_minJ(0),
m_minK(0),
m_maxI(0),
m_maxJ(0),
m_maxK(0),
m_i(0),
m_j(0),
m_k(0),
m_centrePtBBox()
{
int numPtsX ,numPtsY ,numPtsZ;
if(!hard_limit){ // find "best fit"
numPtsX = max(1, int(nearbyint((particleBBox.getSizes().X()-(sphereRadius/4.0))/(sphereRadius*2.0))));
numPtsY = max(1, int(nearbyint(particleBBox.getSizes().Y()/(sphereRadius*2.0*sqrt(2.0/3.0)))));
numPtsZ = max(1, int(nearbyint(particleBBox.getSizes().Z()/(sphereRadius*sqrt(3.0)))));
} else { // bounding box is hard limit
numPtsX = max(1, int(floor((particleBBox.getSizes().X()-(sphereRadius/4.0))/(sphereRadius*2.0))));
numPtsY = max(1, int(floor(particleBBox.getSizes().Y()/(sphereRadius*2.0*sqrt(2.0/3.0)))));
numPtsZ = max(1, int(floor(particleBBox.getSizes().Z()/(sphereRadius*sqrt(3.0)))));
}
if ((numPtsZ > 1) && (numPtsY > 1)) {
numPtsX--;
}
if (particleBBox.getSizes().Z() > 0.0) {
const Vec3 minPt = particleBBox.getMinPt() + sphereRadius;
const Vec3 maxPt =
Vec3(
(numPtsX-1)*2.0*sphereRadius + ((numPtsZ > 1) ? sphereRadius : 0.0) + ((numPtsY > 1) ? sphereRadius : 0.0),
(numPtsY-1)*(sphereRadius*2.0*sqrt(2.0/3.0)),
(numPtsZ-1)*(sphereRadius*sqrt(3.0))
+
((numPtsY > 1) ? sphereRadius*sqrt(3.0)/3.0 : 0.0)
);
m_centrePtBBox = BoundingBox(minPt, (minPt + maxPt));
} else {
numPtsX = int(nearbyint((particleBBox.getSizes().X()-(sphereRadius/4.0))/(sphereRadius*2.0)));
numPtsY = int(nearbyint(particleBBox.getSizes().Y()/(sphereRadius*sqrt(3.0))));
numPtsZ = 0;
Vec3 minPt = particleBBox.getMinPt() + sphereRadius;
minPt.Z() = particleBBox.getMinPt().Z();
const Vec3 maxPt =
Vec3(
(numPtsX-1)*2.0*sphereRadius + ((numPtsY > 1) ? sphereRadius : 0.0),
(numPtsY-1)*(sphereRadius*sqrt(3.0)),
particleBBox.getMaxPt().Z()
);
m_centrePtBBox = BoundingBox(minPt, (minPt + maxPt));
}
m_minI = 0;
m_minJ = 0;
m_minK = 0;
m_maxI = numPtsX;
m_maxK = numPtsY;
m_maxJ = numPtsZ;
m_i = m_minI;
m_j = m_minJ;
m_k = m_minK;
}
inline ~GridIterator()
{
}
inline const BoundingBox &getBoundingBox() const
{
return m_centrePtBBox;
}
inline BoundingBox getSphereBBox() const
{
return
(
is2d()
?
BoundingBox(
m_centrePtBBox.getMinPt() - Vec3(m_sphereRadius, m_sphereRadius, 0.0),
m_centrePtBBox.getMaxPt() + Vec3(m_sphereRadius, m_sphereRadius, 0.0)
)
:
BoundingBox(
m_centrePtBBox.getMinPt() - m_sphereRadius,
m_centrePtBBox.getMaxPt() + m_sphereRadius
)
);
}
/**
* Returns whether there are any points remaining
* in the iteration.
*/
inline bool hasNext() const
{
return (m_i < m_maxI);
}
inline bool is2d() const
{
return (m_minJ == m_maxJ);
}
inline Vec3 getPoint() const
{
if (is2d()) {
return
Vec3(
m_centrePtBBox.getMinPt().X() + (double(m_i)+0.5*double(m_k%2))*m_sphereRadius*2.0,
m_centrePtBBox.getMinPt().Y() + double(m_k)*sqrt(3.0)*m_sphereRadius,
0.0
);
} else {
return
Vec3(
m_centrePtBBox.getMinPt().X() + (double(m_i)+0.5*double(m_j%2)+0.5*double(m_k%2))*m_sphereRadius*2.0,
m_centrePtBBox.getMinPt().Y() + (double(m_k)*2.0*sqrt(2.0/3.0))*m_sphereRadius,
m_centrePtBBox.getMinPt().Z() + ((double(m_j)+double(m_k%2)/3.0)*sqrt(3.0))*m_sphereRadius
);
}
}
inline void increment()
{
if (m_k+1 < m_maxK) {
m_k++;
}
else if (m_j+1 < m_maxJ) {
m_k = m_minK;
m_j++;
}
else {
m_k = m_minK;
m_j = m_minJ;
m_i++;
}
}
/**
* Returns the next regular-grid-point in the iteration.
*/
inline Vec3 next()
{
const Vec3 pt = getPoint();
increment();
return pt;
}
private:
double m_sphereRadius;
int m_minI;
int m_minJ;
int m_minK;
int m_maxI;
int m_maxJ;
int m_maxK;
int m_i; //! index in x-direction
int m_j; //! index in y-direction
int m_k; //! index in z-direction
BoundingBox m_centrePtBBox;
};
};
};
#endif
|