1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2011 by The University of Queensland //
// Earth Systems Science Computational Centre (ESSCC) //
// http://www.uq.edu.au/esscc //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.opensource.org/licenses/osl-3.0.php //
// //
/////////////////////////////////////////////////////////////
#include "Sphere2d.h"
double Sphere2D::NearZero=1e-8;
/*!
Fit circle between 3 circles
\param iP1 center of 1st circle
\param iP2 center of 2nd circle
\param iP3 center of 3rd circle
\param r1 radius of 1st circle
\param r2 radius of 2st circle
\param r3 radius of 3rd circle
\param M center of fitted circle (output)
\param r radius of fitted circle (output)
*/
bool Sphere2D::FillIn(const Vec3& P1,const Vec3& P2,const Vec3& P3, double r1, double r2, double r3, Vec3 &M, double &r)
{
double B12 = r1*r1-r2*r2+P2*P2-P1*P1 ;
double B13 = r1*r1-r3*r3+P3*P3-P1*P1 ;
double V = (cross((P3-P1),(P2-P1))).Z() ;
if (V==0.0) {
return false ;
}
Vec3 E = B12*(P3-P1)-B13*(P2-P1) ;
Vec3 D = (r1-r2)*(P3-P1)-(r1-r3)*(P2-P1) ;
double a = D.X()*D.X()/(V*V)+ D.Y()*D.Y()/(V*V) -1 ;
double b = 2.0*((cross(P3,D)).Z())/V + E*D/(V*V) -2.0*r3 ;
double c = P3*P3+(cross(P3,E)).Z()/V+ E*E/(4*V*V) - r3*r3 ;
double delta = b*b-4*a*c ;
if (delta < 0.0) {
return false ;
} else if ( delta > 0.0 ) {
delta = sqrt(delta) ;
}
if (a!=0.0) {
double rs1 = (-b + delta)/(2*a) ;
double rs2 = (-b - delta)/(2*a) ;
if ((rs1<=0) && (rs2<=0)) {
return false ;
}
if (rs1<=0) {
r = rs2 ;
} else if (rs2 <=0) {
r = rs1 ;
} else {
r = ((rs1)>(rs2) ? (rs2):(rs1)) ;
}
} else {
if (b==0.0) return false ;
r = -c / b ;
if (r<=0.0) return false ;
}
M.X() = -r*D.Y()/V - E.Y()/(2*V) ;
M.Y() = r*D.X()/V + E.X()/(2*V) ;
return true ;
}
/*!
Fit circle between 2 circles and a line
\param iP1 center of 1st circle
\param iP2 center of 2nd circle
\param iO origin of line
\param iD direction of line
\param r1 radius of 1st circle
\param r2 radius of 2st circle
\param M center of fitted circle (output)
\param r radius of fitted circle (output)
*/
bool Sphere2D::FillInWP(const Vec3& iP1,const Vec3& iP2,const Vec3& iO,const Vec3& iD,double r1,double r2,Vec3& M,double& r)
{
Vec3 P2 = iP2-iO ;
Vec3 P1 = iP1-iO ;
Vec3 D ;
D = iD/iD.norm() ;
Vec3 O = iO-2*(fabs(P1*D)+fabs(P2*D))*D ;
P2 = iP2-O ;
P1 = iP1-O ;
if ((cross(P1,D)).Z()*(cross(P2,D)).Z() < 0.0 ) return false ;
if ((cross(P1,D)).Z() < 0 ) D *= -1.0 ;
double alpha = 2*P2.X()-2*P1.X()+2*r2*D.Y()-2*r1*D.Y() ;
double beta = 2*P2.Y()-2*P1.Y()+2*r1*D.X()-2*r2*D.X() ;
double gamma = P1*P1-P2*P2+r2*r2-r1*r1 ;
if (gamma == 0.0) {
return false ;
}
if (fabs(beta)<=NearZero) {
if (alpha == 0.0) return false ;
double M1x = -gamma/alpha ;
double a = 1-D.X()*D.X() ;
double b = 2*D.X()*D.Y()*M1x+2*r1*D.X()-2*P1.Y() ;
double c = P1*P1-2*P1.X()*M1x+M1x*M1x*(1-D.Y()*D.Y())-2*r1*M1x*D.Y()-r1*r1 ;
double delta = b*b - 4*a*c ;
if (delta < 0.0) {
return false ;
} else if (delta > 0.0) {
delta = sqrt(delta) ;
}
double rs, My ;
if (a==0.0) {
if (b==0.0) return false ;
My = -c/b ;
rs = M1x*D.Y()-My*D.X() ;
} else {
double M1y = (-b+delta)/(2*a) ;
double M2y = (-b-delta)/(2*a) ;
double rs1 = M1x*D.Y()-M1y*D.X() ;
double rs2 = M1x*D.Y()-M2y*D.X() ;
if ((rs1 >0) && (rs2>0)) {
if (rs1<rs2) {
rs = rs1 ; My=M1y ;
} else {
rs = rs2 ; My=M2y ;
}
} else {
if (rs1 >0) {
rs = rs1 ; My=M1y ;
} else if (rs2 >0) {
rs = rs2 ; My=M2y ;
} else {
return false ;
}
}
}
M = O+Vec3(M1x,My,0.0) ;
r = rs ;
return true ;
}
double A = -alpha/beta ;
double B = -gamma/beta ;
double a = A*A+1-(D.Y()-A*D.X())*(D.Y()-A*D.X()) ;
double b = 2.0*A*B-2*P1.X()-2*P1.Y()*A-2.0*(D.Y()-A*D.X())*(r1-B*D.X()) ;
double c = P1*P1-2*P1.Y()*B+B*B-(r1-B*D.X())*(r1-B*D.X()) ;
double delta = b*b - 4*a*c ;
if (delta < 0.0) {
return false ;
} else if (delta > 0.0) {
delta = sqrt(delta) ;
}
double M1x,M2x ;
if (a!=0) {
M1x = (-b + delta) / (2*a) ;
M2x = (-b - delta) / (2*a) ;
} else {
if (b==0.0) return false ;
M1x = -c/b ;
M2x = M1x ;
}
double M1y = A*M1x+B ;
double M2y = A*M2x+B ;
double rs1 = M1x*D.Y()-M1y*D.X() ;
double rs2 = M2x*D.Y()-M2y*D.X() ;
if ((rs1<=0) && (rs2<=0)) {
return false ;
}
int sol=1 ;
if (rs1<=0) {
r = rs2 ;
sol=2 ;
} else if (rs2 <=0) {
r = rs1 ;
} else if (rs1<rs2) {
r = rs1 ;
} else {
r = rs2 ;
sol=2 ;
}
if (sol == 1) {
M = O+Vec3(M1x,M1y,0.0) ;
} else {
M = O+Vec3(M2x,M2y,0.0) ;
}
return true;
}
/*!
Fit circle of fixed radius between circle and line. The equation
has always 2 valid solutions, wsol select which solution sould be returned
\param iP1 center of circle
\param iO origin of line
\param iD direction of line
\param r1 radius of circle
\param M center of fitted circle (output)
\param r radius of fitted circle (output)
\param wsol select which solution sould be returned
*/
bool Sphere2D::FillInWP(const Vec3& iP1,const Vec3& iO,const Vec3& iD,double r1,double r,Vec3& M,int wsol)
{
double M1x,M1y ;
Vec3 P1 = iP1-iO ;
Vec3 D ;
D = iD/iD.norm() ;
Vec3 O = iO-2*fabs(P1*D)*D ;
P1 = iP1-O ;
if ((cross(P1,D)).Z() < 0 ) D *= -1.0 ;
if (D.X()!=0.0) {
double a = 1+D.Y()*D.Y()/D.X()/D.X() ;
double b = -2*D.Y()*r/D.X()/D.X()-2*P1.X()-2*P1.Y()*D.Y()/D.X() ;
double c = P1*P1+r*r/D.X()/D.X()+2*P1.Y()*r/D.X()-r*r -2*r*r1 -r1*r1;
if (a==0.0) {
if (c==0.0) return false ;
M1x = -c/b ;
M1y = (r-M1x*D.Y())/D.X() ;
} else {
double delta = b*b -4*a*c ;
double sol = (wsol==1 ? -1.0:1.0) ;
M1x = (-b + sol*delta)/(2*a) ;
M1y = (r-M1x*D.Y())/D.X() ;
}
} else {
M1x = r/D.Y() ;
double a=1 ;
double b=-2*P1.Y() ;
double c=P1*P1+M1x*M1x-2*P1.X()*M1x - r*r - 2*r*r1 - r1*r1 ;
double delta = b*b -4*a*c ;
double sol = (wsol==1 ? -1.0:1.0) ;
M1y = (-b + sol*delta)/(2*a) ;
}
M = O+Vec3(M1x,M1y,0.0) ;
return true ;
}
|