1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2011 by The University of Queensland //
// Earth Systems Science Computational Centre (ESSCC) //
// http://www.uq.edu.au/esscc //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.opensource.org/licenses/osl-3.0.php //
// //
/////////////////////////////////////////////////////////////
#include "Geometry/SphereBlockGenerator.h"
// -- project includes ---
#include "Foundation/BoundingBox.h"
#include "Geometry/GridIterator.h"
#include "Geometry/Sphere3d.h"
// -- system include ---
#include <cstdlib>
using std::rand;
namespace esys
{
namespace lsm
{
/*!
constructor
\param ntable the neigbour table to be used
\param pool the particle pool
\param tol the fitting tolerance
\param pos center position
\param rad radius
\param rmin minimum particle radius
\param rmax maximum particle radius
\param ntries max. nr. of tries
*/
SphereBlockGenerator::SphereBlockGenerator(NTable& ntable,ParticlePool& pool,double tol,const Vec3& pos,double rad,double rmin,double rmax,int ntries,int tag)
:ParticleGenerator(ntable, pool)
{
m_tol=tol;
m_center=pos;
m_radius=rad;
m_min_rad=rmin;
m_max_rad=rmax;
m_max_tries=ntries;
m_tag=tag;
}
/*!
destructor
*/
SphereBlockGenerator::~SphereBlockGenerator()
{}
/*!
get next available particle ID
*/
int SphereBlockGenerator::getNextId()
{
return static_cast<int>(getNTable().getNumParticles());
}
/*!
generate a particle at a given position
\param point
*/
SimpleParticle SphereBlockGenerator::generateParticle(const Vec3 &point)
{
return SimpleParticle(point, getRadius(), getNextId(),m_tag);
}
/*!
get a random point inside the sphere
*/
Vec3 SphereBlockGenerator::getAPoint()
{
Vec3 res;
do{
double x=m_radius*(1.0-2.0*((static_cast<double>(rand()))/(static_cast<double>(RAND_MAX))));
double y=m_radius*(1.0-2.0*((static_cast<double>(rand()))/(static_cast<double>(RAND_MAX))));
double z=m_radius*(1.0-2.0*((static_cast<double>(rand()))/(static_cast<double>(RAND_MAX))));
res=Vec3(x,y,z);
} while (res.norm()>=m_radius);
return m_center+res;
}
/*!
??
*/
double SphereBlockGenerator::getRadius() const
{
return m_min_rad+((m_max_rad-m_min_rad)*(static_cast<double>(rand()))/(static_cast<double>(RAND_MAX)));
}
/*!
return max. radius to be used as spacing for grid iterator
*/
double SphereBlockGenerator::getGridRadius() const
{
return m_max_rad;
}
/*!
check particle fit
*/
bool SphereBlockGenerator::particleFits(const SimpleParticle &particle) const
{
bool radius_fit=(particle.getRad() >= m_min_rad) && (particle.getRad() <= m_max_rad);
bool inside=((m_center-particle.getPos()).norm()<=(m_radius-particle.getRad()));
return radius_fit && inside;
}
/*!
calculate & return bounding box for bounding sphere
*/
const BoundingBox SphereBlockGenerator::getBBox() const
{
Vec3 minvec=m_center-Vec3(m_radius,m_radius,m_radius);
Vec3 maxvec=m_center+Vec3(m_radius,m_radius,m_radius);
return BoundingBox(minvec,maxvec);
}
/*!
insert particle
\param particle
*/
void SphereBlockGenerator::insertParticle(const SimpleParticle &particle)
{
SimpleParticle *pParticle = getParticlePool().construct(particle);
pParticle->setTag(m_tag);
m_particleVector.push_back(pParticle);
m_idSet.insert(pParticle->getID());
getNTable().insert(pParticle);
}
/*!
generate particles
*/
void SphereBlockGenerator::generate()
{
generateSeedParticles();
generateFillParticles();
}
/*!
generate seed particles
*/
void SphereBlockGenerator::generateSeedParticles()
{
// setup grid iterator
GridIterator pointIt = GridIterator(getBBox(), getGridRadius());
// run through grid
while (pointIt.hasNext()) {
SimpleParticle particle = generateParticle(pointIt.next());
if (particleFits(particle)) {
insertParticle(particle);
}
}
}
/*!
get closes Neigbours
\param P the particle
\param np the number of neighbours
*/
vector<SimpleParticle*> SphereBlockGenerator::getClosestNeighbors(const SimpleParticle& P,int np)
{
vector<SimpleParticle*> nv=getNTable().getUniqueNeighbourVector(P.getPos(), m_max_rad + m_tol);
std::sort(nv.begin(), nv.end(), ParticleComparer(P));
if (nv.size() > static_cast<size_t>(np)) {
nv.erase(nv.begin() + np, nv.end());
}
return nv;
}
/*!
Find a fit for a sphere using the list of neigbors and the outer sphere
\param Po the particle to fit
\param NL the list of neighbors
*/
bool SphereBlockGenerator::findAFitWithSphere(SimpleParticle& Po, const vector<SimpleParticle*>& NL)
{
// cout << "findAFit - 3 particles + outer\n";
bool find_a_fit ;
Vec3 M;
double r;
int id=Po.getID();
if(NL.size()<3){
find_a_fit=false;
// cout << "less than 3 neighbors" << endl; // can't happen
} else {
Vec3 Pos1=m_center;
Vec3 Pos2=NL[0]->getPos();
Vec3 Pos3=NL[1]->getPos();
Vec3 Pos4=NL[2]->getPos();
double r1=-1.0*m_radius;
double r2=NL[0]->getRad();
double r3=NL[1]->getRad();
double r4=NL[2]->getRad();
find_a_fit=Sphere3D::FillIn(Pos1,Pos2,Pos3,Pos4,r1,r2,r3,r4,M,r);
Po=SimpleParticle(M,r,id,m_tag);
// cout << "found " << M << " , " << r << endl;
}
return find_a_fit ;
}
/*!
Find a fit for a sphere using the list of neigbors
\param Po the particle to fit
\param NL the list of neighbors
*/
bool SphereBlockGenerator::findAFit(SimpleParticle& Po, const vector<SimpleParticle*>& NL)
{
// cout << "findAFit - 4 particles\n";
bool find_a_fit ;
Vec3 M;
double r;
int id=Po.getID();
if(NL.size()<4){
find_a_fit=false;
// cout << "less than 4 neighbors" << endl; // can't happen
} else {
Vec3 Pos1=NL[0]->getPos();
Vec3 Pos2=NL[1]->getPos();
Vec3 Pos3=NL[2]->getPos();
Vec3 Pos4=NL[3]->getPos();
double r1=NL[0]->getRad();
double r2=NL[1]->getRad();
double r3=NL[2]->getRad();
double r4=NL[3]->getRad();
find_a_fit=Sphere3D::FillIn(Pos1,Pos2,Pos3,Pos4,r1,r2,r3,r4,M,r);
Po=SimpleParticle(M,r,id,m_tag);
// cout << "found " << M << " , " << r << endl;
}
return find_a_fit ;
}
/*!
check if Po is within the Space and is not crossing any boundary or
overlapping with other particles.
\param Po the particle
*/
bool SphereBlockGenerator::checkAFit(const SimpleParticle& Po)
{
bool fail=false;
// check vs. radius
fail=!particleFits(Po);
// check vs. all neighbors
if(!fail){
vector<SimpleParticle*> NL=getNTable().getUniqueNeighbourVector(Po.getPos(), m_max_rad + m_tol);;
vector<SimpleParticle*>::const_iterator iter=NL.begin();
while(!fail && iter!=NL.end()){
double dist=(Po.getPos()-(*iter)->getPos()).norm()+m_tol;
if(dist < (Po.getRad()+(*iter)->getRad())){
fail=true;
//cout << "Fail : particle collision" << endl;
}
iter++;
}
}
return !fail ;
}
/*!
fill in
*/
void SphereBlockGenerator::generateFillParticles()
{
int countfail=0;
int countfound=0;
//bool fail,findfit;
bool findfit=false;
//bool foundwithsphere=false;
cout << "SphereBlockGenerator::generateFillParticles" << endl;
while(countfail<m_max_tries){
findfit=false;
Vec3 P=getAPoint();
// cout << "Got Point: " << P << endl;
SimpleParticle Po=generateParticle(P);
vector<SimpleParticle*> T4=getClosestNeighbors(Po,4);
if(T4.size()>3){ // at least 4 neighbors
SimpleParticle* Pi=T4[0];
double ndist=(Po.getPos()-Pi->getPos()).norm();
if( ndist==0.0){
findfit=false;
} else {
if( ndist < Pi->getRad()){ // if Po inside Pi -> move Po to the surface of Pi
Vec3 npos=Pi->getPos()+((Po.getPos()-Pi->getPos())*(Pi->getRad()/ndist));
Po.moveTo(npos);
}
double dist_p=m_radius-(Po.getRad()+(m_center-Po.getPos()).norm()); // distance between Po and outer sphere
double dist_3=(Po.getPos()-T4[3]->getPos()).norm()-T4[3]->getRad();
if (dist_p>dist_3){ // 4th particle closer than plane -> fit 4 particles
findfit=findAFit(Po,T4);
} else { // outer sphere closer than 4th particle -> fit 3 particles + outer sphere
findfit=findAFitWithSphere(Po,T4);
}
}
} else { // 3 neighbors -> try 3 particles + outer sphere
SimpleParticle* Pi=T4[0];
double ndist=(Po.getPos()-Pi->getPos()).norm();
if( ndist==0.0){
findfit=false;
} else {
if( ndist < Pi->getRad()){ // if Po inside Pi -> move Po to the surface of Pi
Vec3 npos=Pi->getPos()+((Po.getPos()-Pi->getPos())*(Pi->getRad()/ndist));
Po.moveTo(npos);
}
findfit=findAFitWithSphere(Po,T4);
}
}
if(findfit){ // found something, check
findfit=checkAFit(Po);
}
if(findfit){ // found & checked -> insert
insertParticle(Po);
if(countfail*10>m_max_tries){
cout << "found particle " << Po.getID() << " after " << countfail << " tries" << endl;
}
countfail=0;
countfound++;
} else {
countfail++;
}
}
cout << "end SphereBlockGenerator::generateFillParticles" << endl;
}
};
};
|