1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
#############################################################
## ##
## Copyright (c) 2003-2011 by The University of Queensland ##
## Earth Systems Science Computational Centre (ESSCC) ##
## http://www.uq.edu.au/esscc ##
## ##
## Primary Business: Brisbane, Queensland, Australia ##
## Licensed under the Open Software License version 3.0 ##
## http://www.opensource.org/licenses/osl-3.0.php ##
## ##
#############################################################
#!/bin/env mpipython
from esys.lsm import LsmMpi, setVerbosity
from esys.lsm import NRotBondedWallPrms
from esys.lsm.sim import *
from esys.lsm.util import *
from esys.lsm.geometry import *
from sets import Set
from itertools import ifilter
from itertools import chain
import time
class MyExpSourcePrms(ExpSourcePrms):
def getPosn(self, t):
d = Vec3()
for i in range(0, 3):
d[i] = self.a[i]*math.exp(-(((t-self.t0[i])*self.b[i])**2))
#print "Moving source by |" + str(d) + "|" + str(d.norm())
return d
class MyCircularSourcePrms(SourcePrms):
def __init__(self, posn, startTime=0.5, freq=0.05, radius=0.05):
SourcePrms.__init__(self, posn)
self.startTime = startTime
self.freq = freq
self.radius = radius
def getPosn(self, t):
d = Vec3(0,0,0)
theta = self.freq*2.0*math.pi*(t-self.startTime)
if ((t >= self.startTime) and (theta <= 2.0*math.pi)):
d = \
Vec3(
self.radius*math.cos(theta)-self.radius,
self.radius*math.sin(theta),
0
)
print "Moving source by |" + str(d) + "|=" + str(d.norm())
return d
class MyLinearSineSourcePrms(SourcePrms):
def __init__(
self,
posn,
startTime=0.5,
freq=0.02,
magnitude=[0, 0.10,0]
):
SourcePrms.__init__(self, posn)
self.startTime = startTime
self.freq = freq
self.magnitude = magnitude
def getPosn(self, t):
d = Vec3(0,0,0)
theta = self.freq*2.0*math.pi*(t-self.startTime)
if ((t >= self.startTime) and (theta <= 1.0*math.pi)):
d = \
Vec3(
self.magnitude[0]*math.sin(theta),
self.magnitude[1]*math.sin(theta),
self.magnitude[2]*math.sin(theta)
)
print "Moving source by |" + str(d) + "|=" + str(d.norm())
return d
class PVisitor:
"""
Objects of this class are used in conjunction with
the waveProp.visitParticlesWithId method to collect model
particle data.
"""
def __init__(self):
self.particleList = []
def __iter__(self):
return iter(self.particleList)
def visitAParticle(self, particle):
self.particleList.append(particle)
def visitNRotSphere(self, p):
self.visitAParticle(p)
def visitRotSphere(self, p):
self.visitAParticle(p)
def writeDisplacementData(
idList,
index,
lsm,
fileNamePrefix="displacement_"
):
"""
Writes particle displacement data to file. Each line of the file is
'px py pz dx dy dz' where p=(px,py,pz) is the particle position and
d=(dx,dy,dz) is the current particle displacement (ie position relative
to initial position).
@param idList: list of particle id's.
@param index: integer used to generate file name.
@param lsm: a LSM object.
@param fileNamePrefix: prefix of file where displacement data is saved.
"""
#
# Collect data for all particles with id's specified
# in the idList.
#
visitor = PVisitor()
lsm.visitParticlesWithId(idList, visitor)
f = file(fileNamePrefix + "%d.txt" % (index), "w")
for p in visitor:
f.write(
str(p.getPosn()) +\
" " + str(p.getPosn()-p.getInitialPosn()) + "\n"
)
f.close()
if (__name__ == "__main__"):
# Create a 2d cubic close-packing of particles.
radius = 1.0
(nx,ny,nz) = (160, 160, 1)
particles = CubicBlock([nx,ny,nz], radius)
bBox = particles.getParticleBBox()
centrePt = (bBox.getMinPt() + bBox.getMaxPt())*0.5
#
# Calculate bonds between particles. The DistConnections
# object creates connections for a pair of particles which
# are less than a specified distance appart.
#
connections = DistConnections(0.25, 0, particles)
#
# Generate lots of debug output by setting verbosity to True.
#
#setVerbosity(True)
#
# Create the wave propagation model,
# Two worker processes, approx half the
# the particles on one worker, half the particles
# on the other worker, mpiDimList=[2,1,1] implies
# splitting the domain in the 0 coordinate (x-coordinate).
#
waveProp = \
WavePropagation(
domainBox = bBox,
do2d = (nz==1),
numWorkerProcesses = 2,
mpiDimList = [2,1,1],
timeStepSize=0.04
)
#
# Tag outer boundary particles so they can be bonded to
# fixed walls.
#
tag = 1
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[0]-x.getRadius()-bBox.getMinPt()[0]
) < 0.01,
particles
):
p.setTag(tag)
tag += 1
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[1]-x.getRadius()-bBox.getMinPt()[1]
) < 0.01,
particles
):
p.setTag(tag)
tag += 1
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[0]+x.getRadius()-bBox.getMaxPt()[0]
) < 0.01,
particles
):
p.setTag(tag)
tag += 1
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[1]+x.getRadius()-bBox.getMaxPt()[1]
) < 0.01,
particles
):
p.setTag(tag)
#
# Create the model particles
#
waveProp.createParticles(particles)
#
# Create the linear elastic bonds between particles.
# The {0:1.0} argument is a dictionary with a
# single (key=0, value=1.0) entry. All connections with
# tag=0 will have a corresponding linear-elastic-bond created with
# spring constant of 1.0.
#
waveProp.createBonds(connections, {0:1.0})
#
# Create the source disturbance which generates the wave.
# A single particle is displaced over a small distance.
# The source is created in the centre of the particle model.
#
approxSourcePosn = centrePt
waveProp.createSources(MyLinearSineSourcePrms(approxSourcePosn))
sourcePosn = waveProp.sourceList[0].getInitialPosn()
print "Source posn = " + str(sourcePosn)
#
# Create the walls and the elastic bonds between walls
# and the tagged particles.
#
wallBondSpringK = 1.0
waveProp.createWall(
NRotBondedWallPrms(
wallBondSpringK, # spring constant
bBox.getMinPt(), # plane/wall postition
Vec3(1, 0, 0), # plane/wall normal
1 # particles with this tag get bonded to the wall
)
)
waveProp.createWall(
NRotBondedWallPrms(
wallBondSpringK,
bBox.getMinPt(),
Vec3(0, 1, 0),
2
)
)
waveProp.createWall(
NRotBondedWallPrms(
wallBondSpringK,
bBox.getMaxPt(),
Vec3(-1, 0, 0),
3
)
)
waveProp.createWall(
NRotBondedWallPrms(
wallBondSpringK,
bBox.getMaxPt(),
Vec3(0, -1, 0),
4
)
)
#
# Create a line of seismographs through the particle block
#
pt1 = Vec3(bBox.getMinPt())
pt2 = Vec3(sourcePosn)
numSeismos = 20
diff = pt2-pt1
interSeismoDistance = max([radius*2, diff.norm()/float(numSeismos)])
incr = (diff/diff.norm())*interSeismoDistance
seismographPosnList = []
for i in range(0, numSeismos):
seismographPosnList.append(pt1 + incr*float(i))
waveProp.createSeismographGroup(
seismographPosnList,
"seismo_line_",
sourcePosn
)
#
# Run the model
#
numTimeSteps = 4000
idList = [p.getId() for p in particles]
j = 0
t1 = None
for i in range(0, numTimeSteps):
if (t1 == None):
t1 = time.time()
waveProp.runTimeStep()
if ((i % 5) == 0):
t2 = time.time()
waveProp.saveSeismoData()
t3 = time.time()
print \
"t = " + str(waveProp.getTime()) + ", step number = " + str(i) \
+ \
", seismo data output time = " \
+ \
str(t3-t2) + " sec"
if ((i % 50) == 0):
t2 = time.time()
writeDisplacementData(idList, j, waveProp)
j += 1
t3 = time.time()
print \
"t = " + str(waveProp.getTime()) + ", step num = " + str(i) \
+ \
", run time = " + str(t2-t1) + " sec, displ data time = " \
+ \
str(t3-t2) + " sec"
t1 = None
waveProp.writeReorderedRecordSectionData()
|