1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
|
#############################################################
## ##
## Copyright (c) 2003-2011 by The University of Queensland ##
## Earth Systems Science Computational Centre (ESSCC) ##
## http://www.uq.edu.au/esscc ##
## ##
## Primary Business: Brisbane, Queensland, Australia ##
## Licensed under the Open Software License version 3.0 ##
## http://www.opensource.org/licenses/osl-3.0.php ##
## ##
#############################################################
#!/bin/env mpipython
from esys.lsm import LsmMpi, setVerbosity, NRotBondedWallPrms
from esys.lsm.sim import *
from esys.lsm.util import *
from esys.lsm.geometry import *
from OptionParser import OptionParser
from sets import Set
from itertools import ifilter
from itertools import chain
import time
import sys
class MyLinearSineSourcePrms(SourcePrms):
"""
Objects define linear spatial trajectory (sinusoidal
time-frequency) for a particle-source-disturbance.
"""
def __init__(self, posn, startTime=0.5, freq=0.02, magnitude=[0, 0.10, 0]):
"""
Initialises trajectory parameters.
@type posn: L{Vec3}
@param posn: The approx location of the source-disturbance.
@type startTime: float
@param startTime: The time at which the disturbance begins.
@type freq: float
@param freq: The: frequency of the sinusoidal disturbance.
@type magnitude: L{Vec3}
@param magnitude: The direction and maximum displacement of
the source.
"""
SourcePrms.__init__(self, posn)
self.startTime = startTime
self.freq = freq
self.magnitude = magnitude
def getPosn(self, t):
"""
Returns the position of the disturbance at the specified time.
@type t: float
@param t: Time for which position is returned.
@rtype: L{Vec3}
@return: Position of disturbance at time t.
"""
d = Vec3(0,0,0)
theta = self.freq*2.0*math.pi*(t-self.startTime)
if ((t >= self.startTime) and (theta <= 1.0*math.pi)):
d = \
Vec3(
self.magnitude[0]*math.sin(theta),
self.magnitude[1]*math.sin(theta),
self.magnitude[2]*math.sin(theta)
)
print "Moving source by |" + str(d) + "|=" + str(d.norm())
return d
#
# Define particle tag values for particles which are to be
# elastically bonded to fixed walls
#
(LEFT_TAG, RIGHT_TAG, TOP_TAG, BOTTOM_TAG, FRONT_TAG, BACK_TAG) =\
(101, 102, 103, 104, 105, 106)
UPPER_BOND_TAG = 10
LOWER_BOND_TAG = 11
class WaveSim:
"""
Wrapper class for 2D and 3D wave propagation simulation.
"""
def __init__(self, options=None):
"""
Initialises simulation parameters.
The C{options} argument, is an object with the following
attributes:
- C{radius} - Particle radius (float)
- C{sourceDepth} - Relative depth of source disturbance (float in
[0,1]).
- C{sourceFrequency} - Frequency of sinusoidal source disturbance
(float)
- C{sourceMaxDisplacement} - Maximum relative displacement of source
disturbance (list of 3 floats)
- C{upperSpringK} - Spring constant for upper elastic medium
- C{lowerSpringK} - Spring constant for lower elastic medium
- C{upperMediumDepth} - Depth of upper elastic medium (float in
[0,1])
- C{particlesPerDim} - Size of particle block (list of 3 ints)
- C{particleDataIncr} - Particle data is saved every
C{particleDataIncr} time steps (int)
- C{seismoDataIncr} - Seismograph data is saved every
C{seismoDataIncr} time steps (int)
- C{numWorkerProcesses} - Number of MPI worker processes (int)
- C{mpiDimList} - Spatial division of domain amongst MPI workers
(list of 3 ints)
- C{timeStepSize} - Time step size for explicit integration (float)
- C{maxNumTimeSteps} - Number of time steps to run the simulation
(float)
- C{verbosity} - If True output lots of LSM debugging info (bool)
@type options: object
@param options: An object with attributes as specified above.
"""
if (options != None):
self.radius = options.radius
self.sourceDepth = options.sourceDepth
self.sourceFrequency = options.sourceFrequency
self.sourceMaxDisplacement=options.sourceMaxDisplacement
self.upperSpringK = options.upperSpringK
self.lowerSpringK = options.lowerSpringK
self.upperMediumDepth= options.upperMediumDepth
self.particlesPerDim = options.particlesPerDim
self.particleDataIncr= options.particleDataIncr
self.seismoDataIncr = options.seismoDataIncr
self.numWorkerProcesses = options.numWorkerProcesses
self.mpiDimList = options.mpiDimList
self.timeStepSize = options.timeStepSize
self.maxNumTimeSteps = options.maxNumTimeSteps
self.verbosity = options.verbosity
else:
self.verbosity = False
self.radius = 1.0
self.sourceDepth = 0.5
self.sourceFrequency=0.02
self.sourceMaxDisplacement=[0.1,0.1,0.0]
self.upperSpringK = 1.0
self.lowerSpringK = 1.0
self.upperMediumDepth = 0.25
self.particlesPerDim = [160, 160, 1]
self.particleDataIncr= 100
self.seismoDataIncr = 10
self.numWorkerProcesses = 2
self.mpiDimList = [2, 1, 1]
self.timeStepSize = 0.05
self.maxNumTimeSteps = 2000
self.wallBondSpringK = 1.0
self.particleBBox = None
self.particleBlock = None
self.lsmWaveSim = None
def is3d(self):
"""
Returns True if this is a 3D simulation (ie whether
(self.particlesPerDim[2] > 1).
@return: True if this is a 3D simulation, False if it is 2D.
"""
return (self.particlesPerDim[2] > 1)
def is2d(self):
"""
Returns True if this is a 3D simulation (ie (not
self.is3d()).
@return: True if this is a 2D simulation, False if it is 3D.
"""
return (not self.is3d())
def createParticleBlock(self):
"""
Creates a cubic close-packing of particles.
@return: Collection of L{SimpleSphere} objects.
"""
return CubicBlock(self.particlesPerDim, self.radius)
def getParticleBlock(self):
"""
Returns the collection/sequence of particles which represent an
elastic block.
@return: Collection of L{SimpleSphere} objects.
"""
if (self.particleBlock == None):
self.particleBlock = self.createParticleBlock()
return self.particleBlock
def getParticleBBox(self):
"""
Returns bounding box of the elastic block of particles.
@rtype: L{BoundingBox}
@return: Axis aligned bounding box.
"""
if (self.particleBBox == None):
self.particleBBox = self.getParticleBlock().getParticleBBox()
return self.particleBBox
def tagBoundaryParticles(self):
"""
Tags outer boundary particles so they can be bonded to
fixed walls.
"""
bBox = self.getParticleBBox()
particles = self.getParticleBlock()
distTol = 0.1*self.radius
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[0]-x.getRadius()-bBox.getMinPt()[0]
) < distTol,
particles
):
p.setTag(LEFT_TAG)
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[1]-x.getRadius()-bBox.getMinPt()[1]
) < distTol,
particles
):
p.setTag(BOTTOM_TAG)
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[0]+x.getRadius()-bBox.getMaxPt()[0]
) < distTol,
particles
):
p.setTag(RIGHT_TAG)
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[1]+x.getRadius()-bBox.getMaxPt()[1]
) < distTol,
particles
):
p.setTag(TOP_TAG)
if (self.is3d()):
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[2]-x.getRadius()-bBox.getMinPt()[2]
) < distTol,
particles
):
p.setTag(BACK_TAG)
for p in \
ifilter(
lambda x:\
abs(
x.getPosn()[2]+x.getRadius()-bBox.getMaxPt()[2]
) < distTol,
particles
):
p.setTag(FRONT_TAG)
def createLsmWaveSim(self):
"""
Create the uninitialised wave propagation model ie the
L{WavePropagation} object.
"""
# Two worker processes imply that approx half the
# the particles on one worker, half the particles
# on the other worker, mpiDimList=[2,1,1] implies
# splitting the domain in the 0 coordinate (x-coordinate).
#
self.lsmWaveSim = \
WavePropagation(
domainBox = self.getParticleBBox(),
do2d = (self.is2d()),
numWorkerProcesses = self.numWorkerProcesses,
mpiDimList = self.mpiDimList,
timeStepSize=self.timeStepSize
)
#
# Generate lots of debug output by setting verbosity to True.
#
if (self.verbosity):
setVerbosity(True)
def getLsmWaveSim(self):
if (self.lsmWaveSim == None):
self.createLsmWaveSim()
return self.lsmWaveSim
def createParticles(self):
"""
Create initial configuration of particles in the model
"""
self.tagBoundaryParticles()
self.getLsmWaveSim().createParticles(self.getParticleBlock())
def createBonds(self):
"""
Creates linear elastic bonds between particles. Two regions
of bonds created with different elastic constants.
"""
xzPlaneDepth = \
self.getParticleBBox().getMaxPt()[1] \
- \
self.getParticleBBox().getSize()[1]*self.upperMediumDepth
allParticles = Set(self.getParticleBlock())
upperParticles = \
Set(
ifilter(
lambda p: p.getPosn()[1] >= xzPlaneDepth,
self.getParticleBlock()
)
)
lowerParticles = allParticles.difference(upperParticles)
#
# The DistConnections object creates connections
# for a pair of particles which are less than a
# specified distance (self.radius/4.0) appart.
#
connections = DistConnections(self.radius/4.0)
connections.addParticles(upperParticles, UPPER_BOND_TAG)
connections.addParticles(lowerParticles, LOWER_BOND_TAG)
#
# Create the linear elastic bonds between particles.
# The {TAG1:springK1, TAG2:springK2} argument is a dictionary
# with a two (key, value) entries. All connections with
# a tag of UPPER_BOND_TAG will have a corresponding
# linear-elastic-bond created with spring constant of
# self.upperSpringTag.
#
self.getLsmWaveSim().createBonds(
connections,
{
UPPER_BOND_TAG:self.upperSpringK,
LOWER_BOND_TAG:self.lowerSpringK
}
)
def createSource(self):
"""
Create the source disturbance which generates the wave.
A single particle is displaced over a small distance.
The source is created centred in the x and z coords,
at a specified y coord depth.
"""
bBox = self.getParticleBBox()
size = bBox.getSize()
centrePt = (bBox.getMinPt() + bBox.getMaxPt())/2.0
approxSourcePosn = centrePt
approxSourcePosn[1] = bBox.getMaxPt()[1] - self.sourceDepth*size[1]
self.getLsmWaveSim().createSources(
MyLinearSineSourcePrms(
posn=approxSourcePosn,
freq=self.sourceFrequency,
magnitude=self.sourceMaxDisplacement
)
)
sourcePosn = self.getLsmWaveSim().sourceList[0].getInitialPosn()
print "Source posn = " + str(sourcePosn)
def createBoundaryWalls(self):
"""
Create the walls and the elastic bonds between walls
and the tagged particles, leave the maximum y side as
a free surface (no elastic wall).
"""
bBox = self.getParticleBBox()
waveProp = self.getLsmWaveSim()
waveProp.createWall(
NRotBondedWallPrms(
self.wallBondSpringK, # spring constant
bBox.getMinPt(), # plane/wall postition
Vec3(1, 0, 0), # plane/wall normal
LEFT_TAG # particles with this tag get bonded to the wall
)
)
waveProp.createWall(
NRotBondedWallPrms(
self.wallBondSpringK,
bBox.getMinPt(),
Vec3(0, 1, 0),
BOTTOM_TAG
)
)
waveProp.createWall(
NRotBondedWallPrms(
self.wallBondSpringK,
bBox.getMaxPt(),
Vec3(-1, 0, 0),
RIGHT_TAG
)
)
if (self.is3d()):
waveProp.createWall(
NRotBondedWallPrms(
self.wallBondSpringK,
bBox.getMinPt(),
Vec3(0, 0, 1),
BACK_TAG
)
)
waveProp.createWall(
NRotBondedWallPrms(
self.wallBondSpringK,
bBox.getMaxPt(),
Vec3(0, 0, -1),
FRONT_TAG
)
)
def createLineOfSeismos(
self,
pt1,
pt2,
srcPt,
numSeismos,
fileNamePrefix
):
"""
Create a line of seismographs through the particle block,
between two specified points.
@type pt1: L{Vec3}
@param pt1: End point of line
@type pt2: L{Vec3}
@param pt2: other end-point of line
@type srcPt: L{Vec3}
@param srcPt: location of source point-disturbance.
"""
diff = pt2-pt1
#
# Don't place seismos any closer together than two times
# particle radius.
#
interSeismoDistance = \
max(
[
self.radius*2,
diff.norm()/float(numSeismos)
]
)
incr = (diff/diff.norm())*interSeismoDistance
seismographPosnList = []
for i in range(0, numSeismos):
seismographPosnList.append(pt1 + incr*float(i))
self.getLsmWaveSim().createSeismographGroup(
seismographPosnList,
fileNamePrefix,
srcPt
)
def createSeismographs(self):
"""
Creates lines of seismographs through the particle block
"""
sourcePosn = self.getLsmWaveSim().sourceList[0].getInitialPosn()
#
# Create line of seismos from corner of block to the position
# of the source disturbance.
#
bBox = self.getParticleBBox()
pt1 = Vec3(bBox.getMaxPt())
pt2 = Vec3(sourcePosn)
self.createLineOfSeismos(pt1, pt2, sourcePosn, 20, "srcToCorner_")
#
# Create grid of numX by numZ seismos on the top surface (maximum y).
#
numX = 25
numZ = 25
if (self.is2d()):
numZ = 1
xDiff = bBox.getMaxPt()[0]-bBox.getMinPt()[0]
xIncr = max(self.radius*2.0, xDiff/float(numX))
zDiff = bBox.getMaxPt()[2]-bBox.getMinPt()[2]
zIncr = max(self.radius*2.0, zDiff/float(numZ))
xCoordList = [bBox.getMinPt()[0] + x*xIncr for x in range(0, numX)]
zCoordList = [bBox.getMinPt()[2] + z*zIncr for z in range(0, numZ)]
seismoPosnList = []
y = bBox.getMaxPt()[1]
for x in xCoordList:
for z in zCoordList:
seismoPosnList.append(Vec3(x, y, z))
self.getLsmWaveSim().createSeismographGroup(
seismoPosnList,
"surfaceGrid_",
sourcePosn
)
def getOutputParticleIdList(self):
"""
Returns a list of particle ids, particles with id
in this list have their position and displacement
data written to file.
@rtype: list of particle ids
@return: List of particle ids.
"""
return [p.getId() for p in self.getParticleBlock()]
def runTimeSteps(self):
"""
Runs the model for self.maxNumTimeSteps time steps.
"""
numTimeSteps = self.maxNumTimeSteps
idList = self.getOutputParticleIdList()
waveProp = self.getLsmWaveSim()
waveProp.setParticleDataIdList(idList)
j = 0
t1 = None
for i in range(0, numTimeSteps):
if (t1 == None):
t1 = time.time()
waveProp.runTimeStep()
if ((i % self.seismoDataIncr) == 0):
t2 = time.time()
waveProp.saveSeismoData()
t3 = time.time()
print \
"t = " + str(waveProp.getTime()) +\
", step number = " + str(i) \
+ \
", seismo data output time = " \
+ \
str(t3-t2) + " sec"
if ((i % self.particleDataIncr) == 0):
t2 = time.time()
waveProp.writeParticleData(j, "particle_")
j += 1
t3 = time.time()
print \
"t = " + str(waveProp.getTime()) + ", step num = " + str(i)\
+ \
", run time = " + str(t2-t1) + " sec, displ data time = " \
+ \
str(t3-t2) + " sec"
t1 = None
waveProp.writeReorderedRecordSectionData()
def runSim(self):
"""
Sets up wave propagation model and executes simulation.
"""
self.createLsmWaveSim()
self.createParticles()
self.createBoundaryWalls()
self.createBonds()
self.createSource()
self.createSeismographs()
self.runTimeSteps()
def getOptionParser():
"""
Returns the L{OptionParser} object useful for parsing command
line options related to wave-propagation simulation.
"""
return OptionParser()
__doc__=\
"""
Wave propagation simulation module. Contains WaveSim convenience class for
initialising LSM particle model and running wave propagation simulation.
This module may be run as a C{__main__} from the command line as
follows::
%s
""" % (" " + string.replace(getOptionParser().format_help(), "\n", "\n "))
if (__name__=="__main__"):
parser = getOptionParser()
(options, args) = parser.parse_args(sys.argv[1:])
waveSim = WaveSim(options)
waveSim.runSim()
|