1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
#include "Geometry/GeometryInfo.h"
// --- STL includes ---
#include <stdexcept>
#include <sstream>
#include <algorithm>
namespace esys
{
namespace lsm
{
class GeometryInfo::Impl
{
public:
Impl();
Impl(
float version,
const Vec3 &bBoxMin,
const Vec3 &bBoxMax,
const BoolVector &periodicDimensions,
bool is2d = false
);
Impl &operator=(const Impl &impl);
bool operator==(const Impl &impl) const;
~Impl();
void read(std::istream &iStream);
void write(std::ostream &oStream) const;
void writeWithoutVersion(std::ostream &oStream) const;
float m_version;
Vec3 m_bBoxMin;
Vec3 m_bBoxMax;
/**
* Indicates the dimensions which are periodic, element 0 indicates
* whether the x-dim is periodic, element 1 indicates whether the y-dim
* is periodic and element 2 indicates whether the z-dim is periodic.
*/
BoolVector m_periodicDimensions;
bool m_is2d;
};
GeometryInfo::Impl::Impl()
: m_version(0.0),
m_bBoxMin(),
m_bBoxMax(),
m_periodicDimensions(3, false),
m_is2d(false)
{
}
GeometryInfo::Impl::Impl(
float version,
const Vec3 &bBoxMin,
const Vec3 &bBoxMax,
const BoolVector &periodicDimensions,
bool is2d
)
: m_version(version),
m_bBoxMin(bBoxMin),
m_bBoxMax(bBoxMax),
m_periodicDimensions(periodicDimensions),
m_is2d(is2d)
{
}
GeometryInfo::Impl::~Impl()
{
}
GeometryInfo::Impl &GeometryInfo::Impl::operator=(const GeometryInfo::Impl &impl)
{
m_version = impl.m_version;
m_bBoxMin = impl.m_bBoxMin;
m_bBoxMax = impl.m_bBoxMax;
m_periodicDimensions = impl.m_periodicDimensions;
m_is2d = impl.m_is2d;
return *this;
}
bool GeometryInfo::Impl::operator==(const GeometryInfo::Impl &impl) const
{
return
(
(m_version == impl.m_version)
&&
(m_bBoxMin == impl.m_bBoxMin)
&&
(m_bBoxMax == impl.m_bBoxMax)
&&
(m_is2d == impl.m_is2d)
&&
(m_periodicDimensions == impl.m_periodicDimensions)
);
}
/*!
Write complete geometry info to output stream
\param oStream the output stream
*/
void GeometryInfo::Impl::write(std::ostream &oStream) const
{
oStream << "LSMGeometry " << m_version << "\n";
writeWithoutVersion(oStream);
}
/*!
Write geometry info to output stream, except the version nr.
of the .geo file. This output can't be read by the "read" function.
It is used for the snapshot headers.
\param oStream the output stream
*/
void GeometryInfo::Impl::writeWithoutVersion(std::ostream &oStream) const
{
oStream << "BoundingBox ";
oStream
<< m_bBoxMin.X() << " "
<< m_bBoxMin.Y() << " "
<< m_bBoxMin.Z() << " ";
oStream
<< m_bBoxMax.X() << " "
<< m_bBoxMax.Y() << " "
<< m_bBoxMax.Z() << "\n";
oStream << "PeriodicBoundaries ";
oStream
<< m_periodicDimensions[0] << " "
<< m_periodicDimensions[1] << " "
<< m_periodicDimensions[2];
oStream
<< "\nDimension "
<< (m_is2d ? "2D" : "3D");
}
void GeometryInfo::Impl::read(std::istream &iStream)
{
Impl impl;
// read and check file type marker
std::string fileType;
iStream >> fileType;
size_t ftl=std::min(fileType.size(),size_t(4));
std::string fileTypeHead=fileType.substr(0,ftl);
if ((fileType != "LSMGeometry") && (fileTypeHead!="ESyS")) { // wrong file type -> bail out
throw runtime_error("Unrecognised file type " + fileType + " expected LSMGeometry or ESyS-Particle.");
}
// read and check version number
iStream >> impl.m_version;
if((fileType=="LSMGeometry") && ((impl.m_version != 1.1f) && (impl.m_version != 1.2f))){
std::stringstream msg;
msg
<< "Can only read version 1.1 or 1.2 geometry files, this is version "
<< impl.m_version;
throw std::runtime_error(msg.str().c_str());
} else if (fileTypeHead=="ESyS") {
impl.m_version=1.2f; // temporary hack
}
// read boundary box
string bbx;
iStream >> bbx;
// check boundary box marker
if (bbx != "BoundingBox") {
throw std::runtime_error("Expected BoundingBox, got " + bbx);;
}
iStream >> impl.m_bBoxMin.X() >> impl.m_bBoxMin.Y() >> impl.m_bBoxMin.Z();
iStream >> impl.m_bBoxMax.X() >> impl.m_bBoxMax.Y() >> impl.m_bBoxMax.Z();
// read boundary periodicity
string bdry;
iStream >> bdry;
// check boundary periodicity marker
if(bdry != "PeriodicBoundaries")
{
throw std::runtime_error("Expected PeriodicBoundaries, got " + bdry);
}
for (int i = 0; i < 3; i++) {
bool isPeriodic = false;
iStream >> isPeriodic;
impl.m_periodicDimensions[i] = isPeriodic;
}
// if 1.2, read in 2D or 3D
if(impl.m_version == 1.2f){
std::string dims;
iStream >> dims;
if(dims != "Dimension") {
throw std::runtime_error("Expected 'Dimension', got '" + dims + "'");
}
std::string r2d;
iStream >> r2d;
if((r2d == "2D") || (r2d == "2d")){
impl.m_is2d = true;
} else {
impl.m_is2d = false;
}
} else {
impl.m_is2d = true;
}
*this = impl;
}
GeometryInfo::GeometryInfo()
: m_pImpl(new GeometryInfo::Impl())
{
}
GeometryInfo::GeometryInfo(
float version,
const Vec3 &bBoxMin,
const Vec3 &bBoxMax,
const BoolVector &periodicDimensions,
bool is2d
)
: m_pImpl(new Impl(version, bBoxMin, bBoxMax, periodicDimensions, is2d))
{
}
GeometryInfo::GeometryInfo(const GeometryInfo &geoInfo)
: m_pImpl(new GeometryInfo::Impl(*(geoInfo.m_pImpl)))
{
}
GeometryInfo &GeometryInfo::operator=(const GeometryInfo &geoInfo)
{
*m_pImpl = *geoInfo.m_pImpl;
return *this;
}
GeometryInfo::~GeometryInfo()
{
delete m_pImpl;
}
bool GeometryInfo::operator==(const GeometryInfo &geoInfo) const
{
return (*m_pImpl == *geoInfo.m_pImpl);
}
bool GeometryInfo::hasAnyPeriodicDimensions() const
{
return
(
((m_pImpl->m_periodicDimensions.size() > 0) && (m_pImpl->m_periodicDimensions[0]))
||
((m_pImpl->m_periodicDimensions.size() > 1) && (m_pImpl->m_periodicDimensions[1]))
||
((m_pImpl->m_periodicDimensions.size() > 2) && (m_pImpl->m_periodicDimensions[2]))
);
}
bool GeometryInfo::is2d() const
{
return m_pImpl->m_is2d;
}
void GeometryInfo::set_is2d(bool do2d)
{
m_pImpl->m_is2d = do2d;
}
Vec3Vector GeometryInfo::getBBoxCorners() const
{
Vec3Vector corners;
corners.push_back(m_pImpl->m_bBoxMin);
corners.push_back(m_pImpl->m_bBoxMax);
return corners;
}
Vec3 GeometryInfo::getMinBBoxCorner() const
{
return m_pImpl->m_bBoxMin;
}
Vec3 GeometryInfo::getMaxBBoxCorner() const
{
return m_pImpl->m_bBoxMax;
}
IntVector GeometryInfo::getPeriodicDimensions() const
{
return
IntVector(
m_pImpl->m_periodicDimensions.begin(),
m_pImpl->m_periodicDimensions.end()
);
}
void GeometryInfo::setPeriodicDimensions(BoolVector periodicDimensions)
{
m_pImpl->m_periodicDimensions = periodicDimensions;
}
void GeometryInfo::setLsmGeoVersion(float version)
{
m_pImpl->m_version = version;
}
/*!
get the version of the loaded geometry
*/
float GeometryInfo::getLsmGeoVersion() const
{
return m_pImpl->m_version;
}
void GeometryInfo::read(std::istream &iStream)
{
m_pImpl->read(iStream);
}
void GeometryInfo::write(std::ostream &oStream) const
{
m_pImpl->write(oStream);
}
void GeometryInfo::writeWithoutVersion(std::ostream &oStream) const
{
m_pImpl->writeWithoutVersion(oStream);
}
void GeometryInfo::setBBox(const Vec3 &min, const Vec3 &max)
{
m_pImpl->m_bBoxMin = min;
m_pImpl->m_bBoxMax = max;
}
/*!
check if a model with the geometry described in the GeoInfo given in the argument
can be loaded into a pre-existing model
\param gi the new geometry info
*/
bool GeometryInfo::isCompatible(const GeometryInfo& gi) const
{
bool res=true;
// check if circular dimensions agree
res=res && (m_pImpl->m_periodicDimensions[0]==gi.m_pImpl->m_periodicDimensions[0])
&& (m_pImpl->m_periodicDimensions[1]==gi.m_pImpl->m_periodicDimensions[1])
&& (m_pImpl->m_periodicDimensions[2]==gi.m_pImpl->m_periodicDimensions[2]);
// check if min/max in circular dimensions agree and
// if new (argument) bounding box fits into old bbx in the non-circular dimensions
// x
if(m_pImpl->m_periodicDimensions[0]) {
res = res && (m_pImpl->m_bBoxMin[0]==gi.m_pImpl->m_bBoxMin[0])
&& (m_pImpl->m_bBoxMax[0]==gi.m_pImpl->m_bBoxMax[0]);
} else {
res = res && (m_pImpl->m_bBoxMin[0]<=gi.m_pImpl->m_bBoxMin[0])
&& (m_pImpl->m_bBoxMax[0]>=gi.m_pImpl->m_bBoxMax[0]);
}
// y
if(m_pImpl->m_periodicDimensions[1]) {
res = res && (m_pImpl->m_bBoxMin[1]==gi.m_pImpl->m_bBoxMin[1])
&& (m_pImpl->m_bBoxMax[1]==gi.m_pImpl->m_bBoxMax[1]);
} else {
res = res && (m_pImpl->m_bBoxMin[1]<=gi.m_pImpl->m_bBoxMin[1])
&& (m_pImpl->m_bBoxMax[1]>=gi.m_pImpl->m_bBoxMax[1]);
}
// z
if(m_pImpl->m_periodicDimensions[2]) {
res = res && (m_pImpl->m_bBoxMin[2]==gi.m_pImpl->m_bBoxMin[2])
&& (m_pImpl->m_bBoxMax[2]==gi.m_pImpl->m_bBoxMax[2]);
} else {
res = res && (m_pImpl->m_bBoxMin[2]<=gi.m_pImpl->m_bBoxMin[2])
&& (m_pImpl->m_bBoxMax[2]>=gi.m_pImpl->m_bBoxMax[2]);
}
return res;
}
/*!
Check if the geometrical dimensions in two GeometryInfo objects are identical
\param gi the new geometry info
*/
bool GeometryInfo::isIdenticalGeometry(const GeometryInfo& gi) const
{
bool res=true;
// check if circular dimensions agree
res=res && (m_pImpl->m_periodicDimensions[0]==gi.m_pImpl->m_periodicDimensions[0])
&& (m_pImpl->m_periodicDimensions[1]==gi.m_pImpl->m_periodicDimensions[1])
&& (m_pImpl->m_periodicDimensions[2]==gi.m_pImpl->m_periodicDimensions[2]);
// check if dimensions agree
// x
res = res && (m_pImpl->m_bBoxMin[0]==gi.m_pImpl->m_bBoxMin[0])
&& (m_pImpl->m_bBoxMax[0]==gi.m_pImpl->m_bBoxMax[0]);
// y
res = res && (m_pImpl->m_bBoxMin[1]==gi.m_pImpl->m_bBoxMin[1])
&& (m_pImpl->m_bBoxMax[1]==gi.m_pImpl->m_bBoxMax[1]);
// z
res = res && (m_pImpl->m_bBoxMin[2]==gi.m_pImpl->m_bBoxMin[2])
&& (m_pImpl->m_bBoxMax[2]==gi.m_pImpl->m_bBoxMax[2]);
return res;
}
std::ostream &operator<<(std::ostream &oStream, const GeometryInfo &geoInfo)
{
geoInfo.write(oStream);
return oStream;
}
std::istream &operator<<(std::istream &iStream, GeometryInfo &geoInfo)
{
geoInfo.read(iStream);
return iStream;
}
}
}
|