1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
//----------------------------------------------
// CESphereBodyInteractionGroup functions
//----------------------------------------------
#include "Foundation/console.h"
#include <iostream>
template<class T>
CESphereBodyInteractionGroup<T>::CESphereBodyInteractionGroup(TML_Comm* comm):ASphereBodyInteractionGroup<T>(comm)
{}
/*!
Constructor for elastic sphere body interaction group
\param comm the communicator
\param spherep a pointer to the sphere body
\param param the interaction parameters
*/
template<class T>
CESphereBodyInteractionGroup<T>::CESphereBodyInteractionGroup(TML_Comm* comm,CSphereBody* spherep,const CESphereBodyIGP* I)
:ASphereBodyInteractionGroup<T>(comm)
{
console.XDebug() << "making CESphereBodyInteractionGroup \n";
m_k=I->getSpringConst();
this->m_sphere=spherep;
}
template<class T>
void CESphereBodyInteractionGroup<T>::calcForces()
{
console.XDebug() << "calculating " << m_interactions.size() << " elastic sphere body forces\n" ;
for(
typename vector<CElasticSphereBodyInteraction<T> >::iterator it=m_interactions.begin();
it != m_interactions.end();
it++
){
it->calcForces();
}
}
template<class T>
void CESphereBodyInteractionGroup<T>::Update(ParallelParticleArray<T>* PPA)
{
console.XDebug() << "CESphereBodyInteractionGroup::Update()\n" ;
console.XDebug()
<< "CESphereBodyInteractionGroup::Update: sphere body origin = " << this->m_sphere->getCentre()
<< ", sphere body radius = " << this->m_sphere->getRadius() << "\n" ;
k_local=0.0;
// empty particle list first
m_interactions.erase(m_interactions.begin(),m_interactions.end());
this->m_inner_count=0;
// build new particle list
typename ParallelParticleArray<T>::ParticleListHandle plh=
PPA->getParticlesNearSphere(this->m_sphere->getCentre(),this->m_sphere->getRadius());
for(typename ParallelParticleArray<T>::ParticleListIterator iter=plh->begin();
iter!=plh->end();
iter++){
bool iflag=PPA->isInInner((*iter)->getPos());
m_interactions.push_back(CElasticSphereBodyInteraction<T>(*iter,this->m_sphere,m_k,iflag));
this->m_inner_count+=(iflag ? 1 : 0);
}
console.XDebug() << "end CESphereBodyInteractionGroup::Update()\n";
}
/*!
Apply a given force to the sphere body. Only forces in the direction of the given force are
considered, free movement is assumed in perpendicular directions.
\param F the force
*/
template<class T>
void CESphereBodyInteractionGroup<T>::applyForce(const Vec3& F)
{
// warn if initial value of force is zero, which prevents convergence
if(F.norm()==0.0){
console.Warning() << "No force applied to sphere body in CESphereBodyInteractionGroup::applyForce, which will not converge. If ramping the force, start with a nonzero value.\n";
}
int it=0;
double d; // distance to move
double df; // force difference
double ef; // relative force error (df/|F|)
Vec3 O_f=F.unit(); // direction of the applied force
do{
//std::cerr << "iteration: " << it << std::endl;
// calculate local stiffness
k_local=0.0;
for(typename vector<CElasticSphereBodyInteraction<T> >::iterator iter=m_interactions.begin();
iter!=m_interactions.end();
iter++){
k_local+=iter->getStiffness();
}
//std::cerr << "local stiffness: " << k_local << std::endl;
// get global K
m_k_global=this->m_comm->sum_all(k_local);
//std::cerr << "global stiffness: " << m_k_global << std::endl;
if(m_k_global>0){
// calculate local F
Vec3 F_local=Vec3(0.0,0.0,0.0);
for (
typename vector<CElasticSphereBodyInteraction<T> >::iterator iter=m_interactions.begin();
iter!=m_interactions.end();
iter++
){
if(iter->isInner()){
Vec3 f_i=iter->getForce();
F_local+=(f_i*O_f)*O_f; // add component of f_i in O_f direction
}
}
//std::cerr << "local Force: " << F_local << std::endl;
// get global F
// by component (hack - fix later,i.e. sum_all for Vec3)
double fgx=this->m_comm->sum_all(F_local.X());
double fgy=this->m_comm->sum_all(F_local.Y());
double fgz=this->m_comm->sum_all(F_local.Z());
Vec3 F_global=Vec3(fgx,fgy,fgz);
//std::cerr << "global Force: " << F_global << std::endl;
// calc necessary sphere movement
df=(F+F_global)*O_f;
d=df/m_k_global;
ef=df/F.norm();
// move the sphere body
this->m_sphere->moveBy(d*O_f);
it++;
} else {
d=1e-5;
ef=1;
// move the sphere body
this->m_sphere->moveBy(d*O_f);
it++;
}
} while((it<50)&&(ef>1e-3)); // check for convergence
// warning message if no contact or high error after iteration
if(ef>1e-3){
console.Warning() << "applyForce doesn't converge, global stiffness: " << m_k_global << " applied force: " << F << "\n";
}
}
template<class T>
ostream& operator<<(ostream& ost,const CESphereBodyInteractionGroup<T>& IG)
{
ost << "CESphereBodyInteractionGroup" << endl << flush;
ost << *(IG.m_sphere) << endl << flush;
return ost;
}
|