File: HertzianViscoElasticFrictionInteraction.cpp

package info (click to toggle)
esys-particle 2.3.4%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 13,036 kB
  • ctags: 10,805
  • sloc: cpp: 80,009; python: 5,872; makefile: 1,243; sh: 313; perl: 225
file content (745 lines) | stat: -rw-r--r-- 18,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/////////////////////////////////////////////////////////////
//                                                         //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing                         //
// http://earth.uq.edu.au/centre-geoscience-computing      //
//                                                         //
// Primary Business: Brisbane, Queensland, Australia       //
// Licensed under the Open Software License version 3.0    //
// http://www.apache.org/licenses/LICENSE-2.0          //
//                                                         //
/////////////////////////////////////////////////////////////

/*
HertzianViscoElasticFrictionInteraction.cpp:
  Written by Laura Heredia and Pablo Richeri, 2009.
*/

#include "Model/HertzianViscoElasticFrictionInteraction.h"
#include "Foundation/console.h"
#include "tml/message/packed_message_interface.h"

CHertzianViscoElasticFrictionIGP::CHertzianViscoElasticFrictionIGP()
  : AIGParam(), m_A(0.0), m_E(0.0), m_nu(0.0), mu(0.0), k_s(0.0), dt(0.0)
{
}

CHertzianViscoElasticFrictionIGP::CHertzianViscoElasticFrictionIGP(
  const std::string &name,
  double A,
  double E,
  double nu,
  double fricCoef,
  double shearK,
  double dT
)
  : AIGParam(name),
    m_A(A),
    m_E(E),
    m_nu(nu),
    mu(fricCoef),
    k_s(shearK),
    dt(dT)
{
}

CHertzianViscoElasticFrictionInteraction
::CHertzianViscoElasticFrictionInteraction()
{
  m_A=0.0;
  m_E=0.0;
  m_nu=0.0;
  m_dn=0.0;
  m_mu=0.0;
  m_r0=0.0;
  m_ks=0.0;
  m_dt=0.0;
  m_is_slipping=false;
  m_is_touching=false;
  m_E_diss=0.0; 
}

void CHertzianViscoElasticFrictionIGP::setTimeStepSize(double timeStepSize)
{
  this->dt = timeStepSize;
}

/*!
  constructor for CHertzianViscoElasticFrictionInteraction without friction
  and viscoelastic parameters, only calls the constructor of APairInteraction
  with the 2 particle pointers
*/
CHertzianViscoElasticFrictionInteraction
::CHertzianViscoElasticFrictionInteraction(
  CParticle* p1,
  CParticle* p2
)
  : APairInteraction(p1,p2)
{
  m_is_slipping=false;
  m_is_touching=false;
  m_E_diss=0.0; 
}


CHertzianViscoElasticFrictionInteraction
::CHertzianViscoElasticFrictionInteraction(
  CParticle* p1,
  CParticle* p2,
  const CHertzianViscoElasticFrictionIGP& param
)
  : APairInteraction(p1,p2)
{
  m_A=param.m_A;
  m_E=param.m_E;
  m_nu=param.m_nu;
  m_dn=0.0;
  m_mu=param.mu;
  m_ks=param.k_s;
  m_r0=p1->getRad()+p2->getRad();
  m_dt=param.dt;
  m_cpos=p1->getPos()+((p2->getPos()-p1->getPos())*p1->getRad()/m_r0);
  m_is_slipping=false;
  m_is_touching=false;
  m_E_diss=0.0; 
}

CHertzianViscoElasticFrictionInteraction
::~CHertzianViscoElasticFrictionInteraction()
{
}

void CHertzianViscoElasticFrictionInteraction::setTimeStepSize(double dt)
{
  m_dt = dt;
}

/*!
  Calculate viscoelastic and frictional forces. 
*/
void CHertzianViscoElasticFrictionInteraction::calcForces()
{
  // calculate distance
  Vec3 D=m_p1->getPos()-m_p2->getPos();
  double dist=D*D;
  double eq_dist=m_p1->getRad()+m_p2->getRad();
  // check if there is contact
  if(dist<(eq_dist*eq_dist))
  { // contact -> calculate forces
    //--- viscoelastic force ---
    double R_ij=1.0/(1.0/m_p1->getRad()+1.0/m_p2->getRad());
    dist=sqrt(dist);
    m_dn=eq_dist-dist;
    Vec3 dir=D.unit();

    //Calculate d m_dn / dt
    double ex=D.X()/dist;
    double ey=D.Y()/dist;
    double ez=D.Z()/dist;
    double dvx=m_p1->getVel().X()-m_p2->getVel().X();
    double dvy=m_p1->getVel().Y()-m_p2->getVel().Y();
    double dvz=m_p1->getVel().Z()-m_p2->getVel().Z();

    double m_dn_dot=-(ex*dvx+ey*dvy+ez*dvz);

    double norm_m_normal_force =
      (2.0*m_E*sqrt(R_ij)) /
      (3.0*(1.0-m_nu*m_nu)) *
      (pow(m_dn,1.5)+m_A*sqrt(m_dn)*m_dn_dot);
    m_normal_force = 
      norm_m_normal_force < 0 ?
      Vec3(0.0,0.0,0.0) :
      dir*norm_m_normal_force;
    Vec3 pos=m_p2->getPos()+(m_p2->getRad()/eq_dist)*D;
    // apply viscoelastic force
    m_p1->applyForce(m_normal_force,pos);
    m_p2->applyForce(-1.0*m_normal_force,pos); 

    //--- frictional force ---
    // particle movement since last timestep
    const Vec3 d1=m_p1->getVel()*m_dt;
    const Vec3 d2=m_p2->getVel()*m_dt;
    Vec3 dFF=m_ks*(d2-d1);
    // Compute tangential part by subtracting off normal component.
    dFF -= ((dFF*D)/(D.norm2()))*D;
    m_Ffric+=dFF;
    const double FfricNorm = m_Ffric.norm();
    const double forceNorm = m_normal_force.norm();
    // decide static/dynamic
    if (FfricNorm > forceNorm*m_mu)
    { // tangential force greater than static friction -> dynamic
      m_Ffric=m_Ffric*((m_mu*forceNorm)/FfricNorm);
      m_force_deficit=Vec3(0.0,0.0,0.0);
      m_is_slipping=true;
      m_E_diss=m_mu*fabs(m_normal_force*(d2-d1)); // energy dissipated
    }
    else if (FfricNorm > 0.0)
    { // static friction
      m_is_slipping=false;
      m_E_diss=0.0; // no energy dissipated
    }
    else
    { // no frictional force -> force deficit=mu*F_n
      m_is_slipping=false;
      m_E_diss=0.0; // no energy dissipated
    }
    m_p1->applyForce(m_Ffric, pos);
    m_p2->applyForce(-1.0*m_Ffric, pos);
    m_cpos=pos;
    m_is_touching=true;
  }
  else
  { // no contact -> all forces are 0
    m_Ffric=Vec3(0.0,0.0,0.0);
    m_normal_force=Vec3(0.0,0.0,0.0);
    m_is_slipping=false;
    m_is_touching=false;
    m_E_diss=0.0; // no energy dissipated
  }
}

bool CHertzianViscoElasticFrictionInteraction::isPersistent()
{
  const Vec3 D=m_p1->getPos()-m_p2->getPos();
  const double dist=D*D;
  const double eq_dist=m_p1->getRad()+m_p2->getRad();
  return (dist <= (eq_dist*eq_dist));
}

/*!
  get the force needed to overcome friction and make the interaction slip
*/
double CHertzianViscoElasticFrictionInteraction::getAbsForceDeficit()const
{
  return m_force_deficit.norm();
}

/*!
  get current frictional/stopping force
*/
pair<bool,double>
CHertzianViscoElasticFrictionInteraction::getAbsFrictionalForce() const
{
  pair<bool,double> res;

  // calculate distance
  Vec3 D=m_p1->getPos()-m_p2->getPos();
  double dist=D*D;
  double eq_dist=m_p1->getRad()+m_p2->getRad();
  // check if there is contact
  if(dist<(eq_dist*eq_dist))
  {
    res.first=true;
    res.second=m_Ffric.norm();
  }
  else
  {
    res.first=false;
  }

  return res;
}

/*!
  get current frictional/stopping stress (f_fric/r^2)
*/
pair<bool,double>
CHertzianViscoElasticFrictionInteraction::getAbsFrictionalStress() const
{
  pair<bool,double> res;

  // calculate distance
  Vec3 D=m_p1->getPos()-m_p2->getPos();
  double dist=D*D;
  double eq_dist=m_p1->getRad()+m_p2->getRad();
  // check if there is contact
  if(dist<(eq_dist*eq_dist))
  {
    res.first=true;
    double Ac=eq_dist*eq_dist*0.7854; // contact area
    res.second=m_Ffric.norm()/Ac;
  }
  else
  {
    res.first=false;
  }

  return res;
}

/*!
  get max. frictional force, i.e. coeff. of friction * normal force
*/
pair<bool,double> CHertzianViscoElasticFrictionInteraction::getAbsMuFN() const
{
  pair<bool,double> res;

  // calculate distance
  Vec3 D=m_p1->getPos()-m_p2->getPos();
  double dist=D*D;
  double eq_dist=m_p1->getRad()+m_p2->getRad();
  // check if there is contact
  if(dist<(eq_dist*eq_dist))
  { // contact -> calculate forces
    //--- viscoelastic force ---
    double R_ij=1.0/(1.0/m_p1->getRad()+1.0/m_p2->getRad());
    dist=sqrt(dist);
    double dn=eq_dist-dist;
    Vec3 dir=D.unit();

    //Calculate d m_dn / dt
    double ex=D.X()/dist;
    double ey=D.Y()/dist;
    double ez=D.Z()/dist;
    double dvx=m_p1->getVel().X()-m_p2->getVel().X();
    double dvy=m_p1->getVel().Y()-m_p2->getVel().Y();
    double dvz=m_p1->getVel().Z()-m_p2->getVel().Z();

    double m_dn_dot=-(ex*dvx+ey*dvy+ez*dvz);

    double norm_force =
      (2.0*m_E*sqrt(R_ij)) /
      (3.0*(1.0-m_nu*m_nu)) *
      (pow(dn,1.5)+m_A*sqrt(dn)*m_dn_dot);
    Vec3 force = norm_force < 0 ? Vec3(0.0,0.0,0.0) : dir*norm_force;

    res.first=true;
    res.second=force.norm();
  }
  else
  {
    res.first=false;
  }

  return res;
}

/*!
  get max. frictional stress, i.e. coeff. of friction * normal stress
*/
pair<bool,double>
CHertzianViscoElasticFrictionInteraction::getMaxFricStress() const
{
  pair<bool,double> res;

  // calculate distance
  Vec3 D=m_p1->getPos()-m_p2->getPos();
  double dist=D*D;
  double eq_dist=m_p1->getRad()+m_p2->getRad();
  // check if there is contact
  if(dist<(eq_dist*eq_dist))
  { // contact -> calculate forces
    //--- viscoelastic force ---
    double R_ij=1.0/(1.0/m_p1->getRad()+1.0/m_p2->getRad());
    dist=sqrt(dist);
    double dn=eq_dist-dist;
    Vec3 dir=D.unit();

    //Calculate d m_dn / dt
    double ex=D.X()/dist;
    double ey=D.Y()/dist;
    double ez=D.Z()/dist;
    double dvx=m_p1->getVel().X()-m_p2->getVel().X();
    double dvy=m_p1->getVel().Y()-m_p2->getVel().Y();
    double dvz=m_p1->getVel().Z()-m_p2->getVel().Z();

    double m_dn_dot=-(ex*dvx+ey*dvy+ez*dvz);

    double norm_force =
      (2.0*m_E*sqrt(R_ij)) /
      (3.0*(1.0-m_nu*m_nu)) *
      (pow(dn,1.5)+m_A*sqrt(dn)*m_dn_dot);
    Vec3 force = norm_force < 0 ? Vec3(0.0,0.0,0.0) : dir*norm_force;
    res.first=true;
    double Ac=eq_dist*eq_dist*0.7854; // contact area
    res.second=force.norm()/Ac;
  }
  else
  {
    res.first=false;
  }

  return res;
}

/*!
	get current normal force
*/
pair<bool,double> CHertzianViscoElasticFrictionInteraction::getAbsFN() const
{
  return make_pair(m_is_touching,m_normal_force.norm());
}

/*!
  get current normal stress
*/
pair<bool,double>
CHertzianViscoElasticFrictionInteraction::getNormalStress() const
{
  pair<bool,double> res;

  if(m_is_touching){
    res.first=true;
    double eq_dist=m_p1->getRad()+m_p2->getRad();
    double Ac=eq_dist*eq_dist*0.7854; // contact area
    res.second=m_normal_force.norm()/Ac;
  } else {
    res.first=false;
  }
  return res;
}

/*!
  get "force deficit", i.e. the force needed to make the contact dynamic
*/

/*!
  get the slipping velocity, i.e. the absolute value of the
  tangential part of the relatve particle velocity
*/
pair<bool,double>
CHertzianViscoElasticFrictionInteraction::getSlipVelocity() const
{
  pair<bool,double> res;

  // calculate distance
  Vec3 D=m_p1->getPos()-m_p2->getPos();
  if(D.norm()<=(m_p1->getRad()+m_p2->getRad()))
  { // if contact
    // normal
    Vec3 normal=D.unit();
    // relative velocity
    Vec3 v_rel=m_p2->getVel()-m_p1->getVel();
    // tangential component
    Vec3 v_tan=v_rel-(v_rel*normal)*normal;
    res=make_pair(true,v_tan.norm());
  } else {
    res.first=false;
  }
  return res;
}

/*!
  get the potential energy stored in the interaction
*/
double CHertzianViscoElasticFrictionInteraction::getPotentialEnergy() const
{
  const double e_pot_norm=0.5*m_normal_force*m_normal_force/m_E;
  return e_pot_norm;
}

/*!
  Get the static/dynamic status of the interaction. Returns 1 for a contact in
  dynamic friction, 0 for static or no contact
*/
double CHertzianViscoElasticFrictionInteraction::getSlipping() const
{
  const double res=m_is_slipping ? 1.0 : 0.0;
  return res;
}


/*!
  Get "sticking" contacts, i.e. return 1 if the contact is touching but not 
  slipping, 0 otherwise
*/
double CHertzianViscoElasticFrictionInteraction::getSticking() const
{
  const double res=(m_is_touching && !m_is_slipping) ? 1.0 : 0.0;
  return res;
}

/*!
  return the amount of energy dissipated during the last time step
*/
double CHertzianViscoElasticFrictionInteraction::getDissipatedEnergy() const
{
  return m_E_diss;
}

/*!
  get net force on particle1 imposed by this interaction.
  Returns Vec3::ZERO if particles are not in contact.
*/
Vec3 CHertzianViscoElasticFrictionInteraction::getForce() const
{
  const Vec3 f=m_is_touching ? m_Ffric-m_normal_force : Vec3(0.0,0.0,0.0);
  return f; 
}

/*!
  If the particles are in contact, get normal force, if not in contact return
  (0,0,0)
*/
Vec3 CHertzianViscoElasticFrictionInteraction::getNormalForce() const
{
  const Vec3 f=m_is_touching ? m_normal_force : Vec3(0.0,0.0,0.0);
  return f; 
}

/*!
  return 1 if particles are in contact, 0 otherwise
*/
double CHertzianViscoElasticFrictionInteraction::Count() const
{
  double res=m_is_touching ? 1.0 : 0.0;

  return res;
}

/*!
  Calculate effective coefficient of friction for this interaction for a given
  direction of the applied shear force. If the effective coefficient of
  friction is infinite, -1 is returned.

  \param dir the direction of the applied shear force
  \return the effective coefficient of friction if it is finite, -1 otherwise
    and -2 for no contact
*/
pair<bool,double> CHertzianViscoElasticFrictionInteraction::getMuEff(
  const Vec3& dir,
  const Vec3& norm
) const
{
  pair<bool,double> res;
  CParticle* p1;
  CParticle* p2;

  // sort particles, so that p1 is "above" the slip plane
  const Vec3 h=m_p1->getPos()-m_p2->getPos();
  if(h*norm>0.0)
  {
    p1=m_p1;
    p2=m_p2;
  }
  else
  {
    p1=m_p2;
    p2=m_p1;
  }
  // get contact normal
  Vec3 nc=p1->getPos()-p2->getPos();
  // get distance
  double dist=nc.norm();
  // check if contact
  if(dist<=(p1->getRad()+p2->getRad()))
  { // if contact
    // get direction of current movement
    Vec3 d=p1->getVel()-p2->getVel();
    // get tangential part
    d-=(d*nc.unit())*nc.unit();
    // calculate effective coefficient of friction
    double h1=(dir.unit()*d.unit())-m_mu*(dir.unit()*nc.unit());
    double h2=m_mu*(norm.unit()*nc.unit())+(norm.unit()*d.unit());
    if(h1>0)
    {
      res.first=true;
      res.second=h2/h1;
    }
    else
    {
      res.first=false;
    }
    cout << "positions : " << p1->getPos() << " , " << p2->getPos() << endl;
    cout << "velocities: " << p1->getVel() << " , " << p2->getVel() << endl;
    cout << "v_tan     : " << d << endl;
    cout << "h1,h2     : " << h1 << " , " << h2 << endl;
    cout << "mu_eff    : " << res.second << endl;
  }
  else
  {
    res.first=false;
  }
  return res;
}

/*!
  Get the particle member function which returns a scalar field of a given name.
 
  \param name the name of the field
*/
CHertzianViscoElasticFrictionInteraction::ScalarFieldFunction
CHertzianViscoElasticFrictionInteraction::getScalarFieldFunction(
  const string& name
)
{
  CHertzianViscoElasticFrictionInteraction::ScalarFieldFunction sf;

  if (name=="potential_energy")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getPotentialEnergy;
  }
  else if (name=="slipping")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getSlipping;
  }
  else if (name=="sticking")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getSticking;
  }
  else if (name=="count")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::Count;
  }
  else if (name=="dissipated_energy")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getDissipatedEnergy;
  }
  else
  {
    sf=NULL;
    cerr 
      << "ERROR - invalid name for interaction scalar  access function" 
      << endl;
  }

  return sf;
}

/*!
  Get the particle member function which returns a checked scalar field of a given name.

  \param name the name of the field
*/
CHertzianViscoElasticFrictionInteraction::CheckedScalarFieldFunction
CHertzianViscoElasticFrictionInteraction::getCheckedScalarFieldFunction(
  const string& name
)
{
  CHertzianViscoElasticFrictionInteraction::CheckedScalarFieldFunction sf;

  if (name=="mu_eff_xy")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getMuEffXY;
  }
  else if (name=="mu_eff_xz")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getMuEffXZ;
  }
  else if (name=="f_fric")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getAbsFrictionalForce;
  }
  else if (name=="fric_stress")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getAbsFrictionalStress;
  }
  else if (name=="f_normal")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getAbsFN;
  }
  else if (name=="normal_stress")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getNormalStress;
  }
  else if (name=="muF_n")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getAbsMuFN;
  }
  else if (name=="max_fric_stress")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getMaxFricStress;
  }
  else if (name=="v_slip")
  {
    sf=&CHertzianViscoElasticFrictionInteraction::getSlipVelocity;
  }
  else
  {
    sf=NULL;
    cerr 
      << "ERROR - invalid name for interaction scalar  access function" 
      << endl;
  }

  return sf;
}


/*!
  Get the particle member function which returns a vector field of a given name.
 
  \param name the name of the field
*/
CHertzianViscoElasticFrictionInteraction::VectorFieldFunction
CHertzianViscoElasticFrictionInteraction::getVectorFieldFunction(
  const string& name
)
{
  CHertzianViscoElasticFrictionInteraction::VectorFieldFunction vf;

  if (name=="force"){
    vf=&CHertzianViscoElasticFrictionInteraction::getForce;
  } else if (name=="normal_force") {
    vf = &CHertzianViscoElasticFrictionInteraction::getNormalForce;    
  } else {
    vf=NULL;
    cerr 
      << "ERROR - invalid name for interaction vector access function"
      << endl;
  }

  return vf;
}



/*!
  Pack a CHertzianViscoElasticFrictionInteraction into a TML packed message
 
  \param I the interaction
*/
template<>
void TML_PackedMessageInterface
::pack<CHertzianViscoElasticFrictionInteraction>(
  const CHertzianViscoElasticFrictionInteraction& I
)
{
  append(I.m_r0);
  append(I.m_A);
  append(I.m_E);
  append(I.m_nu);
  append(I.m_dn);
  append(I.m_mu);
  append(I.m_ks);
  append(I.m_dt);
  append(I.m_id[0]);
  append(I.m_id[1]);
  append(I.m_Ffric);
}


/*!
  Unpack a CHertzianViscoElasticFrictionInteraction from a TML packed message
 
  \param I the interaction
*/
template<>
void TML_PackedMessageInterface
::unpack<CHertzianViscoElasticFrictionInteraction>(
  CHertzianViscoElasticFrictionInteraction& I
)
{
  I.m_r0=pop_double();
  I.m_A=pop_double();
  I.m_E=pop_double();
  I.m_nu=pop_double();
  I.m_dn=pop_double();
  I.m_mu=pop_double();
  I.m_ks=pop_double();
  I.m_dt=pop_double();
  I.m_id.erase(I.m_id.begin(),I.m_id.end());
  I.m_id.push_back(pop_int());
  I.m_id.push_back(pop_int());
  I.m_Ffric=pop_vec3();
}


ostream& operator<<(
  ostream& ost,
  const CHertzianViscoElasticFrictionInteraction& BI
)
{
  ost << "[" << BI.m_p1->getID() << " - " << BI.m_p2->getID() << "]";
  return ost;
}