1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
#ifndef __THERMPARTICLE_H
#define __THERMPARTICLE_H
// -- project includes --
#include "Foundation/vec3.h"
// --- STL includes ---
#include <map>
#include <utility>
using std::map;
using std::pair;
using std::make_pair;
/*!
Thermal Particle class.
*/
class CThermParticle
{
protected:
double m_temperature ;
double m_temperature_ini ;
double m_Cp ;
// double m_density ;// ???
double m_heat_frict ;
double m_heat_trans ;
double m_therm_expansion0 ;
double m_therm_expansion1 ;
double m_therm_expansion2 ;
double m_rad_ini ;
public:
// static const CBasicParticle INVALID;
CThermParticle();
CThermParticle(double rad_ini);
CThermParticle(double temperature,
double m_temperature_ini,
double Cp,
double heat_frict,
double heat_trans,
double therm_expansion0,
double therm_expansion1,
double therm_expansion2,
double rad_ini);
// CThermParticle(const esys::lsm::SimpleParticleData &data);
virtual ~CThermParticle(){};
/*
inline Vec3 & getPPos() {return m_pos;}
inline Vec3 getPos() const {return m_pos;}
inline double getRad() const {return m_rad;}
inline int getID() const {return m_global_id;}
inline void moveBy(Vec3 v){m_pos+=v;} //!< move relative to current position
inline void moveTo(Vec3 v){m_pos=v;} //!< move absolute
inline void setRad(double r){m_rad=r;}
//! particle tag handling
inline void setTag(int t){m_tag=t;}
inline int getTag() const {return m_tag;}
inline bool isValid() const {return (getID() >= 0);}
};
*/
inline void setTemperature(double t){m_temperature=t;}
inline double getTemperature() const {return m_temperature;}
inline void setEquilibTemperature(double t){m_temperature_ini=t;}
inline double getEquilibTemperature() const {return m_temperature_ini;}
inline void setEquilibRadius(double r){m_rad_ini=r;}
inline double getEquilibRadius() const {return m_rad_ini;}
// inline void setCp(double t){m_Cp = t;}
inline double getCp() const {return m_Cp;}
inline void setCp(double cp) {m_Cp = cp;}
inline double getThermExpansion0() const {return m_therm_expansion0 ;}
inline void setThermExpansion0(double te0) {m_therm_expansion0 = te0;}
inline double getThermExpansion1() const {return m_therm_expansion1 ;}
inline void setThermExpansion1(double te1) {m_therm_expansion1 = te1;}
inline double getThermExpansion2() const {return m_therm_expansion2 ;}
inline void setThermExpansion2(double te2) {m_therm_expansion2 = te2;}
// void integrate_therm(double) ;
// void zeroHeat() ;
// void applyHeatTrans(const double) ;
friend ostream& operator<<(ostream& ost,const CThermParticle& p);
};
ostream& operator<<(ostream&,const CThermParticle&);
#endif //__THERMPARTICLE_H
|