1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
#include "VWFrictionInteraction.h"
#include "tml/message/packed_message_interface.h"
VWFrictionIGP::VWFrictionIGP() : CFrictionIGP(), m_alpha(0.0)
{}
VWFrictionIGP::VWFrictionIGP(const std::string &name, double kn, double mu, double ks, double dt, double a)
: CFrictionIGP(name,kn,mu,ks,dt)
{
m_alpha=a;
}
/*!
Default constructor
*/
CVWFriction::CVWFriction():CFrictionInteraction()
{
m_alpha=0.0;
}
/*!
*/
CVWFriction::CVWFriction(CParticle* p1,CParticle* p2,const VWFrictionIGP& Param):CFrictionInteraction(p1,p2,Param)
{
m_alpha=Param.m_alpha;
}
CVWFriction::~CVWFriction()
{}
/*!
Calculate elastic & frictional forces.
The current coefficient of friction is calculated by a velocity weakening
friction law \f$ \mu=\frac{\mu_0}{1+2\alpha |v|} \f$
*/
void CVWFriction::calcForces()
{
Vec3 pos;
Vec3 force;
double mu; // current coefficent of friction
// calculate distance
Vec3 D=m_p1->getPos()-m_p2->getPos();
double dist=D*D;
double eq_dist=m_p1->getRad()+m_p2->getRad();
// check if there is contact
if(dist<(eq_dist*eq_dist))
{ // contact -> calculate forces
//--- elastic force ---
dist=sqrt(dist);
force=D*(m_k*(dist-eq_dist)/dist);
m_normal_force=force;
pos=m_p2->getPos()+(m_p2->getRad()/eq_dist)*D;
// apply elastic force
m_p2->applyForce(force,pos);
m_p1->applyForce(-1.0*force,pos);
//--- frictional force ---
// particle movement since last timestep
Vec3 d1=m_p1->getVel()*m_dt;
Vec3 d2=m_p2->getVel()*m_dt;
Vec3 dFF=m_ks*(d2-d1);
// tangential part
Vec3 normal=D.unit();
dFF-=(dFF*normal)*normal;
m_Ffric+=dFF;
// --- calc current mu ---
// relative velocity
Vec3 v_rel=m_p2->getVel()-m_p1->getVel();
// tangential component
Vec3 v_tan=v_rel-(v_rel*normal)*normal;
// mu
mu=m_mu/(1.0+2.0*m_alpha*v_tan.norm());
// decide static/dynamic
if(m_Ffric.norm()>force.norm()*mu)
{ // tangential force greater than static friction -> dynamic
m_Ffric=m_Ffric*((mu*force.norm())/m_Ffric.norm());
m_force_deficit=Vec3(0.0,0.0,0.0);
m_is_slipping=true;
}
else if(m_Ffric.norm()>0.0)
{ // static friction
m_is_slipping=false;
}
else
{ // no frictional force -> force deficit=mu*F_n
m_is_slipping=false;
}
m_p1->applyForce(m_Ffric,pos);
m_p2->applyForce(-1.0*m_Ffric,pos);
m_cpos=pos;
m_is_touching=true;
}
else
{ // no contact -> all forces are 0
m_Ffric=Vec3(0.0,0.0,0.0);
m_normal_force=Vec3(0.0,0.0,0.0);
m_is_slipping=false;
m_is_touching=false;
}
}
/*!
get current coefficient of friction
*/
pair<bool,double> CVWFriction::getCurrentMu() const
{
pair<bool,double> res;
// calculate distance
Vec3 D=m_p1->getPos()-m_p2->getPos();
if(D.norm()<=(m_p1->getRad()+m_p2->getRad()))
{ // if contact
// normal
Vec3 normal=D.unit();
// relative velocity
Vec3 v_rel=m_p2->getVel()-m_p1->getVel();
// tangential component
Vec3 v_tan=v_rel-(v_rel*normal)*normal;
// mu
double mu=m_mu/(1.0+2.0*m_alpha*v_tan.norm());
res=make_pair(true,mu);
} else {
res.first=false;
}
return res;
}
CVWFriction::ScalarFieldFunction CVWFriction::getScalarFieldFunction(const string& name)
{
CVWFriction::ScalarFieldFunction sf;
if (name=="potential_energy"){
sf=&CVWFriction::getPotentialEnergy;
} else if (name=="slipping"){
sf=&CVWFriction::getSlipping;
} else if (name=="sticking"){
sf=&CFrictionInteraction::getSticking;
} else if (name=="count"){
sf=&CVWFriction::Count;
} else {
sf=NULL;
cerr << "ERROR - invalid name for interaction scalar access function" << endl;
}
return sf;
}
CVWFriction::CheckedScalarFieldFunction CVWFriction::getCheckedScalarFieldFunction(const string& name)
{
CVWFriction::CheckedScalarFieldFunction sf;
if (name=="mu_eff_xy"){
sf=&CVWFriction::getMuEffXY;
} else if (name=="mu_eff_xz") {
sf=&CVWFriction::getMuEffXZ;
} else if (name=="f_fric") {
sf=&CVWFriction::getAbsFrictionalForce;
} else if (name=="muF_n") {
sf=&CVWFriction::getAbsMuFN;
} if (name=="mu_current") {
sf=&CVWFriction::getCurrentMu;
} else if (name=="v_slip") {
sf=&CVWFriction::getSlipVelocity;
} else {
sf=NULL;
cerr << "ERROR - invalid name for checked interaction scalar access function" << endl;
}
return sf;
}
CVWFriction::VectorFieldFunction CVWFriction::getVectorFieldFunction(const string&)
{
CVWFriction::VectorFieldFunction vf;
vf=NULL;
return vf;
}
/*!
Pack a CFrictionInteraction into a TML packed message
\param I the interaction
*/
template<>
void TML_PackedMessageInterface::pack<CVWFriction>(const CVWFriction& I)
{
append(I.m_k);
append(I.m_r0);
append(I.m_mu);
append(I.m_ks);
append(I.m_dt);
append(I.m_alpha);
append(I.m_id[0]);
append(I.m_id[1]);
}
/*!
Unpack a CFrictionInteraction from a TML packed message
\param I the interaction
*/
template<>
void TML_PackedMessageInterface::unpack<CVWFriction>(CVWFriction& I)
{
I.m_k=pop_double();
I.m_r0=pop_double();
I.m_mu=pop_double();
I.m_ks=pop_double();
I.m_dt=pop_double();
I.m_alpha=pop_double();
I.m_id.erase(I.m_id.begin(),I.m_id.end());
I.m_id.push_back(pop_int());
I.m_id.push_back(pop_int());
}
|