File: EigenvalueCalculator.h

package info (click to toggle)
esys-particle 2.3.4%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 13,036 kB
  • ctags: 10,805
  • sloc: cpp: 80,009; python: 5,872; makefile: 1,243; sh: 313; perl: 225
file content (215 lines) | stat: -rw-r--r-- 6,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/////////////////////////////////////////////////////////////
//                                                         //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing                         //
// http://earth.uq.edu.au/centre-geoscience-computing      //
//                                                         //
// Primary Business: Brisbane, Queensland, Australia       //
// Licensed under the Open Software License version 3.0    //
// http://www.apache.org/licenses/LICENSE-2.0          //
//                                                         //
/////////////////////////////////////////////////////////////


#ifndef ESYS_LSMEIGENVALUECALCULATOR_H
#define ESYS_LSMEIGENVALUECALCULATOR_H

#include "Foundation/Matrix3.h"

#include <iostream>
#include <complex>
#include <vector>
#include <algorithm>

namespace esys
{
  namespace lsm
  {
    class EigenvalueCalculator
    {
    public:
      typedef std::complex<double> Complex;
      typedef std::vector<Complex> ComplexVector;

      static const double ONE_THIRD;
      static const double SQRT_THREE;

      inline double cbrt(double a)
      {
          // cube root is antisymmetric
          return (a < 0) ? -std::pow(-a, ONE_THIRD) : std::pow(a, ONE_THIRD);
      }
      
      bool hasComplexEigenvalues(const Matrix3 &a) const
      {
          double b = -(a(0, 0) + a(1, 1) + a(2, 2));
          
          double a00a11 = a(0, 0) * a(1, 1);
          double a11a22 = a(1, 1) * a(2, 2);
          double a00a22 = a(0, 0) * a(2, 2);
          double a10a01 = a(1, 0) * a(0, 1);
          double a12a21 = a(1, 2) * a(2, 1);
          double a20a02 = a(2, 0) * a(0, 2);
          double c = a00a11 + a11a22 + a00a22 - a10a01 - a12a21 - a20a02;
      
          double a10a01a22 = a10a01 * a(2, 2);
          double a12a21a00 = a12a21 * a(0, 0);
          double a20a02a11 = a20a02 * a(1, 1);
          double a00a11a22 = a00a11 * a(2, 2);
          double a01a12a20 = a(0, 1) * a( 1, 2) * a( 2, 0);
          double a02a10a21 = a(0, 2) * a( 1, 0) * a( 2, 1);
          double d = a10a01a22 + a12a21a00 + a20a02a11
                   - a00a11a22 - a01a12a20 - a02a10a21;
      
          double bb = b * b;
          double Q = (3.0 * c - bb) / 9.0;
          double R = (9.0 * b * c - 27.0 * d - 2.0 * bb * b) / 54.0;
      
          return (Q * Q * Q > -(R * R));
      }
      
      class ComplexRealImagComparer
      {
      public:
        bool operator()(const Complex &c1, const Complex &c2) const
        {
          return 
            (
              (c1.real() < c2.real())
              ||
              (
                (c1.real() == c2.real())
                &&
                (c1.imag() < c2.imag())
              )
            );
        }
      };

      class ComplexAbsRealImagComparer
      {
      public:
        bool operator()(const Complex &c1, const Complex &c2) const
        {
          return 
            (
              (fabs(c1.real()) < fabs(c2.real()))
              ||
              (
                (fabs(c1.real()) == fabs(c2.real()))
                &&
                (fabs(c1.imag()) < fabs(c2.imag()))
              )
            );
        }
      };

      class ComplexNormComparer
      {
      public:
        bool operator()(const Complex &c1, const Complex &c2) const
        {
          return (std::norm(c1) < std::norm(c2));
        }
      };

      ComplexVector getEigenvalues(const Matrix3 &a)
      {
          ComplexVector e(3, Complex(0.0, 0.0));
          double b = -(a(0, 0) + a(1, 1) + a(2, 2));
          
          double a00a11 = a(0, 0) * a(1, 1);
          double a11a22 = a(1, 1) * a(2, 2);
          double a00a22 = a(0, 0) * a(2, 2);
          double a10a01 = a(1, 0) * a(0, 1);
          double a12a21 = a(1, 2) * a(2, 1);
          double a20a02 = a(2, 0) * a(0, 2);
          double c = a00a11 + a11a22 + a00a22 - a10a01 - a12a21 - a20a02;
      
          double a10a01a22 = a10a01 * a(2, 2);
          double a12a21a00 = a12a21 * a(0, 0);
          double a20a02a11 = a20a02 * a(1, 1);
          double a00a11a22 = a00a11 * a(2, 2);
          double a01a12a20 = a(0, 1) * a(1, 2) * a(2, 0);
          double a02a10a21 = a(0, 2) * a(1, 0) * a(2, 1);
          double d = a10a01a22 + a12a21a00 + a20a02a11
                   - a00a11a22 - a01a12a20 - a02a10a21;
      
          double bb = b * b;
          double Q = (3.0 * c - bb) / 9.0;
          double R = (9.0 * b * c - 27.0 * d - 2.0 * bb * b) / 54.0;
          double D = Q * Q * Q + R * R;
      
          double nOTb = -ONE_THIRD * b;
      
          if (D > 0) {
              // one real and two Complex conjugate
              double sqrtD = sqrt(D);
              double S = cbrt(R + sqrtD);
              double T = cbrt(R - sqrtD);
              double SpT = S + T;
              e[0] = nOTb + SpT;
      
              double x = nOTb - 0.5 * SpT;
              double y = 0.5 * SQRT_THREE * (S - T);
              e[1] = Complex(x, y);
              e[2] = Complex(x, -y);
          }
          else if (D < 0) {
              // all real and unequal
              double sqrtD = sqrt(-D);
              Complex S = std::pow(Complex(R, sqrtD), ONE_THIRD);  // T == S.conj()
              e[0] = nOTb + 2.0 * S.real();
      
              double x = nOTb - S.real();
              double y = SQRT_THREE * S.imag();
              e[1] = x - y;
              e[2] = x + y;
          }
          else {
              // all real and at least two equal
              double S = cbrt(R);  // T == S
              e[0] = nOTb + 2.0 * S;
              e[1] = nOTb - S;
              e[2] = e[1];
          }
          std::sort(e.begin(), e.end(), ComplexRealImagComparer());
          return e;
      }

      void printEigenvalues(const Matrix3 &a)
      {
          std::cout << "a: " << a(0, 0) << " " << a(0, 1) << " " << a(0, 2) << std::endl
                    << "   " << a(1, 0) << " " << a(1, 1) << " " << a(1, 2) << std::endl
                    << "   " << a(2, 0) << " " << a(2, 1) << " " << a(2, 2) << std::endl;
          
          if (hasComplexEigenvalues(a))
              std::cout << "Complex eigenvalues" << std::endl;
          else
              std::cout << "Real eigenvalues" << std::endl;

          ComplexVector e = getEigenvalues(a);
          std::cout << "e0: " << e[0] << std::endl;
          std::cout << "e1: " << e[1] << std::endl;
          std::cout << "e2: " << e[2] << std::endl;
          std::cout << std::endl;
      }
    };
  }
}

inline std::ostream &operator<<(std::ostream &oStream, const esys::lsm::EigenvalueCalculator::ComplexVector &vec)
{
  esys::lsm::EigenvalueCalculator::ComplexVector::const_iterator it = vec.begin();
  if (it != vec.end()) {
    oStream << (*it);
    it++;
  }
  for (; it != vec.end(); it++)
  {
    oStream << " " << (*it);
  }
  return oStream;
}

#endif