1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2014 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
#include "Tools/StressCalculator/InteractionToStressConverter.h"
#include "Tools/StressCalculator/VtkStructuredGrid.h"
#include "Tools/StressCalculator/GaussianGridder.h"
#include "Tools/StressCalculator/Raw2InteractionReader.h"
#include "Tools/StressCalculator/ContactCollection.h"
#include "Tools/StressCalculator/EigenvalueCalculator.h"
#include "Geometry/SphereBoxVolCalculator.h"
#include "Geometry/CircleBoxVolCalculator.h"
namespace esys
{
namespace lsm
{
template <typename TmplSphere, typename TmplBox>
std::string getDetailsString(const TmplSphere &sphere, const TmplBox &box)
{
std::stringstream msg;
msg
<< "box = ("
<< box.getMinPt() << ", " << box.getMaxPt() << ")"
<< ", sphere = (" << sphere.getCentre() << ", " << sphere.getRadius() << ")";
return msg.str();
}
template <typename TmplSphere, typename TmplBox>
void checkIntersectionVolume(double vol, const TmplSphere &sphere, const TmplBox &box)
{
if (isnan(vol))
{
std::stringstream msg;
msg
<< "nan encountered during volume calculation: "
<< getDetailsString(sphere, box);
throw std::runtime_error(msg.str());
}
else if ((vol < 0.0) && (fabs(vol) > 1.0e-6))
{
std::stringstream msg;
msg
<< "Negative intersection volume " << vol
<< ". " << getDetailsString(sphere, box);
throw std::runtime_error(msg.str());
}
else if (vol > (box.getVolume() + (box.getVolume()*1.0e-6)))
{
std::stringstream msg;
msg
<< "Volume " << vol
<< " larger than box volume " << box.getVolume()
<< ". " << getDetailsString(sphere, box);
throw std::runtime_error(msg.str());
}
else if (vol > (sphere.getVolume() + (sphere.getVolume()*1.0e-6)))
{
std::stringstream msg;
msg
<< "Volume " << vol
<< " larger than sphere volume " << sphere.getVolume()
<< ". " << getDetailsString(sphere, box);
throw std::runtime_error(msg.str());
}
}
class ThreeDIntersectionCalker : public SphereBoxVolCalculator
{
public:
ThreeDIntersectionCalker(const BoundingBox &box)
: SphereBoxVolCalculator(Box(box.getMinPt(), box.getMaxPt()))
{
}
double getVolume(const Sphere &sphere)
{
const double vol = SphereBoxVolCalculator::getVolume(sphere);
checkIntersectionVolume(vol, sphere, getBox());
return vol;
}
};
class TwoDIntersectionCalker : public CircleBoxVolCalculator
{
public:
TwoDIntersectionCalker(const BoundingBox &box)
: CircleBoxVolCalculator(Box(box.getMinPt(), box.getMaxPt()))
{
}
double getVolume(const Sphere &sphere)
{
const double vol = CircleBoxVolCalculator::getVolume(sphere);
checkIntersectionVolume(vol, sphere, getBox());
return vol;
}
};
class PointDataType
: public
vtk::DataTypeTuple<
vtk::Float64Type,
vtk::Float64Type,
vtk::Matrix3Type,
vtk::Float64Type
>
{
public:
typedef
vtk::DataTypeTuple<
vtk::Float64Type,
vtk::Float64Type,
vtk::Matrix3Type,
vtk::Float64Type
> Inherited;
PointDataType()
: Inherited(
vtk::Float64Type("|sMax-sMin|"),
vtk::Float64Type("Real(sMax-sMin)"),
vtk::Matrix3Type("stressTensor"),
vtk::Float64Type("radius")
)
{
}
};
class PointDataTypeForGrid
: public
vtk::DataTypeTuple<
vtk::Float64Type,
vtk::Float64Type,
vtk::Matrix3Type
>
{
public:
typedef
vtk::DataTypeTuple<
vtk::Float64Type,
vtk::Float64Type,
vtk::Matrix3Type
> Inherited;
PointDataTypeForGrid()
: Inherited(
vtk::Float64Type("|sMax-sMin|"),
vtk::Float64Type("Real(sMax-sMin)"),
vtk::Matrix3Type("stressTensor")
)
{
}
};
typedef vtk::Vec3Type PointType;
typedef vtk::UnstructuredPiece<PointType, PointDataType> Piece;
typedef vtk::UnstructuredPiece<PointType, PointDataTypeForGrid> PieceForGrid;
typedef EigenvalueCalculator::ComplexRealImagComparer RealImagComparer;
typedef EigenvalueCalculator::ComplexAbsRealImagComparer AbsRealImagComparer;
typedef EigenvalueCalculator::ComplexNormComparer NormComparer;
InteractionToStressConverter::InteractionToStressConverter(const BoundingBox &bBox, double gridSpacing)
: m_gridSpacing(gridSpacing),
m_bBox(bBox),
m_stressCalculator(),
m_stressTensorCollection(m_stressCalculator),
m_regTensorGrid(bBox, gridSpacing),
m_regDevStressGrid(bBox, gridSpacing),
m_irrStressTensorGrid(bBox, gridSpacing)
{
}
double InteractionToStressConverter::getRealDevStress(const Tensor &stressTensor) const
{
StressTensor::ComplexVector eigenvals = stressTensor.getEigenvalues();
double devStress = 0.0;
if (is3d())
{
std::sort(eigenvals.begin(), eigenvals.end(), RealImagComparer());
devStress = (eigenvals[2].real() - eigenvals[0].real());
}
else
{
//
// In 2d, make sure we only ever subtract \sigma_1 and \sigma_2,
// so we sort by absolute value. This ensures that the zero-eigenvalue
// (corresponding to the z-dimension) will be sorted into the
// eigenvals[0] element.
//
std::sort(eigenvals.begin(), eigenvals.end(), AbsRealImagComparer());
devStress = fabs(eigenvals[2].real() - eigenvals[1].real());
}
return devStress;
}
double InteractionToStressConverter::getNormDevStress(const Tensor &stressTensor) const
{
StressTensor::ComplexVector eigenvals = stressTensor.getEigenvalues();
std::sort(eigenvals.begin(), eigenvals.end(), NormComparer());
return
(
is3d()
?
std::norm(eigenvals[2] - eigenvals[0])
:
std::norm(eigenvals[2] - eigenvals[1])
);
}
bool InteractionToStressConverter::is3d() const
{
return ParticleData::is3d();
}
void InteractionToStressConverter::addRaw2Interactions(std::istream &iStream)
{
Raw2InteractionReader reader(iStream);
ContactCollection contacts;
contacts.addInteractions(reader);
m_stressTensorCollection.addContactIterators(contacts.getContactIteratorIterator());
}
void InteractionToStressConverter::writeVtkUnstructuredXml(std::ostream &oStream)
{
StressTensCollection::StressTensorIterator it = m_stressTensorCollection.getIterator();
Piece piece(PointType("points"), PointDataType());
while (it.hasNext()) {
StressTensCollection::StressTensorIterator::reference stressTensor = it.next();
const double realDevStress = getRealDevStress(stressTensor);
const double normDevStress = getNormDevStress(stressTensor);
piece.setPoint(
stressTensor.getPos(),
PointDataType::DataValueTuple(
normDevStress,
realDevStress,
stressTensor.getTensor(),
stressTensor.getRad()
)
);
}
// Write the xml document header
oStream << "<?xml version=\"1.0\"?>" << std::endl;
vtk::UnstructuredGrid grid;
grid.addPiece(piece);
grid.writeXml(oStream);
}
void InteractionToStressConverter::writeVtkUnstructuredXmlGridInformation(std::ostream &oStream)
{
TensorGrid ®ularGrid = getTensorRegularGrid();
TensorGrid::CellIterator cellIt = regularGrid.getCellIterator();
PieceForGrid piece(PointType("points"), PointDataTypeForGrid());
while (cellIt.hasNext())
{
TensorGrid::Cell::Iterator posValIt = cellIt.next().getIterator();
while (posValIt.hasNext())
{
const TensorGrid::Cell::PosValuePair &pair = posValIt.next();
const double realDevStress = getRealDevStress(pair.getValue());
const double normDevStress = getNormDevStress(pair.getValue());
piece.setPoint(
pair.getPos(),
PointDataTypeForGrid::DataValueTuple(
normDevStress,
realDevStress,
pair.getValue().getTensor()
)
);
}
}
// Write the xml document header
oStream << "<?xml version=\"1.0\"?>" << std::endl;
vtk::UnstructuredGrid grid;
grid.addPiece(piece);
grid.writeXml(oStream);
}
void InteractionToStressConverter::writeUnstructuredDx(std::ostream &oStream)
{
oStream << "points = " << m_stressTensorCollection.size() << std::endl;
oStream << "format = ascii" << std::endl;
oStream << "dependency = positions, positions" << std::endl;
oStream << "interleaving = field" << std::endl;
oStream << "field = locations, principleStressDiff" << std::endl;
oStream << "structure = 3-vector, scalar" << std::endl;
oStream << "type = float, float" << std::endl;
oStream << "header = marker \"Start\\n\"" << std::endl << std::endl;
oStream << "end" << std::endl;
oStream << "Start" << std::endl;
StressTensCollection::StressTensorIterator it = m_stressTensorCollection.getIterator();
while (it.hasNext()) {
StressTensCollection::StressTensorIterator::reference stressTensor = it.next();
const double val = getRealDevStress(stressTensor);
oStream << stressTensor.getPos() << " " << val << "\n";
}
}
void InteractionToStressConverter::writeFlatUnstructured(std::ostream &oStream)
{
StressTensCollection::StressTensorIterator it = m_stressTensorCollection.getIterator();
while (it.hasNext()) {
StressTensCollection::StressTensorIterator::reference stressTensor = it.next();
const double val = getRealDevStress(stressTensor);
oStream
<< stressTensor.getPos() << " "
<< stressTensor.getRad() << " "
<< val << "\n";
}
}
class StrctPointDataType
: public
vtk::DataTypeTuple<
vtk::Float64Type
>
{
public:
typedef
vtk::DataTypeTuple<
vtk::Float64Type
> Inherited;
StrctPointDataType()
: Inherited(
vtk::Float64Type("sMax-sMin")
)
{
}
};
typedef vtk::Vec3Type StrctPointType;
typedef vtk::StructuredPiece<StrctPointType, StrctPointDataType> StrctPiece;
StressTensorPtrGrid &InteractionToStressConverter::getTensorIrregularGrid()
{
if (m_irrStressTensorGrid.size() <= 0)
{
calcTensorIrregularGrid();
}
return m_irrStressTensorGrid;
}
double InteractionToStressConverter::getMaxRadius()
{
StressTensorPtrGrid::ValueIterator it = getTensorIrregularGrid().getValueIterator();
double maxRadius = -1.0;
while (it.hasNext())
{
StressTensorPtrGrid::const_reference stressTensor = it.next();
if (stressTensor->getRad() > maxRadius)
{
maxRadius = stressTensor->getRad();
}
}
return maxRadius;
}
void InteractionToStressConverter::calcTensorIrregularGrid()
{
m_irrStressTensorGrid = StressTensorPtrGrid(m_bBox, m_gridSpacing);
StressTensCollection::StressTensorIterator it = m_stressTensorCollection.getIterator();
while (it.hasNext()) {
StressTensCollection::StressTensorIterator::reference stressTensor = it.next();
m_irrStressTensorGrid.insert(stressTensor.getPos(), &stressTensor);
}
}
TensorGrid &InteractionToStressConverter::getTensorRegularGrid()
{
if (m_regTensorGrid.size() <= 0)
{
calcTensorRegularGrid();
}
return m_regTensorGrid;
}
template <typename TmplCellIterator, typename TmplIntsectVolCalker>
Matrix3 getBoxTensor(
TmplCellIterator cellIt,
TmplIntsectVolCalker intersectCalker
)
{
Matrix3 tensor;
while (cellIt.hasNext())
{
typename TmplCellIterator::value_type::Iterator pairIt = cellIt.next().getIterator();
while (pairIt.hasNext())
{
const StressTensor *stressTensor = pairIt.next().getValue();
const typename TmplIntsectVolCalker::Sphere sphere(stressTensor->getPos(), stressTensor->getRad());
const double intersectVol = intersectCalker.getVolume(sphere);
// std::cout << "sphere: " << sphere.getCentre() << ", " << sphere.getRadius() << ", vol: " << intersectVol << std::endl;
tensor += ((stressTensor->getTensor())*intersectVol);
}
}
//
// Return the average stress over the cell.
//
return tensor*(1.0/intersectCalker.getBox().getVolume());
}
void InteractionToStressConverter::calcTensorRegularGrid()
{
StressTensorPtrGrid &irregularGrid = getTensorIrregularGrid();
m_regTensorGrid = TensorGrid(m_bBox, m_gridSpacing);
const double maxRadius = (getMaxRadius() + m_gridSpacing);
TensorGrid::CellIterator regCellIt = m_regTensorGrid.getCellIterator();
while (regCellIt.hasNext())
{
TensorGrid::Cell ®Cell = regCellIt.next();
StressTensorPtrGrid::CellIterator irrCellIt = irregularGrid.getCellIterator(regCell.getPos(), maxRadius);
if (is3d())
{
m_regTensorGrid.insert(
regCell.getPos(),
Tensor(
regCell.getPos(),
getBoxTensor(
irrCellIt,
ThreeDIntersectionCalker(regCell.getBox())
)
)
);
}
else
{
m_regTensorGrid.insert(
regCell.getPos(),
Tensor(
regCell.getPos(),
getBoxTensor(
irrCellIt,
TwoDIntersectionCalker(regCell.getBox())
)
)
);
}
}
}
DoubleGrid &InteractionToStressConverter::getDevRegularGrid()
{
if (m_regDevStressGrid.size() <= 0)
{
calcDevRegularGrid();
}
return m_regDevStressGrid;
}
void InteractionToStressConverter::calcDevRegularGrid()
{
const TensorGrid ®ularTensorGrid = getTensorRegularGrid();
m_regDevStressGrid = DoubleGrid(m_bBox, m_gridSpacing);
TensorGrid::CellConstIterator cellIt = regularTensorGrid.getCellIterator();
while (cellIt.hasNext())
{
TensorGrid::Cell::ConstIterator pairIt = cellIt.next().getIterator();
while (pairIt.hasNext())
{
const Tensor &tensor = pairIt.next().getValue();
m_regDevStressGrid.insert(
tensor.getPos(),
getRealDevStress(tensor)
);
}
}
}
void InteractionToStressConverter::writeVtkStructuredXml(std::ostream &oStream)
{
TensorGrid ®ularGrid = getTensorRegularGrid();
StrctPiece piece(StrctPointType("points"), StrctPointDataType());
piece.setExtent(regularGrid.getMinVecIndex(), regularGrid.getMaxVecIndex());
TensorGrid::CellIterator cellIt = regularGrid.getCellIterator();
while (cellIt.hasNext())
{
TensorGrid::Cell::Iterator posValIt = cellIt.next().getIterator();
while (posValIt.hasNext())
{
const TensorGrid::Cell::PosValuePair &pair = posValIt.next();
piece.setPoint(
pair.getPos(),
StrctPiece::PointData(
getRealDevStress(pair.getValue())
//pair.getValue().getTensor()
)
);
}
}
// Write the xml document header
oStream << "<?xml version=\"1.0\"?>" << std::endl;
vtk::StructuredGrid grid;
grid.setExtent(piece.getMinExtent(), piece.getMaxExtent());
grid.addPiece(piece);
grid.writeXml(oStream);
}
void InteractionToStressConverter::writeFlatStructured(std::ostream &oStream)
{
DoubleGrid regular = getDevRegularGrid();
DoubleGrid::CellIterator cellIt = regular.getCellIterator();
while (cellIt.hasNext())
{
DoubleGrid::Cell::Iterator posValIt = cellIt.next().getIterator();
while (posValIt.hasNext())
{
const DoubleGrid::Cell::PosValuePair &pair = posValIt.next();
oStream << pair.getPos() << " " << pair.getValue() << "\n";
}
}
}
}
}
|