1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
\subsection{\texttt{rot\_compress.py}}\label{code:rot_compress}
\begin{verbatim}
#rot_compress.py: A uniaxial compression simulation using ESyS-Particle
# Author: D. Weatherley
# Date: 27 December 2008
# Organisation: ESSCC, University of Queensland
# (C) All rights reserved, 2008.
#
#
#import the appropriate ESyS-Particle modules:
from esys.lsm import *
from esys.lsm.util import *
from esys.lsm.geometry import *
from WallLoader import WallLoaderRunnable
#instantiate a simulation object:
sim = LsmMpi (numWorkerProcesses = 1, mpiDimList = [1,1,1])
#initialise the neighbour search algorithm:
sim.initNeighbourSearch (
particleType = "RotSphere",
gridSpacing = 5.0000,
verletDist = 0.08000
)
#set the number of timesteps and timestep increment:
sim.setNumTimeSteps (250000)
sim.setTimeStepSize (1.0000e-06)
#specify the spatial domain for the simulation
domain = BoundingBox(Vec3(-20,-20,-20), Vec3(20,20,20))
sim.setSpatialDomain (domain)
#create a prism of spherical particles:
geoRandomBlock = RandomBoxPacker (
minRadius = 0.400,
maxRadius = 2.0000,
cubicPackRadius = 2.2000,
maxInsertFails = 5000,
bBox = BoundingBox(
Vec3(-5.0000, 0.0000,-5.0000),
Vec3(5.0000, 20.0000, 5.0000)
),
circDimList = [False, False, False],
tolerance = 1.0000e-05
)
geoRandomBlock.generate()
geoRandomBlock_particles = geoRandomBlock.getSimpleSphereCollection()
#add the particles to the simulation object:
sim.createParticles(geoRandomBlock_particles)
#bond particles together with bondTag = 1:
sim.createConnections(
ConnectionFinder(
maxDist = 0.005,
bondTag = 1,
pList = geoRandomBlock_particles
)
)
#create a wall at the bottom of the model:
sim.createWall (
name = "bottom_wall",
posn = Vec3(0.0000, 0.0000, 0.0000),
normal = Vec3(0.0000, 1.0000, 0.0000)
)
#create a wall at the top of the model:
sim.createWall (
name = "top_wall",
posn = Vec3(0.0000, 20.0000, 0.0000),
normal = Vec3(0.0000, -1.0000, 0.0000)
)
#create rotational elastic-brittle bonds between particles:
pp_bonds = sim.createInteractionGroup (
BrittleBeamPrms(
name="pp_bonds",
youngsModulus=100000.0,
poissonsRatio=0.25,
cohesion=100.0,
tanAngle=1.0,
tag=1
)
)
#initialise frictional interactions for unbonded particles:
sim.createInteractionGroup (
FrictionPrms(
name="friction",
youngsModulus=100000.0,
poissonsRatio=0.25,
dynamicMu=0.4,
staticMu=0.6
)
)
#create an exclusion between bonded and frictional interactions:
sim.createExclusion (
interactionName1 = "pp_bonds",
interactionName2 = "friction"
)
#specify elastic repulsion from the bottom wall:
sim.createInteractionGroup (
NRotElasticWallPrms (
name = "bottom_wall_repel",
wallName = "bottom_wall",
normalK = 100000.0
)
)
#specify elastic repulsion from the top wall:
sim.createInteractionGroup (
NRotElasticWallPrms (
name = "top_wall_repel",
wallName = "top_wall",
normalK = 100000.0
)
)
#add translational viscous damping:
sim.createInteractionGroup (
LinDampingPrms(
name="damping1",
viscosity=0.002,
maxIterations=50
)
)
#add rotational viscous damping:
sim.createInteractionGroup (
RotDampingPrms(
name="damping2",
viscosity=0.002,
maxIterations=50
)
)
#add a wall loader to move the top wall:
wall_loader1 = WallLoaderRunnable(
LsmMpi = sim,
wallName = "top_wall",
vPlate = Vec3 (0.0, -0.125, 0.0),
startTime = 0,
rampTime = 50000
)
sim.addPreTimeStepRunnable (wall_loader1)
#add a wall loader to move the bottom wall:
wall_loader2 = WallLoaderRunnable(
LsmMpi = sim,
wallName = "bottom_wall",
vPlate = Vec3 (0.0, 0.125, 0.0),
startTime = 0,
rampTime = 50000
)
sim.addPreTimeStepRunnable (wall_loader2)
#create a FieldSaver to store number of bonds:
sim.createFieldSaver (
InteractionScalarFieldSaverPrms(
interactionName="pp_bonds",
fieldName="count",
fileName="nbonds.dat",
fileFormat="SUM",
beginTimeStep=0,
endTimeStep=250000,
timeStepIncr=1
)
)
#create a FieldSaver to store the total kinetic energy of the particles:
sim.createFieldSaver (
ParticleScalarFieldSaverPrms(
fieldName="e_kin",
fileName="ekin.dat",
fileFormat="SUM",
beginTimeStep=0,
endTimeStep=250000,
timeStepIncr=1
)
)
#create a FieldSaver to store potential energy stored in bonds:
sim.createFieldSaver (
InteractionScalarFieldSaverPrms(
interactionName="pp_bonds",
fieldName="potential_energy",
fileName="epot.dat",
fileFormat="SUM",
beginTimeStep=0,
endTimeStep=250000,
timeStepIncr=1
)
)
#create a FieldSaver to wall positions:
posn_saver = WallVectorFieldSaverPrms(
wallName=["bottom_wall", "top_wall"],
fieldName="Position",
fileName="out_Position.dat",
fileFormat="RAW_SERIES",
beginTimeStep=0,
endTimeStep=250000,
timeStepIncr=10
)
sim.createFieldSaver(posn_saver)
#create a FieldSaver to wall forces:
force_saver = WallVectorFieldSaverPrms(
wallName=["bottom_wall", "top_wall"],
fieldName="Force",
fileName="out_Force.dat",
fileFormat="RAW_SERIES",
beginTimeStep=0,
endTimeStep=250000,
timeStepIncr=10
)
sim.createFieldSaver(force_saver)
#execute the simulation:
sim.run()
\end{verbatim}
|