File: shearcell.py.tex

package info (click to toggle)
esys-particle 2.3.5%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 13,132 kB
  • sloc: cpp: 81,480; python: 5,872; makefile: 1,259; sh: 313; perl: 225
file content (209 lines) | stat: -rw-r--r-- 5,020 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
\subsection{\texttt{shearcell.py}}\label{code:shearcell}

\begin{verbatim}
#shearcell.py: An annular shear cell simulation using ESyS-Particle 
#	Author: D. Weatherley
#	Date: 24 April 2011
#	Organisation: ESSCC, The University of Queensland, Brisbane, AUSTRALIA
#	(C) All rights reserved, 2011.
#
#
#import the appropriate ESyS-Particle modules:
from esys.lsm import *
from esys.lsm.util import *
from esys.lsm.geometry import *
from WallLoader import WallLoaderRunnable
from ServoWallLoader import ServoWallLoaderRunnable

#create a simulation container object:
#	N.B. there must be at least two sub-divisions 
#	in the X-direction for periodic boundaries
sim = LsmMpi (numWorkerProcesses=2, mpiDimList=[2,1,1])
sim.initNeighbourSearch (
   particleType = "NRotSphere",
   gridSpacing = 2.5,
   verletDist = 0.5
)

#specify the number of timesteps and timestep increment:
sim.setNumTimeSteps(100000)
sim.setTimeStepSize(0.001)

#enforce two-dimensional computations:
sim.force2dComputations (True)

#specify the spatial domain and direction of periodic boundaries:
domain = BoundingBox ( Vec3 (0,0,0), Vec3 (10,10,0) )
sim.setSpatialDomain (
   bBox = domain,
   circDimList = [True, False, False]
)

#construct a rectangle of unbonded particles:
packer = RandomBoxPacker (
   minRadius = 0.1,
   maxRadius = 0.5,
   cubicPackRadius = 2.2,
   maxInsertFails = 1000,
   bBox = BoundingBox(
      Vec3(0.0, 0.0,0.0),
      Vec3(10.0, 10.0, 0.0)
   ),
   circDimList = [True, False, False],
   tolerance = 1.0e-5
)
packer.generate()
particleList = packer.getSimpleSphereCollection()

#tag particles along base and top of rectangle
#then add the particles to the simulation object:
for pp in particleList:
   centre = pp.getPosn()
   radius = pp.getRadius()
   Y = centre[1]
   if (Y < 1.0):		# particle is near the base (tag=2)
      pp.setTag (2)
   elif (Y > 9.0):	# particle is near the top (tag=3)
      pp.setTag (3)
   else:			# particle is inside the shear cell (tag=1)
      pp.setTag (1)	
   sim.createParticle(pp)	# add the particle to the simulation object

#set the density of all particles:
sim.setParticleDensity (
   tag = 1,
   mask = -1,
   Density = 100.0
)
sim.setParticleDensity (
   tag = 2,
   mask = -1,
   Density = 100.0
)
sim.setParticleDensity (
   tag = 3,
   mask = -1,
   Density = 100.0
)

#add driving walls above and below the particle assembly:
sim.createWall (
   name = "bottom_wall",
   posn = Vec3 (0,0,0),
   normal = Vec3 (0,1,0)
)

sim.createWall (
   name = "top_wall",
   posn = Vec3 (0,10,0),
   normal = Vec3 (0,-1,0)
)

#unbonded particle-pairs undergo frictional interactions:
sim.createInteractionGroup (
   NRotFrictionPrms (
      name = "pp_friction",
      normalK = 1000.0,
      dynamicMu = 0.6,
      shearK = 100.0,
      scaling = True
   )
)

#particles near the base (tag=2) are bonded to the bottom wall:
sim.createInteractionGroup (
   NRotBondedWallPrms (
      name = "bwall_bonds",
      wallName = "bottom_wall",
      normalK = 1000.0,
      particleTag = 2
   )
)

#particles near the base (tag=3) are bonded to the top wall:
sim.createInteractionGroup (
   NRotBondedWallPrms (
      name = "twall_bonds",
      wallName = "top_wall",
      normalK = 1000.0,
      particleTag = 3
   )
)

#add local damping to avoid accumulating kinetic energy:
sim.createInteractionGroup (
   LinDampingPrms (
      name = "damping",
      viscosity = 1.0,
      maxIterations = 100
   )
)

#add ServoWallLoaderRunnables to apply constant normal stress:
servo_loader1 = ServoWallLoaderRunnable(
   LsmMpi = sim,
   interactionName = "twall_bonds",
   force = Vec3 (0.0, -1000.0, 0.0),
   startTime = 0,
   rampTime = 5000
)
sim.addPreTimeStepRunnable (servo_loader1)

wall_loader1 = WallLoaderRunnable(
   LsmMpi = sim,
   wallName = "bottom_wall",
   vPlate = Vec3 (0.125, 0.0, 0.0),
   startTime = 30000,
   rampTime = 10000
)
sim.addPreTimeStepRunnable (wall_loader1)

#add a FieldSaver to store total kinetic energy:
sim.createFieldSaver (
   ParticleScalarFieldSaverPrms(
      fieldName="e_kin",
      fileName="ekin.dat",
      fileFormat="SUM",
      beginTimeStep=0,
      endTimeStep=100000,
      timeStepIncr=1
   )
)

#add FieldSavers to store wall forces and positions:
posn_saver = WallVectorFieldSaverPrms(
   wallName=["bottom_wall", "top_wall"],
   fieldName="Position",
   fileName="out_Position.dat",
   fileFormat="RAW_SERIES",
   beginTimeStep=0,
   endTimeStep=100000,
   timeStepIncr=1
)
sim.createFieldSaver(posn_saver)

force_saver = WallVectorFieldSaverPrms(
   wallName=["bottom_wall", "top_wall"],
   fieldName="Force",
   fileName="out_Force.dat",
   fileFormat="RAW_SERIES",
   beginTimeStep=0,
   endTimeStep=100000,
   timeStepIncr=1
)
sim.createFieldSaver(force_saver)

#add a CheckPointer to store simulation data:
sim.createCheckPointer (
   CheckPointPrms (
      fileNamePrefix = "snapshot",
      beginTimeStep = 0,
      endTimeStep = 100000,
      timeStepIncr = 5000
   )
)

#execute the simulation:
sim.run()

\end{verbatim}