1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2017 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
#include <mpi.h>
#include <boost/version.hpp>
#include <boost/python.hpp>
#include "Python/esys/lsm/RotThermalParticlePy.h"
#include <stdexcept>
namespace esys
{
namespace lsm
{
RotThermalParticlePy::RotThermalParticlePy() : CRotThermParticle()
{
}
RotThermalParticlePy::RotThermalParticlePy(int id, const Vec3Py &posn, double radius, double mass)
: CRotThermParticle(radius, mass, posn, Vec3(), Vec3(), id, true)
{
}
RotThermalParticlePy::RotThermalParticlePy(const CRotThermParticle &p) : CRotThermParticle(p)
{
}
RotThermalParticlePy::RotThermalParticlePy(const RotThermalParticlePy &p) : CRotThermParticle(p)
{
}
Vec3Py RotThermalParticlePy::getPosn() const
{
return Vec3Py(getPos());
}
void RotThermalParticlePy::setPosn(const Vec3Py &posn)
{
setPos(posn);
}
Vec3Py RotThermalParticlePy::getInitialPosn() const
{
return Vec3Py(getInitPos());
}
Vec3Py RotThermalParticlePy::getLinearVelocity() const
{
return Vec3Py(getVel());
}
void RotThermalParticlePy::setLinearVelocity(const Vec3Py &vel)
{
return setVel(vel);
}
Vec3Py RotThermalParticlePy::getLinearForce() const
{
return Vec3Py(m_force);
}
void RotThermalParticlePy::setLinearForce(const Vec3Py &force)
{
setForce(force);
}
Vec3Py RotThermalParticlePy::getLinearAcceleration() const
{
return Vec3Py(getForce()*getInvMass());
}
void RotThermalParticlePy::setLinearAcceleration(const Vec3Py &accel)
{
setForce(accel*getMass());
}
Vec3Py RotThermalParticlePy::getAngularVelocity() const
{
return Vec3Py(getAngVel());
}
void RotThermalParticlePy::setAngularVelocity(const Vec3Py &vel)
{
setAngVel(vel);
}
Vec3Py RotThermalParticlePy::getAngularAcceleration() const
{
return getMoment()*getInvInertRot();
}
void RotThermalParticlePy::setAngularAcceleration(const Vec3Py &accel)
{
setMoment(accel*getInertRot());
}
Vec3Py RotThermalParticlePy::getAngularForce() const
{
return Vec3Py(m_moment);
}
void RotThermalParticlePy::setAngularForce(const Vec3Py &moment)
{
setMoment(moment);
}
QuaternionPy RotThermalParticlePy::getOrientation() const
{
return QuaternionPy(getQuat());
}
void RotThermalParticlePy::setOrientation(const QuaternionPy &quat)
{
setQuat(quat);
}
using boost::python::extract;
boost::python::tuple
RotThermalParticlePy::PickleSuite::getstate(boost::python::object pcObj)
{
const RotThermalParticlePy &p = extract<const RotThermalParticlePy &>(pcObj);
boost::python::list l;
l.append(p.getTag());
l.append(p.getID());
l.append(p.getPosn());
l.append(p.getInitialPosn());
l.append(p.getLinearVelocity());
l.append(p.getLinearForce());
l.append(p.getRad());
l.append(p.getMass());
l.append(p.getInertRot());
l.append(p.getAngularVelocity());
l.append(p.getAngularForce());
l.append(p.getOrientation());
l.append(p.getEquilibRadius());
l.append(p.getEquilibTemperature());
l.append(p.getCp());
l.append(p.getThermExpansion0());
l.append(p.getThermExpansion1());
l.append(p.getThermExpansion2());
l.append(p.getTemperature());
return boost::python::make_tuple(pcObj.attr("__dict__"), l);
}
void
RotThermalParticlePy::PickleSuite::setstate(
boost::python::object pcObj,
boost::python::tuple state
)
{
// restore the object's __dict__
boost::python::dict d =
boost::python::extract<boost::python::dict>(
pcObj.attr("__dict__")
)();
d.update(state[0]);
RotThermalParticlePy &p = extract<RotThermalParticlePy &>(pcObj);
boost::python::list l = extract<boost::python::list>(state[1]);
int i = -1;
p.setTag(extract<int>(l[++i]));
p.setID(extract<int>(l[++i]));
p.setPosn(extract<const Vec3Py &>(l[++i]));
p.setInitPos(extract<const Vec3Py &>(l[++i]));
p.setLinearVelocity(extract<const Vec3Py &>(l[++i]));
p.setLinearForce(extract<const Vec3Py &>(l[++i]));
p.setRad(extract<double>(l[++i]));
p.setMass(extract<double>(l[++i]));
p.setInertRot(extract<double>(l[++i]));
p.setAngularVelocity(extract<const Vec3Py &>(l[++i]));
p.setAngularForce(extract<const Vec3Py &>(l[++i]));
p.setOrientation(extract<const QuaternionPy &>(l[++i]));
p.setEquilibRadius(extract<double>(l[++i]));
p.setEquilibTemperature(extract<double>(l[++i]));
p.setCp(extract<double>(l[++i]));
p.setThermExpansion0(extract<double>(l[++i]));
p.setThermExpansion1(extract<double>(l[++i]));
p.setThermExpansion2(extract<double>(l[++i]));
p.setTemperature(extract<double>(l[++i]));
}
bool RotThermalParticlePy::PickleSuite::getstate_manages_dict()
{
return true;
}
using boost::python::arg;
void exportRotThermalParticle()
{
// Disable autogeneration of C++ signatures (Boost 1.34.0 and higher)
// for Epydoc which stumbles over indentation in the automatically generated strings.
boost::python::docstring_options no_autogen(true,false);
boost::python::class_<RotThermalParticlePy>(
"RotThermalSphere",
"EXPERIMENTAL Rotational sphere with additional thermal properties.\n"
)
.def(boost::python::init<>())
.def(boost::python::init<const RotThermalParticlePy &>())
.def(boost::python::init<int,const Vec3Py &, double, double>(
(
arg("id"),
arg("posn"),
arg("radius"),
arg("mass")
),
"Construct a rotational spherical particle.\n"
"@type id: int\n"
"@kwarg id: Unique identifier for particle.\n"
"@type posn: L{Vec3<esys.lsm.util.FoundationPy.Vec3>}\n"
"@kwarg posn: Initial position of particle, centre-point of sphere.\n"
"@type radius: float\n"
"@kwarg radius: The radius of the sphere.\n"
"@type mass: float\n"
"@kwarg mass: Mass of particle.\n"
))
.def("getId", &RotThermalParticlePy::getID, "Returns the unique ID of the particle\n")
.def("getTag", &RotThermalParticlePy::getTag, "Returns the non-unique tag of the particle\n")
.def("setTag", &RotThermalParticlePy::setTag, "Specifies the tag of the particle\n")
.def("getInitialPosn", &RotThermalParticlePy::getInitialPosn, "Returns the initial position of the particle\n")
.def("getInitialPosition", &RotThermalParticlePy::getInitialPosn, "Returns the initial position of the particle\n")
.def("getPosn", &RotThermalParticlePy::getPosn, "Returns the current position of the particle\n")
.def("getPosition", &RotThermalParticlePy::getPosn, "Returns the current position of the particle\n")
.def("setPosn", &RotThermalParticlePy::setPosn, "Specifies the position of the particle\n")
.def("setPosition", &RotThermalParticlePy::setPosn, "Specifies the position of the particle\n")
.def("getOrientation", &RotThermalParticlePy::getOrientation, "Returns the current orientation of the particle\n")
.def("setOrientation", &RotThermalParticlePy::setOrientation, "Specifies the orientation of the particle\n")
.def("getLinearVelocity", &RotThermalParticlePy::getLinearVelocity, "Returns the current translational velocity of the particle\n")
.def("setLinearVelocity", &RotThermalParticlePy::setLinearVelocity, "Specifies the current translational velocity of the particle\n")
.def("getAngularVelocity", &RotThermalParticlePy::getAngularVelocity, "Returns the current angular velocity of the particle\n")
.def("setAngularVelocity", &RotThermalParticlePy::setAngularVelocity, "Specifies the angular velocity of the particle\n")
.def("getLinearAcceleration", &RotThermalParticlePy::getLinearAcceleration, "Returns the current translational acceleration of the particle\n")
.def("setLinearAcceleration", &RotThermalParticlePy::setLinearAcceleration, "Specifies the translational acceleration of the particle\n")
.def("getAngularAcceleration", &RotThermalParticlePy::getAngularAcceleration, "Returns the current angular acceleration of the particle\n")
.def("setAngularAcceleration", &RotThermalParticlePy::setAngularAcceleration, "Specifies the angular acceleration of the particle\n")
.def("getRad", &RotThermalParticlePy::getRad, "Returns the radius of the particle\n")
.def("getRadius", &RotThermalParticlePy::getRad, "Returns the radius of the particle\n")
.def("getCentre", &RotThermalParticlePy::getPosn, "Returns the current position of the particle\n")
.def("getCenter", &RotThermalParticlePy::getPosn, "Returns the current position of the particle\n")
.def("getMass", &RotThermalParticlePy::getMass, "Returns the mass of the particle\n")
.def("getEquilibRadius", &RotThermalParticlePy::getEquilibRadius, "Returns the thermal equilibrium radius of the particle\n")
.def("setEquilibRadius", &RotThermalParticlePy::setEquilibRadius, "Specifies the thermal equilibrium radius of the particle\n")
.def("getEquilibTemperature", &RotThermalParticlePy::getEquilibTemperature, "Returns the thermal equilibrium temperature of the particle\n")
.def("setEquilibTemperature", &RotThermalParticlePy::setEquilibTemperature, "Specifies the thermal equilibrium temperature of the particle\n")
.def("getTemperature", &RotThermalParticlePy::getTemperature, "Returns the current temperature of the particle\n")
.def("setTemperature", &RotThermalParticlePy::setTemperature, "Specifies the temperature of the particle\n")
.def("getCp", &RotThermalParticlePy::getCp, "Returns the thermal conductivity of the particle\n")
.def("setCp", &RotThermalParticlePy::setCp, "Specifies the thermal conductivity of the particle\n")
.def("getExpansionCoeff0", &RotThermalParticlePy::getThermExpansion0, "Returns the X-component of the thermal expansion coefficient of the particle\n")
.def("setExpansionCoeff0", &RotThermalParticlePy::setThermExpansion0, "Specifies the X-component of the thermal expansion coefficient of the particle\n")
.def("getExpansionCoeff1", &RotThermalParticlePy::getThermExpansion1, "Returns the Y-component of the thermal expansion coefficient of the particle\n")
.def("setExpansionCoeff1", &RotThermalParticlePy::setThermExpansion1, "Specifies the Y-component of the thermal expansion coefficient of the particle\n")
.def("getExpansionCoeff2", &RotThermalParticlePy::getThermExpansion2, "Returns the Z-component of the thermal expansion coefficient of the particle\n")
.def("setExpansionCoeff2", &RotThermalParticlePy::setThermExpansion2, "Specifies the Z-component of the thermal expansion coefficient of the particle\n")
;
}
}
}
|