1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#############################################################
## ##
## Copyright (c) 2003-2017 by The University of Queensland ##
## Centre for Geoscience Computing ##
## http://earth.uq.edu.au/centre-geoscience-computing ##
## ##
## Primary Business: Brisbane, Queensland, Australia ##
## Licensed under the Open Software License version 3.0 ##
## http://www.apache.org/licenses/LICENSE-2.0 ##
## ##
#############################################################
"""
Module for running a suite of bonded-block benchmark simulations.
Defines L{BondedBlockSim} class whose instances can be used to run a
single simple I{quivering} elastic block simulation.
"""
from __future__ import division
from esys.lsm import *
from esys.lsm.util import *
from esys.lsm.geometry import *
from esys.lsm.benchmarks import Util
import random
class BondedBlockSim(Util.BenchSim):
def __init__(
self,
numTimeSteps=10000,
numParticles=1000,
spawnExe = "",
spawnArgList = None
):
Util.BenchSim.__init__(
self,
numTimeSteps,
numParticles,
spawnExe,
spawnArgList
)
self.normalK = 1.0
self.radius = 1.0
self.verletDist = self.radius/2.0
self.logger.info("Initialising model")
timeStepSize = 0.0001
self.initVerletModel(
particleType = "NRotSphere",
gridSpacing = 4.0,
verletDist = self.verletDist
)
self.setTimeStepSize(dt=timeStepSize)
def getRandomOffset(self):
return Vec3([random.random() for i in range(0,3)])*(self.radius/20)
def createParticlesAndBonds(self):
"""
Creates a hexagonnaly close packed block of particles within
the model along with linear elastic bonds connecting neighbouring
particles.
"""
#
# Create a block of hcc particles.
#
blk = Util.getHexagBlock(self.numParticles, self.radius)
#
# Determine neighbouring particles
#
conns = DistConnections(0.01*self.radius, 0, blk)
#
# initialize RNG
#
random.seed(42)
#
# Perurb the initial positions of the particles.
#
for p in blk:
p.setPosn(p.getPosn() + self.getRandomOffset())
#
# Set up the spatial domain.
#
blkBox = blk.getParticleBBox()
domainBox = \
BoundingBox(
blkBox.getMinPt() - 2.0*self.radius,
blkBox.getMaxPt() + 2.0*self.radius
)
self.logger.info("Setting spatial domain.")
self.setSpatialDomain(domainBox)
#
# Create the model particles.
#
self.createParticles(blk)
#
# Create the linear elastic bonds between particles.
#
self.logger.info("Creating bonded interaction group...")
self.createConnections(conns)
self.createInteractionGroup(
NRotBondPrms(
tag=0,
name="bonds",
normalK=self.normalK,
breakDistance=self.radius*10.0
)
)
self.logger.info("Creating " + str(len(conns)) + " bonds...")
def runSimulation(self):
self.createParticlesAndBonds()
self.doTimedRun()
def runSimulations(
numTimeSteps,
numParticlesList,
outputFileName,
spawnCmdLineList,
verboseLsm
):
suite = Util.SimSuite(BondedBlockSim)
suite.createSims(
numTimeSteps,
numParticlesList,
outputFileName,
spawnCmdLineList,
verboseLsm
)
suite.runSimulations()
if (__name__ == "__main__"):
parser = Util.getOptionParser()
(options, argList) = parser.parse_args()
runSimulations(
options.numTimeSteps,
options.numParticlesList,
options.outputFileName,
options.spawnCmdLineList,
options.verboseLsm
)
|