1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2003-2017 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.apache.org/licenses/LICENSE-2.0 //
// //
/////////////////////////////////////////////////////////////
#include "DataExtractor.h"
#include "SnapFileHelp.h"
// --- Project includes ---
#include "ntable/src/handle.h"
// --- std. includes ---
#include <cmath>
using std::atan;
using std::sqrt;
// --- IO includes ---
#include <fstream>
using std::ifstream;
using std::ofstream;
/*!
constructor
\param x nr. of grid points in x-direction
\param y nr. of grid points in y-direction
\param z nr. of grid points in z-direction
\param range grid spacing
\param p0_global minimal corner (origin) of the global search space
*/
DataExtractor::DataExtractor(int x,int y,int z,double range,const Vec3& p0_global):
m_data(x,y,z,range,0.0,p0_global,0,0,0)
{
}
/*!
read snapshot
\param filename the name of the "metadata" file, usually *_0.txt
*/
void DataExtractor::read(const string& infilename)
{
ifstream headerfile(infilename.c_str());
int version=get_version(infilename);
vector<string> filenames=get_filenames(infilename,version);
// get main files
for(vector<string>::iterator iter=filenames.begin();
iter!=filenames.end();
iter++){
cout << *iter << endl;
ifstream datafile(iter->c_str());
// get particles
int npart;
Vec3 pos;
Vec3 oldpos;
Vec3 initpos;
Vec3 force;
Vec3 vel;
Vec3 angvel;
Vec3 circ_shift;
double rad;
double mass;
double q1,q2,q3,q4;
int id;
int tag;
datafile >> npart;
if(version<2){
for(int i=0;i<npart;i++){
// read data
datafile >> pos >> rad >> id >> tag >> mass >> initpos >> oldpos >> vel >> force >> q1 >> q2 >> q3 >> q4 >> angvel;
DataParticle dp=DataParticle(pos,initpos,rad,id);
m_data.insert(dp);
}
} else {
for(int i=0;i<npart;i++){
// read data
datafile >> pos >> rad >> id >> tag >> mass >> initpos >> oldpos >> vel >> force >> circ_shift >> q1 >> q2 >> q3 >> q4 >> angvel;
DataParticle dp=DataParticle(pos,initpos,rad,id);
m_data.insert(dp);
}
}
datafile.close();
}
std::cout << "inserted " << m_data.size() << " particles " << std::endl;
// m_data.build();
}
/*!
write tensor data as unstructured grid VTK-XML file
\param filename the name of the output file
\param dataname the name of the data in the VTK file
*/
void DataExtractor::writeTensorDataVtk(const string& filename,const string& dataname)
{
}
/*!
write scalar data as unstructured grid VTK-XML file
\param filename the name of the output file
\param dataname the name of the data in the VTK file
*/
void DataExtractor::writeScalarDataVtk(const string& filename,const string& dataname)
{
ofstream vtkfile(filename.c_str());
// write the file
// write header
vtkfile << "<VTKFile type=\"UnstructuredGrid\" version=\"0.1\">\n";
vtkfile << "<UnstructuredGrid>\n";
vtkfile << "<Piece NumberOfPoints=\"" << m_data.size() << "\" NumberOfCells=\"0\">\n";
// write particle pos
vtkfile << "<Points>\n";
vtkfile << "<DataArray NumberOfComponents=\"3\" type=\"Float64\" format=\"ascii\">\n";
for(NeighborTable<DataParticle>::iterator iter=m_data.begin();
iter!=m_data.end();
iter++){
vtkfile << iter->getPos() << " ";
}
vtkfile << "</DataArray>\n";
vtkfile << "</Points>\n";
// --- write particle data ---
// radius
vtkfile << "<PointData Scalars=\"radius\">\n";
vtkfile << "<DataArray type=\"Float64\" Name=\"radius\" NumberOfComponents=\"1\" format=\"ascii\">\n";
for(NeighborTable<DataParticle>::iterator iter=m_data.begin();
iter!=m_data.end();
iter++){
vtkfile << iter->getRad() << " ";
}
vtkfile << "</DataArray>\n";
vtkfile << "</PointData>\n";
// data
vtkfile << "<PointData Scalars=\"" << dataname << "\">\n";
vtkfile << "<DataArray type=\"Float64\" Name=\"radius\" NumberOfComponents=\"1\" format=\"ascii\">\n";
for(NeighborTable<DataParticle>::iterator iter=m_data.begin();
iter!=m_data.end();
iter++){
vtkfile << iter->getScalarData() << " ";
}
vtkfile << "</DataArray>\n";
vtkfile << "</PointData>\n";
// write empty cell block
vtkfile << "<Cells>\n";
vtkfile << "<DataArray type=\"Int32\" NumberOfComponents=\"1\" Name=\"connectivity\" format=\"ascii\">\n";
vtkfile << "</DataArray>\n";
vtkfile << "<DataArray type=\"UInt8\" NumberOfComponents=\"1\" Name=\"types\" format=\"ascii\">\n";
vtkfile << "</DataArray>\n";
vtkfile << "</Cells>\n";
// write footer
vtkfile << "</Piece>\n";
vtkfile << "</UnstructuredGrid>\n";
vtkfile << "</VTKFile>\n";
// close file
vtkfile.close();
}
/*!
extract best fit strain tensors from the data and write the result
into the tensor data member of the particles
\param rad the search radius for the neighbour particles
*/
void DataExtractor::StrainToTensorData(double rad)
{
// for each particle
for(NeighborTable<DataParticle>::iterator iter=m_data.begin();
iter!=m_data.end();
iter++){
// get list of neighbours
T_Handle<NeighborTable<DataParticle>::particlelist> plist=m_data.getParticlesNearPoint(iter->getPos());
std::cout << "pos: " << iter->getPos() << " list size : " << plist->size() << std::endl;
if(plist->size()>3){
// init sums
Matrix3 M;
Vec3 Su,Sv,Sw;
// for each neighbour
for(NeighborTable<DataParticle>::particlelist::iterator n_iter=plist->begin();
n_iter!=plist->end();
n_iter++){
// get relative position & displacement
Vec3 disp=(*n_iter)->getDisplacement()-iter->getDisplacement();
Vec3 rpos=(*n_iter)->getPos()-iter->getPos();
// --- udate sums
// M
M(0,0)+=rpos.X()*rpos.X();
M(0,1)+=rpos.X()*rpos.Y();
M(0,2)+=rpos.X()*rpos.Z();
M(1,1)+=rpos.Y()*rpos.Y();
M(1,2)+=rpos.Y()*rpos.Z();
M(2,2)+=rpos.Z()*rpos.Z();
// Su,v,w
Su+=disp.X()*rpos;
Sv+=disp.Y()*rpos;
Sw+=disp.Z()*rpos;
}
// make M symmetric
M(1,0)=M(0,1);
M(2,0)=M(0,2);
M(2,1)=M(1,2);
// solve equations to get displacement gradient tensor components
Vec3 Du=M.solve(Su);
Vec3 Dv=M.solve(Sv);
Vec3 Dw=M.solve(Sw);
// make deformation gradient tensor
Matrix3 A;
A(0,0)=Du.X()+1; A(0,1)=Du.Y(); A(0,2)=Du.Z();
A(1,0)=Dv.X(); A(1,1)=Dv.Y()+1; A(1,2)=Dv.Z();
A(2,0)=Dw.X(); A(2,1)=Dw.Y(); A(2,2)=Dw.Z()+1;
// right Cauchy-Green deformation tensor
Matrix3 C=A.trans()*A;
// write to tensor data member of the particle
iter->setTensorData(C);
}
}
}
/*!
write maximum shear strain to scalar data member. Needs strain tensor calculation done before
*/
void DataExtractor::MaxShearToScalarData()
{
for(NeighborTable<DataParticle>::iterator iter=m_data.begin();
iter!=m_data.end();
iter++){
// get eigenvalues of tensor data
Vec3 D1,D2,D3;
double e1,e2,e3;
(iter->getTensorData()).eigen(D1,D2,D3,e1,e2,e3);
// set scalar data to max shear strain
iter->setScalarData(atan(sqrt(e3/e1)));
}
}
|