1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
|
// Copyright 2016 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package adt
import (
"bytes"
"fmt"
"math"
"strings"
)
// Comparable is an interface for trichotomic comparisons.
type Comparable interface {
// Compare gives the result of a 3-way comparison
// a.Compare(b) = 1 => a > b
// a.Compare(b) = 0 => a == b
// a.Compare(b) = -1 => a < b
Compare(c Comparable) int
}
type rbcolor int
const (
black rbcolor = iota
red
)
func (c rbcolor) String() string {
switch c {
case black:
return "black"
case red:
return "black"
default:
panic(fmt.Errorf("unknown color %d", c))
}
}
// Interval implements a Comparable interval [begin, end)
// TODO: support different sorts of intervals: (a,b), [a,b], (a, b]
type Interval struct {
Begin Comparable
End Comparable
}
// Compare on an interval gives == if the interval overlaps.
func (ivl *Interval) Compare(c Comparable) int {
ivl2 := c.(*Interval)
ivbCmpBegin := ivl.Begin.Compare(ivl2.Begin)
ivbCmpEnd := ivl.Begin.Compare(ivl2.End)
iveCmpBegin := ivl.End.Compare(ivl2.Begin)
// ivl is left of ivl2
if ivbCmpBegin < 0 && iveCmpBegin <= 0 {
return -1
}
// iv is right of iv2
if ivbCmpEnd >= 0 {
return 1
}
return 0
}
type intervalNode struct {
// iv is the interval-value pair entry.
iv IntervalValue
// max endpoint of all descendent nodes.
max Comparable
// left and right are sorted by low endpoint of key interval
left, right *intervalNode
// parent is the direct ancestor of the node
parent *intervalNode
c rbcolor
}
func (x *intervalNode) color(sentinel *intervalNode) rbcolor {
if x == sentinel {
return black
}
return x.c
}
func (x *intervalNode) height(sentinel *intervalNode) int {
if x == sentinel {
return 0
}
ld := x.left.height(sentinel)
rd := x.right.height(sentinel)
if ld < rd {
return rd + 1
}
return ld + 1
}
func (x *intervalNode) min(sentinel *intervalNode) *intervalNode {
for x.left != sentinel {
x = x.left
}
return x
}
// successor is the next in-order node in the tree
func (x *intervalNode) successor(sentinel *intervalNode) *intervalNode {
if x.right != sentinel {
return x.right.min(sentinel)
}
y := x.parent
for y != sentinel && x == y.right {
x = y
y = y.parent
}
return y
}
// updateMax updates the maximum values for a node and its ancestors
func (x *intervalNode) updateMax(sentinel *intervalNode) {
for x != sentinel {
oldmax := x.max
max := x.iv.Ivl.End
if x.left != sentinel && x.left.max.Compare(max) > 0 {
max = x.left.max
}
if x.right != sentinel && x.right.max.Compare(max) > 0 {
max = x.right.max
}
if oldmax.Compare(max) == 0 {
break
}
x.max = max
x = x.parent
}
}
type nodeVisitor func(n *intervalNode) bool
// visit will call a node visitor on each node that overlaps the given interval
func (x *intervalNode) visit(iv *Interval, sentinel *intervalNode, nv nodeVisitor) bool {
if x == sentinel {
return true
}
v := iv.Compare(&x.iv.Ivl)
switch {
case v < 0:
if !x.left.visit(iv, sentinel, nv) {
return false
}
case v > 0:
maxiv := Interval{x.iv.Ivl.Begin, x.max}
if maxiv.Compare(iv) == 0 {
if !x.left.visit(iv, sentinel, nv) || !x.right.visit(iv, sentinel, nv) {
return false
}
}
default:
if !x.left.visit(iv, sentinel, nv) || !nv(x) || !x.right.visit(iv, sentinel, nv) {
return false
}
}
return true
}
// IntervalValue represents a range tree node that contains a range and a value.
type IntervalValue struct {
Ivl Interval
Val interface{}
}
// IntervalTree represents a (mostly) textbook implementation of the
// "Introduction to Algorithms" (Cormen et al, 3rd ed.) chapter 13 red-black tree
// and chapter 14.3 interval tree with search supporting "stabbing queries".
type IntervalTree interface {
// Insert adds a node with the given interval into the tree.
Insert(ivl Interval, val interface{})
// Delete removes the node with the given interval from the tree, returning
// true if a node is in fact removed.
Delete(ivl Interval) bool
// Len gives the number of elements in the tree.
Len() int
// Height is the number of levels in the tree; one node has height 1.
Height() int
// MaxHeight is the expected maximum tree height given the number of nodes.
MaxHeight() int
// Visit calls a visitor function on every tree node intersecting the given interval.
// It will visit each interval [x, y) in ascending order sorted on x.
Visit(ivl Interval, ivv IntervalVisitor)
// Find gets the IntervalValue for the node matching the given interval
Find(ivl Interval) *IntervalValue
// Intersects returns true if there is some tree node intersecting the given interval.
Intersects(iv Interval) bool
// Contains returns true if the interval tree's keys cover the entire given interval.
Contains(ivl Interval) bool
// Stab returns a slice with all elements in the tree intersecting the interval.
Stab(iv Interval) []*IntervalValue
// Union merges a given interval tree into the receiver.
Union(inIvt IntervalTree, ivl Interval)
}
// NewIntervalTree returns a new interval tree.
func NewIntervalTree() IntervalTree {
sentinel := &intervalNode{
iv: IntervalValue{},
max: nil,
left: nil,
right: nil,
parent: nil,
c: black,
}
return &intervalTree{
root: sentinel,
count: 0,
sentinel: sentinel,
}
}
type intervalTree struct {
root *intervalNode
count int
// red-black NIL node
// use 'sentinel' as a dummy object to simplify boundary conditions
// use the sentinel to treat a nil child of a node x as an ordinary node whose parent is x
// use one shared sentinel to represent all nil leaves and the root's parent
sentinel *intervalNode
}
// TODO: make this consistent with textbook implementation
//
// "Introduction to Algorithms" (Cormen et al, 3rd ed.), chapter 13.4, p324
//
// 0. RB-DELETE(T, z)
// 1.
// 2. y = z
// 3. y-original-color = y.color
// 4.
// 5. if z.left == T.nil
// 6. x = z.right
// 7. RB-TRANSPLANT(T, z, z.right)
// 8. else if z.right == T.nil
// 9. x = z.left
// 10. RB-TRANSPLANT(T, z, z.left)
// 11. else
// 12. y = TREE-MINIMUM(z.right)
// 13. y-original-color = y.color
// 14. x = y.right
// 15. if y.p == z
// 16. x.p = y
// 17. else
// 18. RB-TRANSPLANT(T, y, y.right)
// 19. y.right = z.right
// 20. y.right.p = y
// 21. RB-TRANSPLANT(T, z, y)
// 22. y.left = z.left
// 23. y.left.p = y
// 24. y.color = z.color
// 25.
// 26. if y-original-color == BLACK
// 27. RB-DELETE-FIXUP(T, x)
// Delete removes the node with the given interval from the tree, returning
// true if a node is in fact removed.
func (ivt *intervalTree) Delete(ivl Interval) bool {
z := ivt.find(ivl)
if z == ivt.sentinel {
return false
}
y := z
if z.left != ivt.sentinel && z.right != ivt.sentinel {
y = z.successor(ivt.sentinel)
}
x := ivt.sentinel
if y.left != ivt.sentinel {
x = y.left
} else if y.right != ivt.sentinel {
x = y.right
}
x.parent = y.parent
if y.parent == ivt.sentinel {
ivt.root = x
} else {
if y == y.parent.left {
y.parent.left = x
} else {
y.parent.right = x
}
y.parent.updateMax(ivt.sentinel)
}
if y != z {
z.iv = y.iv
z.updateMax(ivt.sentinel)
}
if y.color(ivt.sentinel) == black {
ivt.deleteFixup(x)
}
ivt.count--
return true
}
// "Introduction to Algorithms" (Cormen et al, 3rd ed.), chapter 13.4, p326
//
// 0. RB-DELETE-FIXUP(T, z)
// 1.
// 2. while x ≠ T.root and x.color == BLACK
// 3. if x == x.p.left
// 4. w = x.p.right
// 5. if w.color == RED
// 6. w.color = BLACK
// 7. x.p.color = RED
// 8. LEFT-ROTATE(T, x, p)
// 9. if w.left.color == BLACK and w.right.color == BLACK
// 10. w.color = RED
// 11. x = x.p
// 12. else if w.right.color == BLACK
// 13. w.left.color = BLACK
// 14. w.color = RED
// 15. RIGHT-ROTATE(T, w)
// 16. w = w.p.right
// 17. w.color = x.p.color
// 18. x.p.color = BLACK
// 19. LEFT-ROTATE(T, w.p)
// 20. x = T.root
// 21. else
// 22. w = x.p.left
// 23. if w.color == RED
// 24. w.color = BLACK
// 25. x.p.color = RED
// 26. RIGHT-ROTATE(T, x, p)
// 27. if w.right.color == BLACK and w.left.color == BLACK
// 28. w.color = RED
// 29. x = x.p
// 30. else if w.left.color == BLACK
// 31. w.right.color = BLACK
// 32. w.color = RED
// 33. LEFT-ROTATE(T, w)
// 34. w = w.p.left
// 35. w.color = x.p.color
// 36. x.p.color = BLACK
// 37. RIGHT-ROTATE(T, w.p)
// 38. x = T.root
// 39.
// 40. x.color = BLACK
//
func (ivt *intervalTree) deleteFixup(x *intervalNode) {
for x != ivt.root && x.color(ivt.sentinel) == black {
if x == x.parent.left { // line 3-20
w := x.parent.right
if w.color(ivt.sentinel) == red {
w.c = black
x.parent.c = red
ivt.rotateLeft(x.parent)
w = x.parent.right
}
if w == nil {
break
}
if w.left.color(ivt.sentinel) == black && w.right.color(ivt.sentinel) == black {
w.c = red
x = x.parent
} else {
if w.right.color(ivt.sentinel) == black {
w.left.c = black
w.c = red
ivt.rotateRight(w)
w = x.parent.right
}
w.c = x.parent.color(ivt.sentinel)
x.parent.c = black
w.right.c = black
ivt.rotateLeft(x.parent)
x = ivt.root
}
} else { // line 22-38
// same as above but with left and right exchanged
w := x.parent.left
if w.color(ivt.sentinel) == red {
w.c = black
x.parent.c = red
ivt.rotateRight(x.parent)
w = x.parent.left
}
if w == nil {
break
}
if w.left.color(ivt.sentinel) == black && w.right.color(ivt.sentinel) == black {
w.c = red
x = x.parent
} else {
if w.left.color(ivt.sentinel) == black {
w.right.c = black
w.c = red
ivt.rotateLeft(w)
w = x.parent.left
}
w.c = x.parent.color(ivt.sentinel)
x.parent.c = black
w.left.c = black
ivt.rotateRight(x.parent)
x = ivt.root
}
}
}
if x != nil {
x.c = black
}
}
func (ivt *intervalTree) createIntervalNode(ivl Interval, val interface{}) *intervalNode {
return &intervalNode{
iv: IntervalValue{ivl, val},
max: ivl.End,
c: red,
left: ivt.sentinel,
right: ivt.sentinel,
parent: ivt.sentinel,
}
}
// TODO: make this consistent with textbook implementation
//
// "Introduction to Algorithms" (Cormen et al, 3rd ed.), chapter 13.3, p315
//
// 0. RB-INSERT(T, z)
// 1.
// 2. y = T.nil
// 3. x = T.root
// 4.
// 5. while x ≠ T.nil
// 6. y = x
// 7. if z.key < x.key
// 8. x = x.left
// 9. else
// 10. x = x.right
// 11.
// 12. z.p = y
// 13.
// 14. if y == T.nil
// 15. T.root = z
// 16. else if z.key < y.key
// 17. y.left = z
// 18. else
// 19. y.right = z
// 20.
// 21. z.left = T.nil
// 22. z.right = T.nil
// 23. z.color = RED
// 24.
// 25. RB-INSERT-FIXUP(T, z)
// Insert adds a node with the given interval into the tree.
func (ivt *intervalTree) Insert(ivl Interval, val interface{}) {
y := ivt.sentinel
z := ivt.createIntervalNode(ivl, val)
x := ivt.root
for x != ivt.sentinel {
y = x
if z.iv.Ivl.Begin.Compare(x.iv.Ivl.Begin) < 0 {
x = x.left
} else {
x = x.right
}
}
z.parent = y
if y == ivt.sentinel {
ivt.root = z
} else {
if z.iv.Ivl.Begin.Compare(y.iv.Ivl.Begin) < 0 {
y.left = z
} else {
y.right = z
}
y.updateMax(ivt.sentinel)
}
z.c = red
ivt.insertFixup(z)
ivt.count++
}
// "Introduction to Algorithms" (Cormen et al, 3rd ed.), chapter 13.3, p316
//
// 0. RB-INSERT-FIXUP(T, z)
// 1.
// 2. while z.p.color == RED
// 3. if z.p == z.p.p.left
// 4. y = z.p.p.right
// 5. if y.color == RED
// 6. z.p.color = BLACK
// 7. y.color = BLACK
// 8. z.p.p.color = RED
// 9. z = z.p.p
// 10. else if z == z.p.right
// 11. z = z.p
// 12. LEFT-ROTATE(T, z)
// 13. z.p.color = BLACK
// 14. z.p.p.color = RED
// 15. RIGHT-ROTATE(T, z.p.p)
// 16. else
// 17. y = z.p.p.left
// 18. if y.color == RED
// 19. z.p.color = BLACK
// 20. y.color = BLACK
// 21. z.p.p.color = RED
// 22. z = z.p.p
// 23. else if z == z.p.right
// 24. z = z.p
// 25. RIGHT-ROTATE(T, z)
// 26. z.p.color = BLACK
// 27. z.p.p.color = RED
// 28. LEFT-ROTATE(T, z.p.p)
// 29.
// 30. T.root.color = BLACK
//
func (ivt *intervalTree) insertFixup(z *intervalNode) {
for z.parent.color(ivt.sentinel) == red {
if z.parent == z.parent.parent.left { // line 3-15
y := z.parent.parent.right
if y.color(ivt.sentinel) == red {
y.c = black
z.parent.c = black
z.parent.parent.c = red
z = z.parent.parent
} else {
if z == z.parent.right {
z = z.parent
ivt.rotateLeft(z)
}
z.parent.c = black
z.parent.parent.c = red
ivt.rotateRight(z.parent.parent)
}
} else { // line 16-28
// same as then with left/right exchanged
y := z.parent.parent.left
if y.color(ivt.sentinel) == red {
y.c = black
z.parent.c = black
z.parent.parent.c = red
z = z.parent.parent
} else {
if z == z.parent.left {
z = z.parent
ivt.rotateRight(z)
}
z.parent.c = black
z.parent.parent.c = red
ivt.rotateLeft(z.parent.parent)
}
}
}
// line 30
ivt.root.c = black
}
// rotateLeft moves x so it is left of its right child
//
// "Introduction to Algorithms" (Cormen et al, 3rd ed.), chapter 13.2, p313
//
// 0. LEFT-ROTATE(T, x)
// 1.
// 2. y = x.right
// 3. x.right = y.left
// 4.
// 5. if y.left ≠ T.nil
// 6. y.left.p = x
// 7.
// 8. y.p = x.p
// 9.
// 10. if x.p == T.nil
// 11. T.root = y
// 12. else if x == x.p.left
// 13. x.p.left = y
// 14. else
// 15. x.p.right = y
// 16.
// 17. y.left = x
// 18. x.p = y
//
func (ivt *intervalTree) rotateLeft(x *intervalNode) {
// rotateLeft x must have right child
if x.right == ivt.sentinel {
return
}
// line 2-3
y := x.right
x.right = y.left
// line 5-6
if y.left != ivt.sentinel {
y.left.parent = x
}
x.updateMax(ivt.sentinel)
// line 10-15, 18
ivt.replaceParent(x, y)
// line 17
y.left = x
y.updateMax(ivt.sentinel)
}
// rotateRight moves x so it is right of its left child
//
// 0. RIGHT-ROTATE(T, x)
// 1.
// 2. y = x.left
// 3. x.left = y.right
// 4.
// 5. if y.right ≠ T.nil
// 6. y.right.p = x
// 7.
// 8. y.p = x.p
// 9.
// 10. if x.p == T.nil
// 11. T.root = y
// 12. else if x == x.p.right
// 13. x.p.right = y
// 14. else
// 15. x.p.left = y
// 16.
// 17. y.right = x
// 18. x.p = y
//
func (ivt *intervalTree) rotateRight(x *intervalNode) {
// rotateRight x must have left child
if x.left == ivt.sentinel {
return
}
// line 2-3
y := x.left
x.left = y.right
// line 5-6
if y.right != ivt.sentinel {
y.right.parent = x
}
x.updateMax(ivt.sentinel)
// line 10-15, 18
ivt.replaceParent(x, y)
// line 17
y.right = x
y.updateMax(ivt.sentinel)
}
// replaceParent replaces x's parent with y
func (ivt *intervalTree) replaceParent(x *intervalNode, y *intervalNode) {
y.parent = x.parent
if x.parent == ivt.sentinel {
ivt.root = y
} else {
if x == x.parent.left {
x.parent.left = y
} else {
x.parent.right = y
}
x.parent.updateMax(ivt.sentinel)
}
x.parent = y
}
// Len gives the number of elements in the tree
func (ivt *intervalTree) Len() int { return ivt.count }
// Height is the number of levels in the tree; one node has height 1.
func (ivt *intervalTree) Height() int { return ivt.root.height(ivt.sentinel) }
// MaxHeight is the expected maximum tree height given the number of nodes
func (ivt *intervalTree) MaxHeight() int {
return int((2 * math.Log2(float64(ivt.Len()+1))) + 0.5)
}
// IntervalVisitor is used on tree searches; return false to stop searching.
type IntervalVisitor func(n *IntervalValue) bool
// Visit calls a visitor function on every tree node intersecting the given interval.
// It will visit each interval [x, y) in ascending order sorted on x.
func (ivt *intervalTree) Visit(ivl Interval, ivv IntervalVisitor) {
ivt.root.visit(&ivl, ivt.sentinel, func(n *intervalNode) bool { return ivv(&n.iv) })
}
// find the exact node for a given interval
func (ivt *intervalTree) find(ivl Interval) *intervalNode {
ret := ivt.sentinel
f := func(n *intervalNode) bool {
if n.iv.Ivl != ivl {
return true
}
ret = n
return false
}
ivt.root.visit(&ivl, ivt.sentinel, f)
return ret
}
// Find gets the IntervalValue for the node matching the given interval
func (ivt *intervalTree) Find(ivl Interval) (ret *IntervalValue) {
n := ivt.find(ivl)
if n == ivt.sentinel {
return nil
}
return &n.iv
}
// Intersects returns true if there is some tree node intersecting the given interval.
func (ivt *intervalTree) Intersects(iv Interval) bool {
x := ivt.root
for x != ivt.sentinel && iv.Compare(&x.iv.Ivl) != 0 {
if x.left != ivt.sentinel && x.left.max.Compare(iv.Begin) > 0 {
x = x.left
} else {
x = x.right
}
}
return x != ivt.sentinel
}
// Contains returns true if the interval tree's keys cover the entire given interval.
func (ivt *intervalTree) Contains(ivl Interval) bool {
var maxEnd, minBegin Comparable
isContiguous := true
ivt.Visit(ivl, func(n *IntervalValue) bool {
if minBegin == nil {
minBegin = n.Ivl.Begin
maxEnd = n.Ivl.End
return true
}
if maxEnd.Compare(n.Ivl.Begin) < 0 {
isContiguous = false
return false
}
if n.Ivl.End.Compare(maxEnd) > 0 {
maxEnd = n.Ivl.End
}
return true
})
return isContiguous && minBegin != nil && maxEnd.Compare(ivl.End) >= 0 && minBegin.Compare(ivl.Begin) <= 0
}
// Stab returns a slice with all elements in the tree intersecting the interval.
func (ivt *intervalTree) Stab(iv Interval) (ivs []*IntervalValue) {
if ivt.count == 0 {
return nil
}
f := func(n *IntervalValue) bool { ivs = append(ivs, n); return true }
ivt.Visit(iv, f)
return ivs
}
// Union merges a given interval tree into the receiver.
func (ivt *intervalTree) Union(inIvt IntervalTree, ivl Interval) {
f := func(n *IntervalValue) bool {
ivt.Insert(n.Ivl, n.Val)
return true
}
inIvt.Visit(ivl, f)
}
type visitedInterval struct {
root Interval
left Interval
right Interval
color rbcolor
depth int
}
func (vi visitedInterval) String() string {
bd := new(strings.Builder)
bd.WriteString(fmt.Sprintf("root [%v,%v,%v], left [%v,%v], right [%v,%v], depth %d",
vi.root.Begin, vi.root.End, vi.color,
vi.left.Begin, vi.left.End,
vi.right.Begin, vi.right.End,
vi.depth,
))
return bd.String()
}
// visitLevel traverses tree in level order.
// used for testing
func (ivt *intervalTree) visitLevel() []visitedInterval {
if ivt.root == ivt.sentinel {
return nil
}
rs := make([]visitedInterval, 0, ivt.Len())
type pair struct {
node *intervalNode
depth int
}
queue := []pair{{ivt.root, 0}}
for len(queue) > 0 {
f := queue[0]
queue = queue[1:]
vi := visitedInterval{
root: f.node.iv.Ivl,
color: f.node.color(ivt.sentinel),
depth: f.depth,
}
if f.node.left != ivt.sentinel {
vi.left = f.node.left.iv.Ivl
queue = append(queue, pair{f.node.left, f.depth + 1})
}
if f.node.right != ivt.sentinel {
vi.right = f.node.right.iv.Ivl
queue = append(queue, pair{f.node.right, f.depth + 1})
}
rs = append(rs, vi)
}
return rs
}
type StringComparable string
func (s StringComparable) Compare(c Comparable) int {
sc := c.(StringComparable)
if s < sc {
return -1
}
if s > sc {
return 1
}
return 0
}
func NewStringInterval(begin, end string) Interval {
return Interval{StringComparable(begin), StringComparable(end)}
}
func NewStringPoint(s string) Interval {
return Interval{StringComparable(s), StringComparable(s + "\x00")}
}
// StringAffineComparable treats "" as > all other strings
type StringAffineComparable string
func (s StringAffineComparable) Compare(c Comparable) int {
sc := c.(StringAffineComparable)
if len(s) == 0 {
if len(sc) == 0 {
return 0
}
return 1
}
if len(sc) == 0 {
return -1
}
if s < sc {
return -1
}
if s > sc {
return 1
}
return 0
}
func NewStringAffineInterval(begin, end string) Interval {
return Interval{StringAffineComparable(begin), StringAffineComparable(end)}
}
func NewStringAffinePoint(s string) Interval {
return NewStringAffineInterval(s, s+"\x00")
}
func NewInt64Interval(a int64, b int64) Interval {
return Interval{Int64Comparable(a), Int64Comparable(b)}
}
func newInt64EmptyInterval() Interval {
return Interval{Begin: nil, End: nil}
}
func NewInt64Point(a int64) Interval {
return Interval{Int64Comparable(a), Int64Comparable(a + 1)}
}
type Int64Comparable int64
func (v Int64Comparable) Compare(c Comparable) int {
vc := c.(Int64Comparable)
cmp := v - vc
if cmp < 0 {
return -1
}
if cmp > 0 {
return 1
}
return 0
}
// BytesAffineComparable treats empty byte arrays as > all other byte arrays
type BytesAffineComparable []byte
func (b BytesAffineComparable) Compare(c Comparable) int {
bc := c.(BytesAffineComparable)
if len(b) == 0 {
if len(bc) == 0 {
return 0
}
return 1
}
if len(bc) == 0 {
return -1
}
return bytes.Compare(b, bc)
}
func NewBytesAffineInterval(begin, end []byte) Interval {
return Interval{BytesAffineComparable(begin), BytesAffineComparable(end)}
}
func NewBytesAffinePoint(b []byte) Interval {
be := make([]byte, len(b)+1)
copy(be, b)
be[len(b)] = 0
return NewBytesAffineInterval(b, be)
}
|