1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
//*****************************************************************************
// Shared message example
//*****************************************************************************
#include "etl/shared_message.h"
#include "etl/message.h"
#include "etl/reference_counted_message_pool.h"
#include "etl/message_router.h"
#include "etl/message_bus.h"
#include "etl/fixed_sized_memory_block_allocator.h"
#include "etl/queue.h"
#include <iostream>
#include <atomic>
#include <string>
#include <mutex>
constexpr etl::message_router_id_t RouterId1 = 1U;
constexpr etl::message_router_id_t RouterId2 = 2U;
//*****************************************************************************
// Message1
//*****************************************************************************
struct Message1 : public etl::message<1>
{
Message1(std::string s_)
: s(s_)
{
}
std::string s;
};
//*****************************************************************************
// Message2
//*****************************************************************************
struct Message2 : public etl::message<2>
{
Message2(std::string s_)
: s(s_)
{
}
std::string s;
char data[100];
};
//*****************************************************************************
// Message3
//*****************************************************************************
struct Message3 : public etl::message<3>
{
Message3(std::string s_)
: s(s_)
{
}
std::string s;
};
//*****************************************************************************
// Prints the shared message
//*****************************************************************************
void Print(const std::string& prefix, etl::shared_message sm)
{
std::cout << prefix << " : Message Id = " << int(sm.get_message().get_message_id()) << "\n";
}
//*****************************************************************************
// This router accepts Message1, Message2 and Message3 types.
// If a shared message it received, it will be processed immediately.
//*****************************************************************************
class MessageRouter1 : public etl::message_router<MessageRouter1, Message1, Message2, Message3>
{
public:
//****************************************
MessageRouter1()
: message_router(RouterId1)
{
}
//****************************************
void on_receive(const Message1& msg)
{
std::cout << "MessageRouter1 : on_receive Message1 : " << msg.s << "\n";
}
//****************************************
void on_receive(const Message2& msg)
{
std::cout << "MessageRouter1 : on_receive Message2 : " << msg.s << "\n";
}
//****************************************
void on_receive(const Message3& msg)
{
std::cout << "MessageRouter1 : on_receive Message3 : " << msg.s << "\n";
}
//****************************************
void on_receive_unknown(const etl::imessage& msg)
{
std::cout << "MessageRouter1 : on_receive Unknown\n";
}
};
//*****************************************************************************
// This router accepts Message1, Message2 and Message3 types.
// If a shared message it received it will queue them.
// The messages will be processed when process_queue() is called.
//*****************************************************************************
class MessageRouter2 : public etl::message_router<MessageRouter2, Message1, Message2, Message3>
{
public:
using base_t = etl::message_router<MessageRouter2, Message1, Message2, Message3>;
//****************************************
MessageRouter2()
: message_router(RouterId2)
{
}
using base_t::receive;
//****************************************
// Overridden receive.
// Puts the shared messages into a queue.
void receive(etl::shared_message shared_msg) override
{
if (!queue.full())
{
Print("MessageRouter2 : Queueing shared message", shared_msg);
queue.push(shared_msg);
}
}
//****************************************
// Processes the queued shared messages.
void process_queue()
{
while (!queue.empty())
{
// Get the shared message from the queue.
etl::shared_message shared_msg = queue.front();
Print("MessageRouter2 : Process queued shared message", shared_msg);
// Send it to the base implementation for routing.
base_t::receive(shared_msg);
queue.pop();
}
}
//****************************************
void on_receive(const Message1& msg)
{
std::cout << "MessageRouter2 : on_receive Message1 : " << msg.s << "\n";
}
//****************************************
void on_receive(const Message2& msg)
{
std::cout << "MessageRouter2 : on_receive Message2 : " << msg.s << "\n";
}
//****************************************
void on_receive(const Message3& msg)
{
std::cout << "MessageRouter2 : on_receive Message3 : " << msg.s << "\n";
}
//****************************************
void on_receive_unknown(const etl::imessage& msg)
{
std::cout << "MessageRouter2 : on_receive Unknown\n";
}
private:
etl::queue<etl::shared_message, 10> queue;
};
//*****************************************************************************
// A message bus that can accommodate two subscribers.
//*****************************************************************************
struct Bus : public etl::message_bus<2U>
{
};
//*****************************************************************************
// Define the routers and bus.
//*****************************************************************************
MessageRouter1 router1;
MessageRouter2 router2;
Bus bus;
//*****************************************************************************
// The thread safe message pool. Uses atomic uint32_t for counting.
class MessagePool : public etl::reference_counted_message_pool<std::atomic_int32_t>
{
public:
MessagePool(etl::imemory_block_allocator& allocator)
: reference_counted_message_pool(allocator)
{
}
// Called before the memory block allocator is accessed.
void lock() override
{
mut.lock();
}
// Called after the memory block allocator has been accessed.
void unlock() override
{
mut.unlock();
}
private:
std::mutex mut;
};
//*****************************************************************************
// The memory block allocator that supplies the pool with memory
// to store reference counted messages in.
// The reference counted message parameters type for the messages we will use.
using message_parameters_small = MessagePool::pool_message_parameters<Message1, Message3>;
using message_parameters_large = MessagePool::pool_message_parameters<Message2>;
constexpr size_t max_size_small = message_parameters_small::max_size;
constexpr size_t max_alignment_small = message_parameters_small::max_alignment;
constexpr size_t max_size_large = message_parameters_large::max_size;
constexpr size_t max_alignment_large = message_parameters_large::max_alignment;
// A fixed memory block allocator for 4 items, using the parameters from the smaller messages.
etl::fixed_sized_memory_block_allocator<max_size_small, max_alignment_small, 4U> memory_allocator;
// A fixed memory block allocator for 4 items, using the parameters from the larger message.
etl::fixed_sized_memory_block_allocator<max_size_large, max_alignment_large, 4U> memory_allocator_successor;
//*****************************************************************************
// The pool that supplies reference counted messages.
// Uses memory_allocator as its allocator.
//*****************************************************************************
MessagePool message_pool(memory_allocator);
//*****************************************************************************
// A statically allocated reference counted message that is never allocated or released by a pool.
// Contains a copy of Message3("Three").
//*****************************************************************************
etl::persistent_message<Message3> pm3(Message3("Three"));
//*****************************************************************************
int main()
{
// If memory_allocator can't allocate, then try memory_allocator_successor.
memory_allocator.set_successor(memory_allocator_successor);
Message1 m1("One");
Message2 m2("Two");
etl::shared_message sm1(message_pool, m1); // Created a shared message by allocating a reference counted message from message_pool containing a copy of m1.
etl::shared_message sm2(message_pool, m2); // Created a shared message by allocating a reference counted message from message_pool containing a copy of m2.
etl::shared_message sm3(pm3); // Created a shared message from a statically allocated persistent message.
bus.subscribe(router1); // Subscribe router1 to the bus.
bus.subscribe(router2); // Subscribe router2 to the bus.
bus.receive(sm1); // Send sm1 to the bus for distribution to the routers.
bus.receive(sm2); // Send sm2 to the bus for distribution to the routers.
bus.receive(sm3); // Send sm3 to the bus for distribution to the routers.
router2.process_queue(); // Allow router2 to process its queued messages.
}
|