1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
|
///\file
/******************************************************************************
The MIT License(MIT)
Embedded Template Library.
https://github.com/ETLCPP/etl
https://www.etlcpp.com
Copyright(c) 2014 John Wellbelove, rlindeman
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
******************************************************************************/
#ifndef ETL_MULTISET_INCLUDED
#define ETL_MULTISET_INCLUDED
#include "platform.h"
#include "algorithm.h"
#include "iterator.h"
#include "functional.h"
#include "parameter_type.h"
#include "pool.h"
#include "exception.h"
#include "error_handler.h"
#include "debug_count.h"
#include "nullptr.h"
#include "type_traits.h"
#include "nth_type.h"
#include "utility.h"
#include "placement_new.h"
#include "initializer_list.h"
#include <stddef.h>
#include "private/minmax_push.h"
#include "private/comparator_is_transparent.h"
//*****************************************************************************
/// A multiset with the capacity defined at compile time.
///\ingroup containers
//*****************************************************************************
namespace etl
{
//***************************************************************************
/// Exception for the set.
///\ingroup set
//***************************************************************************
class multiset_exception : public etl::exception
{
public:
multiset_exception(string_type reason_, string_type file_name_, numeric_type line_number_)
: etl::exception(reason_, file_name_, line_number_)
{
}
};
//***************************************************************************
/// Full exception for the set.
///\ingroup set
//***************************************************************************
class multiset_full : public etl::multiset_exception
{
public:
multiset_full(string_type file_name_, numeric_type line_number_)
: etl::multiset_exception(ETL_ERROR_TEXT("multiset:full", ETL_MULTISET_FILE_ID"A"), file_name_, line_number_)
{
}
};
//***************************************************************************
/// Map out of bounds exception.
///\ingroup set
//***************************************************************************
class multiset_out_of_bounds : public etl::multiset_exception
{
public:
multiset_out_of_bounds(string_type file_name_, numeric_type line_number_)
: etl::multiset_exception(ETL_ERROR_TEXT("multiset:bounds", ETL_MULTISET_FILE_ID"B"), file_name_, line_number_)
{
}
};
//***************************************************************************
/// Iterator exception for the set.
///\ingroup set
//***************************************************************************
class multiset_iterator : public etl::multiset_exception
{
public:
multiset_iterator(string_type file_name_, numeric_type line_number_)
: etl::multiset_exception(ETL_ERROR_TEXT("multiset:iterator", ETL_MULTISET_FILE_ID"C"), file_name_, line_number_)
{
}
};
//***************************************************************************
/// The base class for all sets.
///\ingroup set
//***************************************************************************
class multiset_base
{
public:
typedef size_t size_type; ///< The type used for determining the size of set.
//*************************************************************************
/// Gets the size of the set.
//*************************************************************************
size_type size() const
{
return current_size;
}
//*************************************************************************
/// Gets the maximum possible size of the set.
//*************************************************************************
size_type max_size() const
{
return CAPACITY;
}
//*************************************************************************
/// Checks to see if the set is empty.
//*************************************************************************
bool empty() const
{
return current_size == 0;
}
//*************************************************************************
/// Checks to see if the set is full.
//*************************************************************************
bool full() const
{
return current_size == CAPACITY;
}
//*************************************************************************
/// Returns the capacity of the vector.
///\return The capacity of the vector.
//*************************************************************************
size_type capacity() const
{
return CAPACITY;
}
//*************************************************************************
/// Returns the remaining capacity.
///\return The remaining capacity.
//*************************************************************************
size_t available() const
{
return max_size() - size();
}
protected:
enum
{
kLeft,
kRight,
kNeither
};
//*************************************************************************
/// The node element in the multiset.
//*************************************************************************
struct Node
{
//***********************************************************************
/// Constructor
//***********************************************************************
Node() :
parent(ETL_NULLPTR),
weight(kNeither),
dir(kNeither)
{
children[0] = ETL_NULLPTR;
children[1] = ETL_NULLPTR;
}
//***********************************************************************
/// Marks the node as a leaf.
//***********************************************************************
void mark_as_leaf()
{
weight = kNeither;
dir = kNeither;
parent = ETL_NULLPTR;
children[0] = ETL_NULLPTR;
children[1] = ETL_NULLPTR;
}
Node* parent;
Node* children[2];
uint_least8_t weight;
uint_least8_t dir;
};
//*************************************************************************
/// The constructor that is called from derived classes.
//*************************************************************************
multiset_base(size_type max_size_)
: current_size(0)
, CAPACITY(max_size_)
, root_node(ETL_NULLPTR)
{
}
//*************************************************************************
/// Destructor.
//*************************************************************************
~multiset_base()
{
}
//*************************************************************************
/// Attach the provided node to the position provided
//*************************************************************************
void attach_node(Node* parent, Node*& position, Node& node)
{
// Mark new node as leaf on attach to tree at position provided
node.mark_as_leaf();
// Keep track of this node's parent
node.parent = parent;
// Add the node here
position = &node;
// One more.
++current_size;
}
//*************************************************************************
/// Detach the node at the position provided
//*************************************************************************
void detach_node(Node*& position, Node*& replacement)
{
// Make temporary copy of actual nodes involved because we might lose
// their references in the process (e.g. position is the same as
// replacement or replacement is a child of position)
Node* detached = position;
Node* swap = replacement;
// Update current position to point to swap (replacement) node first
position = swap;
// Update replacement node to point to child in opposite direction
// otherwise we might lose the other child of the swap node
replacement = swap->children[1 - swap->dir];
if (replacement != ETL_NULLPTR)
{
replacement->parent = swap->parent;
}
// Point swap node to detached node's parent, children and weight
swap->parent = detached->parent;
swap->children[kLeft] = detached->children[kLeft];
swap->children[kRight] = detached->children[kRight];
if (swap->children[kLeft])
{
swap->children[kLeft]->parent = swap;
}
if (swap->children[kRight])
{
swap->children[kRight]->parent = swap;
}
swap->weight = detached->weight;
}
//*************************************************************************
/// Balance the critical node at the position provided as needed
//*************************************************************************
void balance_node(Node*& critical_node)
{
// Step 1: Update weights for all children of the critical node up to the
// newly inserted node. This step is costly (in terms of traversing nodes
// multiple times during insertion) but doesn't require as much recursion
Node* weight_node = critical_node->children[critical_node->dir];
while (weight_node)
{
// Keep going until we reach a terminal node (dir == kNeither)
if (kNeither != weight_node->dir)
{
// Does this insert balance the previous weight factor value?
if (weight_node->weight == 1 - weight_node->dir)
{
weight_node->weight = kNeither;
}
else
{
weight_node->weight = weight_node->dir;
}
// Update weight factor node to point to next node
weight_node = weight_node->children[weight_node->dir];
}
else
{
// Stop loop, terminal node found
break;
}
} // while(weight_node)
// Step 2: Update weight for critical_node or rotate tree to balance node
if (kNeither == critical_node->weight)
{
critical_node->weight = critical_node->dir;
}
// If direction is different than weight, then it will now be balanced
else if (critical_node->dir != critical_node->weight)
{
critical_node->weight = kNeither;
}
// Rotate is required to balance the tree at the critical node
else
{
// If critical node matches child node direction then perform a two
// node rotate in the direction of the critical node
if (critical_node->weight == critical_node->children[critical_node->dir]->dir)
{
rotate_2node(critical_node, critical_node->dir);
}
// Otherwise perform a three node rotation in the direction of the
// critical node
else
{
rotate_3node(critical_node, critical_node->dir,
critical_node->children[critical_node->dir]->children[1 - critical_node->dir]->dir);
}
}
}
//*************************************************************************
/// Find the node whose key would go before all the other keys from the
/// position provided
//*************************************************************************
Node* find_limit_node(Node* position, const int8_t dir) const
{
// Something at this position and in the direction specified? keep going
Node* limit_node = position;
while (limit_node && limit_node->children[dir])
{
limit_node = limit_node->children[dir];
}
// Return the limit node position found
return limit_node;
}
//*************************************************************************
/// Find the next node in sequence from the node provided
//*************************************************************************
void next_node(Node*& position) const
{
if (position)
{
// Is there a tree on the right? then find the minimum of that tree
if (position->children[kRight])
{
// Return minimum node found
position = find_limit_node(position->children[kRight], kLeft);
}
// Otherwise find the parent of this node
else
{
// Start with current position as parent
Node* parent = position;
do {
// Update current position as previous parent
position = parent;
// Find parent of current position
parent = position->parent; // find_parent_node(root_node, position);
// Repeat while previous position was on right side of parent tree
} while (parent && parent->children[kRight] == position);
// Set parent node as the next position
position = parent;
}
}
}
//*************************************************************************
/// Find the next node in sequence from the node provided
//*************************************************************************
void next_node(const Node*& position) const
{
if (position)
{
// Is there a tree on the right? then find the minimum of that tree
if (position->children[kRight])
{
// Return minimum node found
position = find_limit_node(position->children[kRight], kLeft);
}
// Otherwise find the parent of this node
else
{
// Start with current position as parent
const Node* parent = position;
do {
// Update current position as previous parent
position = parent;
// Find parent of current position
parent = position->parent;
// Repeat while previous position was on right side of parent tree
} while (parent && parent->children[kRight] == position);
// Set parent node as the next position
position = parent;
}
}
}
//*************************************************************************
/// Find the previous node in sequence from the node provided
//*************************************************************************
void prev_node(Node*& position) const
{
// If starting at the terminal end, the previous node is the maximum node
// from the root
if (!position)
{
position = find_limit_node(root_node, kRight);
}
else
{
// Is there a tree on the left? then find the maximum of that tree
if (position->children[kLeft])
{
// Return maximum node found
position = find_limit_node(position->children[kLeft], kRight);
}
// Otherwise find the parent of this node
else
{
// Start with current position as parent
Node* parent = position;
do {
// Update current position as previous parent
position = parent;
// Find parent of current position
parent = position->parent;
// Repeat while previous position was on left side of parent tree
} while (parent && parent->children[kLeft] == position);
// Set parent node as the next position
position = parent;
}
}
}
//*************************************************************************
/// Find the previous node in sequence from the node provided
//*************************************************************************
void prev_node(const Node*& position) const
{
// If starting at the terminal end, the previous node is the maximum node
// from the root
if (!position)
{
position = find_limit_node(root_node, kRight);
}
else
{
// Is there a tree on the left? then find the maximum of that tree
if (position->children[kLeft])
{
// Return maximum node found
position = find_limit_node(position->children[kLeft], kRight);
}
// Otherwise find the parent of this node
else
{
// Start with current position as parent
const Node* parent = position;
do {
// Update current position as previous parent
position = parent;
// Find parent of current position
parent = position->parent;
// Repeat while previous position was on left side of parent tree
} while (parent && parent->children[kLeft] == position);
// Set parent node as the next position
position = parent;
}
}
}
//*************************************************************************
/// Rotate two nodes at the position provided the to balance the tree
//*************************************************************************
void rotate_2node(Node*& position, uint_least8_t dir)
{
// A C A B
// B C -> A E OR B C -> D A
// D E B D D E E C
// C (new position) becomes the root
// A (position) takes ownership of D as its children[kRight] child
// C (new position) takes ownership of A as its left child
// OR
// B (new position) becomes the root
// A (position) takes ownership of E as its left child
// B (new position) takes ownership of A as its right child
// Capture new root (either B or C depending on dir) and its parent
Node* new_root = position->children[dir];
// Replace position's previous child with new root's other child
position->children[dir] = new_root->children[1 - dir];
// Update new root's other child parent pointer
if (position->children[dir])
{
position->children[dir]->parent = position;
}
// New root's parent becomes current position's parent
new_root->parent = position->parent;
new_root->children[1 - dir] = position;
new_root->dir = 1 - dir;
// Clear weight factor from current position
position->weight = kNeither;
// Position's parent becomes new_root
position->parent = new_root;
position = new_root;
// Clear weight factor from new root
position->weight = kNeither;
}
//*************************************************************************
/// Rotate three nodes at the position provided the to balance the tree
//*************************************************************************
void rotate_3node(Node*& position, uint_least8_t dir, uint_least8_t third)
{
// --A-- --E-- --A-- --D--
// _B_ C -> B A OR B _C_ -> A C
// D E D F G C D E B F G E
// F G F G
// E (new position) becomes the root
// B (position) takes ownership of F as its left child
// A takes ownership of G as its right child
// OR
// D (new position) becomes the root
// A (position) takes ownership of F as its right child
// C takes ownership of G as its left child
// Capture new root (either E or D depending on dir)
Node* new_root = position->children[dir]->children[1 - dir];
// Set weight factor for B or C based on F or G existing and being a different than dir
position->children[dir]->weight = third != kNeither && third != dir ? dir : uint_least8_t(kNeither);
// Detach new root from its tree (replace with new roots child)
position->children[dir]->children[1 - dir] = new_root->children[dir];
// Update new roots child parent pointer
if (new_root->children[dir])
{
new_root->children[dir]->parent = position->children[dir];
}
// Attach current left tree to new root and update its parent
new_root->children[dir] = position->children[dir];
position->children[dir]->parent = new_root;
// Set weight factor for A based on F or G
position->weight = third != kNeither && third == dir ? 1 - dir : kNeither;
// Move new root's right tree to current roots left tree
position->children[dir] = new_root->children[1 - dir];
if (new_root->children[1 - dir])
{
new_root->children[1 - dir]->parent = position;
}
// Attach current root to new roots right tree and assume its parent
new_root->parent = position->parent;
new_root->children[1 - dir] = position;
new_root->dir = 1 - dir;
// Update current position's parent and replace with new root
position->parent = new_root;
position = new_root;
// Clear weight factor for new current position
position->weight = kNeither;
}
size_type current_size; ///< The number of the used nodes.
const size_type CAPACITY; ///< The maximum size of the set.
Node* root_node; ///< The node that acts as the multiset root.
ETL_DECLARE_DEBUG_COUNT;
};
//***************************************************************************
/// A templated base for all etl::multiset types.
///\ingroup set
//***************************************************************************
template <typename TKey, typename TCompare = ETL_OR_STD::less<TKey> >
class imultiset : public etl::multiset_base
{
public:
typedef TKey key_type;
typedef TKey value_type;
typedef TCompare key_compare;
typedef TCompare value_compare;
typedef value_type& reference;
typedef const value_type& const_reference;
#if ETL_USING_CPP11
typedef value_type&& rvalue_reference;
#endif
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef size_t size_type;
protected:
//*************************************************************************
/// The data node element in the multiset.
//*************************************************************************
struct Data_Node : public Node
{
explicit Data_Node(value_type value_)
: value(value_)
{
}
value_type value;
};
/// Defines the key value parameter type
typedef const TKey& key_parameter_t;
//*************************************************************************
/// How to compare node elements.
//*************************************************************************
bool node_comp(const Data_Node& node1, const Data_Node& node2) const
{
return compare(node1.value, node2.value);
}
bool node_comp(const Data_Node& node, key_parameter_t key) const
{
return compare(node.value, key);
}
bool node_comp(key_parameter_t key, const Data_Node& node) const
{
return compare(key, node.value);
}
#if ETL_USING_CPP11
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
bool node_comp(const Data_Node& node, const K& key) const
{
return compare(node.value, key);
}
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
bool node_comp(const K& key, const Data_Node& node) const
{
return compare(key, node.value);
}
#endif
private:
/// The pool of data nodes used in the multiset.
ipool* p_node_pool;
key_compare compare;
//*************************************************************************
/// Downcast a Node* to a Data_Node*
//*************************************************************************
static Data_Node* data_cast(Node* p_node)
{
return static_cast<Data_Node*>(p_node);
}
//*************************************************************************
/// Downcast a Node& to a Data_Node&
//*************************************************************************
static Data_Node& data_cast(Node& node)
{
return static_cast<Data_Node&>(node);
}
//*************************************************************************
/// Downcast a const Node* to a const Data_Node*
//*************************************************************************
static const Data_Node* data_cast(const Node* p_node)
{
return static_cast<const Data_Node*>(p_node);
}
//*************************************************************************
/// Downcast a const Node& to a const Data_Node&
//*************************************************************************
static const Data_Node& data_cast(const Node& node)
{
return static_cast<const Data_Node&>(node);
}
public:
//*************************************************************************
/// iterator.
//*************************************************************************
class iterator : public etl::iterator<ETL_OR_STD::bidirectional_iterator_tag, value_type>
{
public:
friend class imultiset;
friend class const_iterator;
iterator()
: p_multiset(ETL_NULLPTR)
, p_node(ETL_NULLPTR)
{
}
iterator(imultiset& multiset)
: p_multiset(&multiset)
, p_node(ETL_NULLPTR)
{
}
iterator(imultiset& multiset, Node* node)
: p_multiset(&multiset)
, p_node(node)
{
}
iterator(const iterator& other)
: p_multiset(other.p_multiset)
, p_node(other.p_node)
{
}
~iterator()
{
}
iterator& operator ++()
{
p_multiset->next_node(p_node);
return *this;
}
iterator operator ++(int)
{
iterator temp(*this);
p_multiset->next_node(p_node);
return temp;
}
iterator& operator --()
{
p_multiset->prev_node(p_node);
return *this;
}
iterator operator --(int)
{
iterator temp(*this);
p_multiset->prev_node(p_node);
return temp;
}
iterator& operator =(const iterator& other)
{
p_multiset = other.p_multiset;
p_node = other.p_node;
return *this;
}
reference operator *() const
{
return imultiset::data_cast(p_node)->value;
}
pointer operator &() const
{
return &(imultiset::data_cast(p_node)->value);
}
pointer operator ->() const
{
return &(imultiset::data_cast(p_node)->value);
}
friend bool operator == (const iterator& lhs, const iterator& rhs)
{
return lhs.p_multiset == rhs.p_multiset && lhs.p_node == rhs.p_node;
}
friend bool operator != (const iterator& lhs, const iterator& rhs)
{
return !(lhs == rhs);
}
private:
// Pointer to multiset associated with this iterator
imultiset* p_multiset;
// Pointer to the current node for this iterator
Node* p_node;
};
friend class iterator;
//*************************************************************************
/// const_iterator
//*************************************************************************
class const_iterator : public etl::iterator<ETL_OR_STD::bidirectional_iterator_tag, const value_type>
{
public:
friend class imultiset;
const_iterator()
: p_multiset(ETL_NULLPTR)
, p_node(ETL_NULLPTR)
{
}
const_iterator(const imultiset& multiset)
: p_multiset(&multiset)
, p_node(ETL_NULLPTR)
{
}
const_iterator(const imultiset& multiset, const Node* node)
: p_multiset(&multiset)
, p_node(node)
{
}
const_iterator(const typename imultiset::iterator& other)
: p_multiset(other.p_multiset)
, p_node(other.p_node)
{
}
const_iterator(const const_iterator& other)
: p_multiset(other.p_multiset)
, p_node(other.p_node)
{
}
~const_iterator()
{
}
const_iterator& operator ++()
{
p_multiset->next_node(p_node);
return *this;
}
const_iterator operator ++(int)
{
const_iterator temp(*this);
p_multiset->next_node(p_node);
return temp;
}
const_iterator& operator --()
{
p_multiset->prev_node(p_node);
return *this;
}
const_iterator operator --(int)
{
const_iterator temp(*this);
p_multiset->prev_node(p_node);
return temp;
}
const_iterator& operator =(const const_iterator& other)
{
p_multiset = other.p_multiset;
p_node = other.p_node;
return *this;
}
const_reference operator *() const
{
return imultiset::data_cast(p_node)->value;
}
const_pointer operator &() const
{
return imultiset::data_cast(p_node)->value;
}
const_pointer operator ->() const
{
return &(imultiset::data_cast(p_node)->value);
}
friend bool operator == (const const_iterator& lhs, const const_iterator& rhs)
{
return lhs.p_multiset == rhs.p_multiset && lhs.p_node == rhs.p_node;
}
friend bool operator != (const const_iterator& lhs, const const_iterator& rhs)
{
return !(lhs == rhs);
}
private:
// Convert to an iterator.
imultiset::iterator to_iterator() const
{
return imultiset::iterator(const_cast<imultiset&>(*p_multiset), const_cast<Node*>(p_node));
}
// Pointer to multiset associated with this iterator
const imultiset* p_multiset;
// Pointer to the current node for this iterator
const Node* p_node;
};
friend class const_iterator;
typedef typename etl::iterator_traits<iterator>::difference_type difference_type;
typedef ETL_OR_STD::reverse_iterator<iterator> reverse_iterator;
typedef ETL_OR_STD::reverse_iterator<const_iterator> const_reverse_iterator;
//*************************************************************************
/// Gets the beginning of the multiset.
//*************************************************************************
iterator begin()
{
return iterator(*this, find_limit_node(root_node, kLeft));
}
//*************************************************************************
/// Gets the beginning of the multiset.
//*************************************************************************
const_iterator begin() const
{
return const_iterator(*this, find_limit_node(root_node, kLeft));
}
//*************************************************************************
/// Gets the end of the multiset.
//*************************************************************************
iterator end()
{
return iterator(*this);
}
//*************************************************************************
/// Gets the end of the multiset.
//*************************************************************************
const_iterator end() const
{
return const_iterator(*this);
}
//*************************************************************************
/// Gets the beginning of the multiset.
//*************************************************************************
const_iterator cbegin() const
{
return const_iterator(*this, find_limit_node(root_node, kLeft));
}
//*************************************************************************
/// Gets the end of the multiset.
//*************************************************************************
const_iterator cend() const
{
return const_iterator(*this);
}
//*************************************************************************
/// Gets the reverse beginning of the list.
//*************************************************************************
reverse_iterator rbegin()
{
return reverse_iterator(iterator(*this));
}
//*************************************************************************
/// Gets the reverse beginning of the list.
//*************************************************************************
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(const_iterator(*this));
}
//*************************************************************************
/// Gets the reverse end of the list.
//*************************************************************************
reverse_iterator rend()
{
return reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
}
//*************************************************************************
/// Gets the reverse end of the list.
//*************************************************************************
const_reverse_iterator rend() const
{
return const_reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
}
//*************************************************************************
/// Gets the reverse beginning of the list.
//*************************************************************************
const_reverse_iterator crbegin() const
{
return const_reverse_iterator(const_iterator(*this));
}
//*************************************************************************
/// Gets the reverse end of the list.
//*************************************************************************
const_reverse_iterator crend() const
{
return const_reverse_iterator(const_iterator(*this, find_limit_node(root_node, kLeft)));
}
//*********************************************************************
/// Assigns values to the multiset.
/// If asserts or exceptions are enabled, emits set_full if the multiset does not have enough free space.
/// If asserts or exceptions are enabled, emits set_iterator if the iterators are reversed.
///\param first The iterator to the first element.
///\param last The iterator to the last element + 1.
//*********************************************************************
template <typename TIterator>
void assign(TIterator first, TIterator last)
{
initialise();
insert(first, last);
}
//*************************************************************************
/// Clears the multiset.
//*************************************************************************
void clear()
{
initialise();
}
//*********************************************************************
/// Counts the number of elements that contain the key specified.
///\param key The key to search for.
///\return 1 if element was found, 0 otherwise.
//*********************************************************************
size_type count(key_parameter_t key) const
{
return count_nodes(key);
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
size_type count(const K& key) const
{
return count_nodes(key);
}
#endif
//*************************************************************************
/// Returns two iterators with bounding (lower bound, upper bound) the key
/// provided
//*************************************************************************
ETL_OR_STD::pair<iterator, iterator> equal_range(key_parameter_t key)
{
return ETL_OR_STD::make_pair<iterator, iterator>(iterator(*this, find_lower_node(root_node, key)),
iterator(*this, find_upper_node(root_node, key)));
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
ETL_OR_STD::pair<iterator, iterator> equal_range(const K& key)
{
return ETL_OR_STD::make_pair<iterator, iterator>(iterator(*this, find_lower_node(root_node, key)),
iterator(*this, find_upper_node(root_node, key)));
}
#endif
//*************************************************************************
/// Returns two const iterators with bounding (lower bound, upper bound)
/// the key provided.
//*************************************************************************
ETL_OR_STD::pair<const_iterator, const_iterator> equal_range(key_parameter_t key) const
{
return ETL_OR_STD::make_pair<const_iterator, const_iterator>(const_iterator(*this, find_lower_node(root_node, key)),
const_iterator(*this, find_upper_node(root_node, key)));
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
ETL_OR_STD::pair<const_iterator, const_iterator> equal_range(key_parameter_t key) const
{
return ETL_OR_STD::make_pair<const_iterator, const_iterator>(const_iterator(*this, find_lower_node(root_node, key)),
const_iterator(*this, find_upper_node(root_node, key)));
}
#endif
//*************************************************************************
/// Erases the value at the specified position.
//*************************************************************************
iterator erase(iterator position)
{
// Remove the node by its node specified in iterator position
return erase(const_iterator(position));
}
//*************************************************************************
/// Erases the value at the specified position.
//*************************************************************************
iterator erase(const_iterator position)
{
// Cast const away from node to be removed. This is necessary because the
// STL definition of this method requires we provide the next node in the
// sequence as an iterator.
Node* node = const_cast<Node*>(position.p_node);
iterator next(*this, node);
++next;
// Remove the non-const node provided
remove_node(node);
return next;
}
//*************************************************************************
// Erase the key specified.
//*************************************************************************
size_type erase(key_parameter_t key_value)
{
// Number of nodes removed
size_type d = 0;
const_iterator lower(*this, find_lower_node(root_node, key_value));
const_iterator upper(*this, find_upper_node(root_node, key_value));
while (lower != upper)
{
// Increment count for each node removed
++d;
// Remove node using the other erase method
lower = erase(lower);
}
// Return the total count erased
return d;
}
//*************************************************************************
#if ETL_USING_CPP11
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
size_type erase(K&& key_value)
{
// Number of nodes removed
size_type d = 0;
const_iterator lower(*this, find_lower_node(root_node, etl::forward<K>(key_value)));
const_iterator upper(*this, find_upper_node(root_node, etl::forward<K>(key_value)));
while (lower != upper)
{
// Increment count for each node removed
++d;
// Remove node using the other erase method
lower = erase(lower);
}
// Return the total count erased
return d;
}
#endif
//*************************************************************************
/// Erases a range of elements.
//*************************************************************************
iterator erase(const_iterator first, const_iterator last)
{
iterator next;
while (first != last)
{
first = erase(first);
}
return last.to_iterator();
}
//*********************************************************************
/// Finds an element.
///\param key The key to search for.
///\return An iterator pointing to the element or end() if not found.
//*********************************************************************
iterator find(key_parameter_t key_value)
{
return iterator(*this, find_node(root_node, key_value));
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
iterator find(const K& k)
{
return iterator(*this, find_node(root_node, k));
}
#endif
//*********************************************************************
/// Finds an element.
///\param key The key to search for.
///\return An iterator pointing to the element or end() if not found.
//*********************************************************************
const_iterator find(key_parameter_t key_value) const
{
return const_iterator(*this, find_node(root_node, key_value));
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
const_iterator find(const K& k) const
{
return const_iterator(*this, find_node(root_node, k));
}
#endif
//*********************************************************************
/// Inserts a value to the multiset.
/// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
///\param value The value to insert.
//*********************************************************************
iterator insert(const_reference value)
{
// Default to no inserted node
Node* inserted_node = ETL_NULLPTR;
ETL_ASSERT(!full(), ETL_ERROR(multiset_full));
// Get next available free node
Data_Node& node = allocate_data_node(value);
// Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate)
inserted_node = insert_node(root_node, node);
// Insert node into tree and return iterator to new node location in tree
return iterator(*this, inserted_node);
}
#if ETL_USING_CPP11
//*********************************************************************
/// Inserts a value to the multiset.
/// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
///\param value The value to insert.
//*********************************************************************
iterator insert(rvalue_reference value)
{
// Default to no inserted node
Node* inserted_node = ETL_NULLPTR;
ETL_ASSERT(!full(), ETL_ERROR(multiset_full));
// Get next available free node
Data_Node& node = allocate_data_node(etl::move(value));
// Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate)
inserted_node = insert_node(root_node, node);
// Insert node into tree and return iterator to new node location in tree
return iterator(*this, inserted_node);
}
#endif
//*********************************************************************
/// Inserts a value to the multiset starting at the position recommended.
/// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
///\param position The position that would precede the value to insert.
///\param value The value to insert.
//*********************************************************************
iterator insert(const_iterator /*position*/, const_reference value)
{
// Ignore position provided and just do a normal insert
return insert(value);
}
#if ETL_USING_CPP11
//*********************************************************************
/// Inserts a value to the multiset starting at the position recommended.
/// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
///\param position The position that would precede the value to insert.
///\param value The value to insert.
//*********************************************************************
iterator insert(const_iterator /*position*/, rvalue_reference value)
{
// Ignore position provided and just do a normal insert
return insert(etl::move(value));
}
#endif
//*********************************************************************
/// Inserts a range of values to the multiset.
/// If asserts or exceptions are enabled, emits set_full if the multiset does not have enough free space.
///\param position The position to insert at.
///\param first The first element to add.
///\param last The last + 1 element to add.
//*********************************************************************
template <class TIterator>
void insert(TIterator first, TIterator last)
{
while (first != last)
{
insert(*first);
++first;
}
}
//*********************************************************************
/// Returns an iterator pointing to the first element in the container
/// whose key is not considered to go before the key provided or end()
/// if all keys are considered to go before the key provided.
///\return An iterator pointing to the element not before key or end()
//*********************************************************************
iterator lower_bound(key_parameter_t key)
{
return iterator(*this, find_lower_node(root_node, key));
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
iterator lower_bound(const K& key)
{
return iterator(*this, find_lower_node(root_node, key));
}
#endif
//*********************************************************************
/// Returns a const_iterator pointing to the first element in the
/// container whose key is not considered to go before the key provided
/// or end() if all keys are considered to go before the key provided.
///\return An const_iterator pointing to the element not before key or end()
//*********************************************************************
const_iterator lower_bound(key_parameter_t key) const
{
return const_iterator(*this, find_lower_node(root_node, key));
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
const_iterator lower_bound(const K& key) const
{
return const_iterator(*this, find_lower_node(root_node, key));
}
#endif
//*********************************************************************
/// Returns an iterator pointing to the first element in the container
/// whose key is not considered to go after the key provided or end()
/// if all keys are considered to go after the key provided.
///\return An iterator pointing to the element after key or end()
//*********************************************************************
iterator upper_bound(key_parameter_t key)
{
return iterator(*this, find_upper_node(root_node, key));
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
iterator upper_bound(const K& key)
{
return iterator(*this, find_upper_node(root_node, key));
}
#endif
//*********************************************************************
/// Returns a const_iterator pointing to the first element in the
/// container whose key is not considered to go after the key provided
/// or end() if all keys are considered to go after the key provided.
///\return An const_iterator pointing to the element after key or end()
//*********************************************************************
const_iterator upper_bound(key_parameter_t key) const
{
return const_iterator(*this, find_upper_node(root_node, key));
}
#if ETL_USING_CPP11
//*********************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
const_iterator upper_bound(const K& key) const
{
return const_iterator(*this, find_upper_node(root_node, key));
}
#endif
//*************************************************************************
/// Assignment operator.
//*************************************************************************
imultiset& operator = (const imultiset& rhs)
{
// Skip if doing self assignment
if (this != &rhs)
{
assign(rhs.cbegin(), rhs.cend());
}
return *this;
}
#if ETL_USING_CPP11
//*************************************************************************
/// Move assignment operator.
//*************************************************************************
imultiset& operator = (imultiset&& rhs)
{
// Skip if doing self assignment
if (this != &rhs)
{
clear();
typename etl::imultiset<TKey, TCompare>::iterator from = rhs.begin();
while (from != rhs.end())
{
typename etl::imultiset<TKey, TCompare>::iterator temp = from;
++temp;
this->insert(etl::move(*from));
from = temp;
}
}
return *this;
}
#endif
//*************************************************************************
/// How to compare two key elements.
//*************************************************************************
key_compare key_comp() const
{
return compare;
};
//*************************************************************************
/// How to compare two value elements.
//*************************************************************************
value_compare value_comp() const
{
return compare;
};
//*************************************************************************
/// Check if the set contains the key.
//*************************************************************************
bool contains(key_parameter_t key) const
{
return find(key) != end();
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
bool contains(const K& k) const
{
return find(k) != end();
}
#endif
protected:
//*************************************************************************
/// Constructor.
//*************************************************************************
imultiset(etl::ipool& node_pool, size_t max_size_)
: etl::multiset_base(max_size_)
, p_node_pool(&node_pool)
{
}
//*************************************************************************
/// Initialise the multiset.
//*************************************************************************
void initialise()
{
const_iterator item = begin();
while (item != end())
{
item = erase(item);
}
}
private:
//*************************************************************************
/// Allocate a Data_Node.
//*************************************************************************
Data_Node& allocate_data_node(const_reference value)
{
Data_Node* node = allocate_data_node();
::new ((void*)&node->value) value_type(value);
ETL_INCREMENT_DEBUG_COUNT;
return *node;
}
#if ETL_USING_CPP11
//*************************************************************************
/// Allocate a Data_Node.
//*************************************************************************
Data_Node& allocate_data_node(rvalue_reference value)
{
Data_Node* node = allocate_data_node();
::new ((void*)&node->value) value_type(etl::move(value));
ETL_INCREMENT_DEBUG_COUNT;
return *node;
}
#endif
//*************************************************************************
/// Create a Data_Node.
//*************************************************************************
Data_Node* allocate_data_node()
{
Data_Node* (etl::ipool::*func)() = &etl::ipool::allocate<Data_Node>;
return (p_node_pool->*func)();
}
//*************************************************************************
/// Destroy a Data_Node.
//*************************************************************************
void destroy_data_node(Data_Node& node)
{
node.value.~value_type();
p_node_pool->release(&node);
ETL_DECREMENT_DEBUG_COUNT;
}
//*************************************************************************
/// Count the nodes that match the key provided
//*************************************************************************
size_type count_nodes(key_parameter_t key) const
{
// Number of nodes that match the key provided result
size_type result = 0;
// Find lower and upper nodes for the key provided
const Node* lower = find_lower_node(root_node, key);
const Node* upper = find_upper_node(root_node, key);
// Loop from lower node to upper node and find nodes that match
while (lower != upper)
{
// Downcast found to Data_Node class for comparison and other operations
const Data_Node& data_node = imultiset::data_cast(*lower);
if (!node_comp(key, data_node) && !node_comp(data_node, key))
{
// This node matches the key provided
++result;
}
// Move on to the next node
next_node(lower);
}
// Return the number of nodes that match
return result;
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
size_type count_nodes(const K& key) const
{
// Number of nodes that match the key provided result
size_type result = 0;
// Find lower and upper nodes for the key provided
const Node* lower = find_lower_node(root_node, key);
const Node* upper = find_upper_node(root_node, key);
// Loop from lower node to upper node and find nodes that match
while (lower != upper)
{
// Downcast found to Data_Node class for comparison and other operations
const Data_Node& data_node = imultiset::data_cast(*lower);
if (!node_comp(key, data_node) && !node_comp(data_node, key))
{
// This node matches the key provided
++result;
}
// Move on to the next node
next_node(lower);
}
// Return the number of nodes that match
return result;
}
#endif
//*************************************************************************
/// Find the value matching the node provided
//*************************************************************************
Node* find_node(Node* position, key_parameter_t key)
{
Node* found = ETL_NULLPTR;
while (position)
{
// Downcast found to Data_Node class for comparison and other operations
Data_Node& data_node = imultiset::data_cast(*position);
// Compare the node value to the current position value
if (node_comp(key, data_node))
{
// Keep searching for the node on the left
position = position->children[kLeft];
}
else if (node_comp(data_node, key))
{
// Keep searching for the node on the right
position = position->children[kRight];
}
else
{
// We found one, keep looking for more on the left
found = position;
position = position->children[kLeft];
}
}
// Return the node found (might be ETL_NULLPTR)
return found;
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
Node* find_node(Node* position, const K& key)
{
Node* found = ETL_NULLPTR;
while (position)
{
// Downcast found to Data_Node class for comparison and other operations
Data_Node& data_node = imultiset::data_cast(*position);
// Compare the node value to the current position value
if (node_comp(key, data_node))
{
// Keep searching for the node on the left
position = position->children[kLeft];
}
else if (node_comp(data_node, key))
{
// Keep searching for the node on the right
position = position->children[kRight];
}
else
{
// We found one, keep looking for more on the left
found = position;
position = position->children[kLeft];
}
}
// Return the node found (might be ETL_NULLPTR)
return found;
}
#endif
//*************************************************************************
/// Find the value matching the node provided
//*************************************************************************
const Node* find_node(const Node* position, key_parameter_t key) const
{
const Node* found = ETL_NULLPTR;
while (position)
{
// Downcast found to Data_Node class for comparison and other operations
const Data_Node& data_node = imultiset::data_cast(*position);
// Compare the node value to the current position value
if (node_comp(key, data_node))
{
// Keep searching for the node on the left
position = position->children[kLeft];
}
else if (node_comp(data_node, key))
{
// Keep searching for the node on the right
position = position->children[kRight];
}
else
{
// We found one, keep looking for more on the left
found = position;
position = position->children[kLeft];
}
}
// Return the node found (might be ETL_NULLPTR)
return found;
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
const Node* find_node(const Node* position, const K& key) const
{
const Node* found = ETL_NULLPTR;
while (position)
{
// Downcast found to Data_Node class for comparison and other operations
const Data_Node& data_node = imultiset::data_cast(*position);
// Compare the node value to the current position value
if (node_comp(key, data_node))
{
// Keep searching for the node on the left
position = position->children[kLeft];
}
else if (node_comp(data_node, key))
{
// Keep searching for the node on the right
position = position->children[kRight];
}
else
{
// We found one, keep looking for more on the left
found = position;
position = position->children[kLeft];
}
}
// Return the node found (might be ETL_NULLPTR)
return found;
}
#endif
//*************************************************************************
/// Find the node whose key is not considered to go before the key provided
//*************************************************************************
Node* find_lower_node(Node* position, key_parameter_t key) const
{
// Something at this position? keep going
Node* lower_node = ETL_NULLPTR;
while (position)
{
// Downcast lower node to Data_Node reference for key comparisons
Data_Node& data_node = imultiset::data_cast(*position);
// Compare the key value to the current lower node key value
if (node_comp(key, data_node))
{
lower_node = position;
if (position->children[kLeft])
{
position = position->children[kLeft];
}
else
{
// Found lowest node
break;
}
}
else if (node_comp(data_node, key))
{
position = position->children[kRight];
}
else
{
// Make note of current position, but keep looking to left for more
lower_node = position;
position = position->children[kLeft];
}
}
// Return the lower_node position found
return lower_node;
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
Node* find_lower_node(Node* position, const K& key) const
{
// Something at this position? keep going
Node* lower_node = ETL_NULLPTR;
while (position)
{
// Downcast lower node to Data_Node reference for key comparisons
Data_Node& data_node = imultiset::data_cast(*position);
// Compare the key value to the current lower node key value
if (node_comp(key, data_node))
{
lower_node = position;
if (position->children[kLeft])
{
position = position->children[kLeft];
}
else
{
// Found lowest node
break;
}
}
else if (node_comp(data_node, key))
{
position = position->children[kRight];
}
else
{
// Make note of current position, but keep looking to left for more
lower_node = position;
position = position->children[kLeft];
}
}
// Return the lower_node position found
return lower_node;
}
#endif
//*************************************************************************
/// Find the node whose key is considered to go after the key provided
//*************************************************************************
Node* find_upper_node(Node* position, key_parameter_t key) const
{
// Keep track of parent of last upper node
Node* upper_node = ETL_NULLPTR;
// Has an equal node been found? start with no
bool found = false;
while (position)
{
// Downcast position to Data_Node reference for key comparisons
Data_Node& data_node = imultiset::data_cast(*position);
// Compare the key value to the current upper node key value
if (node_comp(data_node, key))
{
position = position->children[kRight];
}
else if (node_comp(key, data_node))
{
upper_node = position;
// If a node equal to key hasn't been found go left
if (!found && position->children[kLeft])
{
position = position->children[kLeft];
}
else
{
break;
}
}
else
{
// We found an equal item, break on next bigger item
found = true;
next_node(position);
}
}
// Return the upper node position found (might be ETL_NULLPTR)
return upper_node;
}
#if ETL_USING_CPP11
//*************************************************************************
template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
Node* find_upper_node(Node* position, const K& key) const
{
// Keep track of parent of last upper node
Node* upper_node = ETL_NULLPTR;
// Has an equal node been found? start with no
bool found = false;
while (position)
{
// Downcast position to Data_Node reference for key comparisons
Data_Node& data_node = imultiset::data_cast(*position);
// Compare the key value to the current upper node key value
if (node_comp(data_node, key))
{
position = position->children[kRight];
}
else if (node_comp(key, data_node))
{
upper_node = position;
// If a node equal to key hasn't been found go left
if (!found && position->children[kLeft])
{
position = position->children[kLeft];
}
else
{
break;
}
}
else
{
// We found an equal item, break on next bigger item
found = true;
next_node(position);
}
}
// Return the upper node position found (might be ETL_NULLPTR)
return upper_node;
}
#endif
//*************************************************************************
/// Insert a node.
//*************************************************************************
Node* insert_node(Node*& position, Data_Node& node)
{
// Find the location where the node belongs
Node* found = position;
// Was position provided not empty? then find where the node belongs
if (position)
{
// Find the critical parent node (default to ETL_NULLPTR)
Node* critical_parent_node = ETL_NULLPTR;
Node* critical_node = root_node;
while (found)
{
// Search for critical weight node (all nodes whose weight factor
// is set to kNeither (balanced)
if (kNeither != found->weight)
{
critical_node = found;
}
// Downcast found to Data_Node class for comparison and other operations
Data_Node& found_data_node = imultiset::data_cast(*found);
// Is the node provided to the left of the current position?
if (node_comp(node, found_data_node))
{
// Update direction taken to insert new node in parent node
found->dir = kLeft;
}
// Is the node provided to the right of the current position?
else if (node_comp(found_data_node, node))
{
// Update direction taken to insert new node in parent node
found->dir = kRight;
}
else
{
// Update direction taken to insert new node in parent (and
// duplicate) node to the right.
found->dir = kRight;
}
// Is there a child of this parent node?
if (found->children[found->dir])
{
// Will this node be the parent of the next critical node whose
// weight factor is set to kNeither (balanced)?
if (kNeither != found->children[found->dir]->weight)
{
critical_parent_node = found;
}
// Keep looking for empty spot to insert new node
found = found->children[found->dir];
}
else
{
// Attach node as a child of the parent node found
attach_node(found, found->children[found->dir], node);
// Return newly added node
found = found->children[found->dir];
// Exit loop
break;
}
}
// Was a critical node found that should be checked for balance?
if (critical_node)
{
if (critical_parent_node == ETL_NULLPTR && critical_node == root_node)
{
balance_node(root_node);
}
else if (critical_parent_node == ETL_NULLPTR && critical_node == position)
{
balance_node(position);
}
else
{
if (critical_parent_node != ETL_NULLPTR)
{
balance_node(critical_parent_node->children[critical_parent_node->dir]);
}
}
}
}
else
{
// Attach node to current position (which is assumed to be root)
attach_node(ETL_NULLPTR, position, node);
// Return newly added node at current position
found = position;
}
// Return the node found (might be ETL_NULLPTR)
return found;
}
//*************************************************************************
/// Remove the node specified from somewhere starting at the position
/// provided
//*************************************************************************
void remove_node(Node* node)
{
// If valid found node was provided then proceed with steps 1 through 5
if (node)
{
// Downcast found node provided to Data_Node class
Data_Node& data_node = imultiset::data_cast(*node);
// Keep track of node as found node
Node* found = node;
// Step 1: Mark path from node provided back to the root node using the
// internal temporary dir member value and using the parent pointer. This
// will allow us to avoid recursion in finding the node in a tree that
//might contain duplicate keys to be found.
while (node)
{
if (node->parent)
{
// Which direction does parent use to get to this node?
node->parent->dir =
node->parent->children[kLeft] == node ? kLeft : kRight;
// Make this nodes parent the next node
node = node->parent;
}
else
{
// Root node found - break loop
break;
}
}
// Step 2: Follow the path provided above until we reach the node
// provided and look for the balance node to start rebalancing the tree
// from (up to the replacement node that will be found in step 3)
Node* balance = root_node;
while (node)
{
// Did we reach the node provided originally (found) then go to step 3
if (node == found)
{
// Update the direction towards a replacement node at the found node
node->dir = node->children[kLeft] ? kLeft : kRight;
// Exit loop and proceed with step 3
break;
}
else
{
// If this nodes weight is kNeither or we are taking the shorter path
// to the next node and our sibling (on longer path) is balanced then
// we need to update the balance node to this node but all our
// ancestors will not require rebalancing
if ((node->weight == kNeither) ||
(node->weight == (1 - node->dir) &&
node->children[1 - node->dir]->weight == kNeither))
{
// Update balance node to this node
balance = node;
}
// Keep searching for found in the direction provided in step 1
node = node->children[node->dir];
}
}
// The value for node should not be ETL_NULLPTR at this point otherwise
// step 1 failed to provide the correct path to found. Step 5 will fail
// (probably subtly) if node should be ETL_NULLPTR at this point
// Step 3: Find the node (node should be equal to found at this point)
// to replace found with (might end up equal to found) while also
// continuing to update balance the same as in step 2 above.
while (node)
{
// Replacement node found if its missing a child in the replace->dir
// value set at the end of step 2 above
if (node->children[node->dir] == ETL_NULLPTR)
{
// Exit loop once node to replace found is determined
break;
}
// If this nodes weight is kNeither or we are taking the shorter path
// to the next node and our sibling (on longer path) is balanced then
// we need to update the balance node to this node but all our
// ancestors will not require rebalancing
if ((node->weight == kNeither) ||
(node->weight == (1 - node->dir) &&
node->children[1 - node->dir]->weight == kNeither))
{
// Update balance node to this node
balance = node;
}
// Keep searching for replacement node in the direction specified above
node = node->children[node->dir];
// Downcast node to Data_Node class for comparison operations
Data_Node& replace_data_node = imultiset::data_cast(*node);
// Compare the key provided to the replace data node key
if (node_comp(data_node, replace_data_node))
{
// Update the direction to the replace node
node->dir = kLeft;
}
else if (node_comp(replace_data_node, data_node))
{
// Update the direction to the replace node
node->dir = kRight;
}
else
{
// Update the direction to the replace node
node->dir = node->children[kLeft] ? kLeft : kRight;
}
} // while(node)
// Step 4: Update weights from balance to parent of node determined
// in step 3 above rotating (2 or 3 node rotations) as needed.
while (balance)
{
// Break when balance node reaches the parent of replacement node
if (balance->children[balance->dir] == ETL_NULLPTR)
{
break;
}
// If balance node is balanced already (kNeither) then just imbalance
// the node in the opposite direction of the node being removed
if (balance->weight == kNeither)
{
balance->weight = 1 - balance->dir;
}
// If balance node is imbalanced in the opposite direction of the
// node being removed then the node now becomes balanced
else if (balance->weight == balance->dir)
{
balance->weight = kNeither;
}
// Otherwise a rotation is required at this node
else
{
int weight = balance->children[1 - balance->dir]->weight;
// Perform a 3 node rotation if weight is same as balance->dir
if (weight == balance->dir)
{
// Is the root node being rebalanced (no parent)
if (balance->parent == ETL_NULLPTR)
{
rotate_3node(root_node, 1 - balance->dir,
balance->children[1 - balance->dir]->children[balance->dir]->weight);
}
else
{
rotate_3node(balance->parent->children[balance->parent->dir], 1 - balance->dir,
balance->children[1 - balance->dir]->children[balance->dir]->weight);
}
}
// Already balanced, rebalance and make it heavy in opposite
// direction of the node being removed
else if (weight == kNeither)
{
// Is the root node being rebalanced (no parent)
if (balance->parent == ETL_NULLPTR)
{
rotate_2node(root_node, 1 - balance->dir);
root_node->weight = balance->dir;
}
else
{
// Balance parent might change during rotate, keep local copy
// to old parent so its weight can be updated after the 2 node
// rotate is completed
Node* old_parent = balance->parent;
rotate_2node(balance->parent->children[balance->parent->dir], 1 - balance->dir);
old_parent->children[old_parent->dir]->weight = balance->dir;
}
// Update balance node weight in opposite direction of node removed
balance->weight = 1 - balance->dir;
}
// Rebalance and leave it balanced
else
{
// Is the root node being rebalanced (no parent)
if (balance->parent == ETL_NULLPTR)
{
rotate_2node(root_node, 1 - balance->dir);
}
else
{
rotate_2node(balance->parent->children[balance->parent->dir], 1 - balance->dir);
}
}
}
// Next balance node to consider
balance = balance->children[balance->dir];
} // while(balance)
// Step 5: Swap found with node (replacement)
if (found->parent)
{
// Handle traditional case
detach_node(found->parent->children[found->parent->dir],
node->parent->children[node->parent->dir]);
}
// Handle root node removal
else
{
// Valid replacement node for root node being removed?
if (node->parent)
{
detach_node(root_node, node->parent->children[node->parent->dir]);
}
else
{
// Found node and replacement node are both root node
detach_node(root_node, root_node);
}
}
// One less.
--current_size;
// Destroy the node detached above
destroy_data_node(data_node);
} // if(found)
}
// Disable copy construction.
imultiset(const imultiset&);
//*************************************************************************
/// Destructor.
//*************************************************************************
#if defined(ETL_POLYMORPHIC_MULTISET) || defined(ETL_POLYMORPHIC_CONTAINERS)
public:
virtual ~imultiset()
{
}
#else
protected:
~imultiset()
{
}
#endif
};
//*************************************************************************
/// A templated multiset implementation that uses a fixed size buffer.
//*************************************************************************
template <typename TKey, const size_t MAX_SIZE_, typename TCompare = ETL_OR_STD::less<TKey> >
class multiset : public etl::imultiset<TKey, TCompare>
{
public:
static ETL_CONSTANT size_t MAX_SIZE = MAX_SIZE_;
//*************************************************************************
/// Default constructor.
//*************************************************************************
multiset()
: etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
{
this->initialise();
}
//*************************************************************************
/// Copy constructor.
//*************************************************************************
multiset(const multiset& other)
: etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
{
this->assign(other.cbegin(), other.cend());
}
#if ETL_USING_CPP11
//*************************************************************************
/// Move constructor.
//*************************************************************************
multiset(multiset&& other)
: etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
{
if (this != &other)
{
typename etl::imultiset<TKey, TCompare>::iterator from = other.begin();
while (from != other.end())
{
typename etl::imultiset<TKey, TCompare>::iterator temp = from;
++temp;
this->insert(etl::move(*from));
from = temp;
}
}
}
#endif
//*************************************************************************
/// Constructor, from an iterator range.
///\tparam TIterator The iterator type.
///\param first The iterator to the first element.
///\param last The iterator to the last element + 1.
//*************************************************************************
template <typename TIterator>
multiset(TIterator first, TIterator last)
: etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
{
this->assign(first, last);
}
#if ETL_HAS_INITIALIZER_LIST
//*************************************************************************
/// Constructor, from an initializer_list.
//*************************************************************************
multiset(std::initializer_list<typename etl::imultiset<TKey, TCompare>::value_type> init)
: etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
{
this->assign(init.begin(), init.end());
}
#endif
//*************************************************************************
/// Destructor.
//*************************************************************************
~multiset()
{
this->initialise();
}
//*************************************************************************
/// Assignment operator.
//*************************************************************************
multiset& operator = (const multiset& rhs)
{
// Skip if doing self assignment
if (this != &rhs)
{
this->assign(rhs.cbegin(), rhs.cend());
}
return *this;
}
#if ETL_USING_CPP11
//*************************************************************************
/// Move assignment operator.
//*************************************************************************
multiset& operator = (multiset&& rhs)
{
if (this != &rhs)
{
this->clear();
typename etl::imultiset<TKey, TCompare>::iterator from = rhs.begin();
while (from != rhs.end())
{
this->insert(etl::move(*from));
++from;
}
}
return *this;
}
#endif
private:
/// The pool of data nodes used for the multiset.
etl::pool<typename etl::imultiset<TKey, TCompare>::Data_Node, MAX_SIZE> node_pool;
};
template <typename TKey, const size_t MAX_SIZE_, typename TCompare>
ETL_CONSTANT size_t multiset<TKey, MAX_SIZE_, TCompare>::MAX_SIZE;
//*************************************************************************
/// Template deduction guides.
//*************************************************************************
#if ETL_USING_CPP17 && ETL_HAS_INITIALIZER_LIST
template <typename... T>
multiset(T...) -> multiset<etl::nth_type_t<0, T...>, sizeof...(T)>;
#endif
//*************************************************************************
/// Make
//*************************************************************************
#if ETL_USING_CPP11 && ETL_HAS_INITIALIZER_LIST
template <typename TKey, typename TKeyCompare = etl::less<TKey>, typename... T>
constexpr auto make_multiset(T&&... keys) -> etl::multiset<TKey, sizeof...(T), TKeyCompare>
{
return { etl::forward<T>(keys)... };
}
#endif
//***************************************************************************
/// Equal operator.
///\param lhs Reference to the first lookup.
///\param rhs Reference to the second lookup.
///\return <b>true</b> if the arrays are equal, otherwise <b>false</b>
///\ingroup lookup
//***************************************************************************
template <typename TKey, typename TCompare>
bool operator ==(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
{
return (lhs.size() == rhs.size()) && ETL_OR_STD::equal(lhs.begin(), lhs.end(), rhs.begin());
}
//***************************************************************************
/// Not equal operator.
///\param lhs Reference to the first lookup.
///\param rhs Reference to the second lookup.
///\return <b>true</b> if the arrays are not equal, otherwise <b>false</b>
///\ingroup lookup
//***************************************************************************
template <typename TKey, typename TCompare>
bool operator !=(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
{
return !(lhs == rhs);
}
//*************************************************************************
/// Less than operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically less than the
/// second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TCompare>
bool operator <(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
{
return ETL_OR_STD::lexicographical_compare(lhs.begin(),
lhs.end(),
rhs.begin(),
rhs.end());
}
//*************************************************************************
/// Greater than operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically greater than the
/// second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TCompare>
bool operator >(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
{
return (rhs < lhs);
}
//*************************************************************************
/// Less than or equal operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically less than or equal
/// to the second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TCompare>
bool operator <=(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
{
return !(lhs > rhs);
}
//*************************************************************************
/// Greater than or equal operator.
///\param lhs Reference to the first list.
///\param rhs Reference to the second list.
///\return <b>true</b> if the first list is lexicographically greater than or
/// equal to the second, otherwise <b>false</b>.
//*************************************************************************
template <typename TKey, typename TCompare>
bool operator >=(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
{
return !(lhs < rhs);
}
}
#include "private/minmax_pop.h"
#endif
|