File: multiset.h

package info (click to toggle)
etlcpp 20.39.4%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 18,232 kB
  • sloc: cpp: 245,721; ansic: 10,254; sh: 1,481; asm: 301; python: 281; makefile: 24
file content (2531 lines) | stat: -rw-r--r-- 89,240 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
///\file

/******************************************************************************
The MIT License(MIT)

Embedded Template Library.
https://github.com/ETLCPP/etl
https://www.etlcpp.com

Copyright(c) 2014 John Wellbelove, rlindeman

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
******************************************************************************/

#ifndef ETL_MULTISET_INCLUDED
#define ETL_MULTISET_INCLUDED

#include "platform.h"
#include "algorithm.h"
#include "iterator.h"
#include "functional.h"
#include "parameter_type.h"
#include "pool.h"
#include "exception.h"
#include "error_handler.h"
#include "debug_count.h"
#include "nullptr.h"
#include "type_traits.h"
#include "nth_type.h"
#include "utility.h"
#include "placement_new.h"
#include "initializer_list.h"

#include <stddef.h>

#include "private/minmax_push.h"
#include "private/comparator_is_transparent.h"

//*****************************************************************************
/// A multiset with the capacity defined at compile time.
///\ingroup containers
//*****************************************************************************

namespace etl
{
  //***************************************************************************
  /// Exception for the set.
  ///\ingroup set
  //***************************************************************************
  class multiset_exception : public etl::exception
  {
  public:

    multiset_exception(string_type reason_, string_type file_name_, numeric_type line_number_)
      : etl::exception(reason_, file_name_, line_number_)
    {
    }
  };

  //***************************************************************************
  /// Full exception for the set.
  ///\ingroup set
  //***************************************************************************
  class multiset_full : public etl::multiset_exception
  {
  public:

    multiset_full(string_type file_name_, numeric_type line_number_)
      : etl::multiset_exception(ETL_ERROR_TEXT("multiset:full", ETL_MULTISET_FILE_ID"A"), file_name_, line_number_)
    {
    }
  };

  //***************************************************************************
  /// Map out of bounds exception.
  ///\ingroup set
  //***************************************************************************
  class multiset_out_of_bounds : public etl::multiset_exception
  {
  public:

    multiset_out_of_bounds(string_type file_name_, numeric_type line_number_)
      : etl::multiset_exception(ETL_ERROR_TEXT("multiset:bounds", ETL_MULTISET_FILE_ID"B"), file_name_, line_number_)
    {
    }
  };

  //***************************************************************************
  /// Iterator exception for the set.
  ///\ingroup set
  //***************************************************************************
  class multiset_iterator : public etl::multiset_exception
  {
  public:

    multiset_iterator(string_type file_name_, numeric_type line_number_)
      : etl::multiset_exception(ETL_ERROR_TEXT("multiset:iterator", ETL_MULTISET_FILE_ID"C"), file_name_, line_number_)
    {
    }
  };

  //***************************************************************************
  /// The base class for all sets.
  ///\ingroup set
  //***************************************************************************
  class multiset_base
  {
  public:

    typedef size_t size_type; ///< The type used for determining the size of set.

    //*************************************************************************
    /// Gets the size of the set.
    //*************************************************************************
    size_type size() const
    {
      return current_size;
    }

    //*************************************************************************
    /// Gets the maximum possible size of the set.
    //*************************************************************************
    size_type max_size() const
    {
      return CAPACITY;
    }

    //*************************************************************************
    /// Checks to see if the set is empty.
    //*************************************************************************
    bool empty() const
    {
      return current_size == 0;
    }

    //*************************************************************************
    /// Checks to see if the set is full.
    //*************************************************************************
    bool full() const
    {
      return current_size == CAPACITY;
    }

    //*************************************************************************
    /// Returns the capacity of the vector.
    ///\return The capacity of the vector.
    //*************************************************************************
    size_type capacity() const
    {
      return CAPACITY;
    }

    //*************************************************************************
    /// Returns the remaining capacity.
    ///\return The remaining capacity.
    //*************************************************************************
    size_t available() const
    {
      return max_size() - size();
    }

  protected:

    enum
    {
      kLeft,
      kRight,
      kNeither
    };

    //*************************************************************************
    /// The node element in the multiset.
    //*************************************************************************
    struct Node
    {
      //***********************************************************************
      /// Constructor
      //***********************************************************************
      Node() :
        parent(ETL_NULLPTR),
        weight(kNeither),
        dir(kNeither)
      {
        children[0] = ETL_NULLPTR;
        children[1] = ETL_NULLPTR;
      }

      //***********************************************************************
      /// Marks the node as a leaf.
      //***********************************************************************
      void mark_as_leaf()
      {
        weight = kNeither;
        dir = kNeither;
        parent = ETL_NULLPTR;
        children[0] = ETL_NULLPTR;
        children[1] = ETL_NULLPTR;
      }

      Node* parent;
      Node* children[2];
      uint_least8_t weight;
      uint_least8_t dir;
    };

    //*************************************************************************
    /// The constructor that is called from derived classes.
    //*************************************************************************
    multiset_base(size_type max_size_)
      : current_size(0)
      , CAPACITY(max_size_)
      , root_node(ETL_NULLPTR)
    {
    }

    //*************************************************************************
    /// Destructor.
    //*************************************************************************
    ~multiset_base()
    {
    }

    //*************************************************************************
    /// Attach the provided node to the position provided
    //*************************************************************************
    void attach_node(Node* parent, Node*& position, Node& node)
    {
      // Mark new node as leaf on attach to tree at position provided
      node.mark_as_leaf();

      // Keep track of this node's parent
      node.parent = parent;

      // Add the node here
      position = &node;

      // One more.
      ++current_size;
    }

    //*************************************************************************
    /// Detach the node at the position provided
    //*************************************************************************
    void detach_node(Node*& position, Node*& replacement)
    {
      // Make temporary copy of actual nodes involved because we might lose
      // their references in the process (e.g. position is the same as
      // replacement or replacement is a child of position)
      Node* detached = position;
      Node* swap = replacement;

      // Update current position to point to swap (replacement) node first
      position = swap;

      // Update replacement node to point to child in opposite direction
      // otherwise we might lose the other child of the swap node
      replacement = swap->children[1 - swap->dir];

      if (replacement != ETL_NULLPTR)
      {
        replacement->parent = swap->parent;
      }

      // Point swap node to detached node's parent, children and weight
      swap->parent = detached->parent;
      swap->children[kLeft] = detached->children[kLeft];
      swap->children[kRight] = detached->children[kRight];
      if (swap->children[kLeft])
      {
        swap->children[kLeft]->parent = swap;
      }
      if (swap->children[kRight])
      {
        swap->children[kRight]->parent = swap;
      }
      swap->weight = detached->weight;
    }

    //*************************************************************************
    /// Balance the critical node at the position provided as needed
    //*************************************************************************
    void balance_node(Node*& critical_node)
    {
      // Step 1: Update weights for all children of the critical node up to the
      // newly inserted node. This step is costly (in terms of traversing nodes
      // multiple times during insertion) but doesn't require as much recursion
      Node* weight_node = critical_node->children[critical_node->dir];
      while (weight_node)
      {
        // Keep going until we reach a terminal node (dir == kNeither)
        if (kNeither != weight_node->dir)
        {
          // Does this insert balance the previous weight factor value?
          if (weight_node->weight == 1 - weight_node->dir)
          {
            weight_node->weight = kNeither;
          }
          else
          {
            weight_node->weight = weight_node->dir;
          }

          // Update weight factor node to point to next node
          weight_node = weight_node->children[weight_node->dir];
        }
        else
        {
          // Stop loop, terminal node found
          break;
        }
      } // while(weight_node)

        // Step 2: Update weight for critical_node or rotate tree to balance node
      if (kNeither == critical_node->weight)
      {
        critical_node->weight = critical_node->dir;
      }
      // If direction is different than weight, then it will now be balanced
      else if (critical_node->dir != critical_node->weight)
      {
        critical_node->weight = kNeither;
      }
      // Rotate is required to balance the tree at the critical node
      else
      {
        // If critical node matches child node direction then perform a two
        // node rotate in the direction of the critical node
        if (critical_node->weight == critical_node->children[critical_node->dir]->dir)
        {
          rotate_2node(critical_node, critical_node->dir);
        }
        // Otherwise perform a three node rotation in the direction of the
        // critical node
        else
        {
          rotate_3node(critical_node, critical_node->dir,
            critical_node->children[critical_node->dir]->children[1 - critical_node->dir]->dir);
        }
      }
    }

    //*************************************************************************
    /// Find the node whose key would go before all the other keys from the
    /// position provided
    //*************************************************************************
    Node* find_limit_node(Node* position, const int8_t dir) const
    {
      // Something at this position and in the direction specified? keep going
      Node* limit_node = position;
      while (limit_node && limit_node->children[dir])
      {
        limit_node = limit_node->children[dir];
      }

      // Return the limit node position found
      return limit_node;
    }

    //*************************************************************************
    /// Find the next node in sequence from the node provided
    //*************************************************************************
    void next_node(Node*& position) const
    {
      if (position)
      {
        // Is there a tree on the right? then find the minimum of that tree
        if (position->children[kRight])
        {
          // Return minimum node found
          position = find_limit_node(position->children[kRight], kLeft);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = position->parent; // find_parent_node(root_node, position);
                                       // Repeat while previous position was on right side of parent tree
          } while (parent && parent->children[kRight] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Find the next node in sequence from the node provided
    //*************************************************************************
    void next_node(const Node*& position) const
    {
      if (position)
      {
        // Is there a tree on the right? then find the minimum of that tree
        if (position->children[kRight])
        {
          // Return minimum node found
          position = find_limit_node(position->children[kRight], kLeft);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          const Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = position->parent;
            // Repeat while previous position was on right side of parent tree
          } while (parent && parent->children[kRight] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Find the previous node in sequence from the node provided
    //*************************************************************************
    void prev_node(Node*& position) const
    {
      // If starting at the terminal end, the previous node is the maximum node
      // from the root
      if (!position)
      {
        position = find_limit_node(root_node, kRight);
      }
      else
      {
        // Is there a tree on the left? then find the maximum of that tree
        if (position->children[kLeft])
        {
          // Return maximum node found
          position = find_limit_node(position->children[kLeft], kRight);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = position->parent;
            // Repeat while previous position was on left side of parent tree
          } while (parent && parent->children[kLeft] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Find the previous node in sequence from the node provided
    //*************************************************************************
    void prev_node(const Node*& position) const
    {
      // If starting at the terminal end, the previous node is the maximum node
      // from the root
      if (!position)
      {
        position = find_limit_node(root_node, kRight);
      }
      else
      {
        // Is there a tree on the left? then find the maximum of that tree
        if (position->children[kLeft])
        {
          // Return maximum node found
          position = find_limit_node(position->children[kLeft], kRight);
        }
        // Otherwise find the parent of this node
        else
        {
          // Start with current position as parent
          const Node* parent = position;
          do {
            // Update current position as previous parent
            position = parent;
            // Find parent of current position
            parent = position->parent;
            // Repeat while previous position was on left side of parent tree
          } while (parent && parent->children[kLeft] == position);

          // Set parent node as the next position
          position = parent;
        }
      }
    }

    //*************************************************************************
    /// Rotate two nodes at the position provided the to balance the tree
    //*************************************************************************
    void rotate_2node(Node*& position, uint_least8_t dir)
    {
      //     A            C             A          B
      //   B   C   ->   A   E   OR    B   C  ->  D   A
      //      D E      B D           D E            E C
      // C (new position) becomes the root
      // A (position) takes ownership of D as its children[kRight] child
      // C (new position) takes ownership of A as its left child
      //                 OR
      // B (new position) becomes the root
      // A (position) takes ownership of E as its left child
      // B (new position) takes ownership of A as its right child

      // Capture new root (either B or C depending on dir) and its parent
      Node* new_root = position->children[dir];

      // Replace position's previous child with new root's other child
      position->children[dir] = new_root->children[1 - dir];
      // Update new root's other child parent pointer
      if (position->children[dir])
      {
        position->children[dir]->parent = position;
      }

      // New root's parent becomes current position's parent
      new_root->parent = position->parent;
      new_root->children[1 - dir] = position;
      new_root->dir = 1 - dir;

      // Clear weight factor from current position
      position->weight = kNeither;
      // Position's parent becomes new_root
      position->parent = new_root;
      position = new_root;
      // Clear weight factor from new root
      position->weight = kNeither;
    }

    //*************************************************************************
    /// Rotate three nodes at the position provided the to balance the tree
    //*************************************************************************
    void rotate_3node(Node*& position, uint_least8_t dir, uint_least8_t third)
    {
      //        --A--             --E--            --A--             --D--
      //      _B_    C    ->     B     A    OR    B    _C_   ->     A     C
      //     D   E              D F   G C             D   E        B F   G E
      //        F G                                  F G
      // E (new position) becomes the root
      // B (position) takes ownership of F as its left child
      // A takes ownership of G as its right child
      //                  OR
      // D (new position) becomes the root
      // A (position) takes ownership of F as its right child
      // C takes ownership of G as its left child

      // Capture new root (either E or D depending on dir)
      Node* new_root = position->children[dir]->children[1 - dir];
      // Set weight factor for B or C based on F or G existing and being a different than dir
      position->children[dir]->weight = third != kNeither && third != dir ? dir : uint_least8_t(kNeither);

      // Detach new root from its tree (replace with new roots child)
      position->children[dir]->children[1 - dir] = new_root->children[dir];
      // Update new roots child parent pointer
      if (new_root->children[dir])
      {
        new_root->children[dir]->parent = position->children[dir];
      }

      // Attach current left tree to new root and update its parent
      new_root->children[dir] = position->children[dir];
      position->children[dir]->parent = new_root;

      // Set weight factor for A based on F or G
      position->weight = third != kNeither && third == dir ? 1 - dir : kNeither;

      // Move new root's right tree to current roots left tree
      position->children[dir] = new_root->children[1 - dir];
      if (new_root->children[1 - dir])
      {
        new_root->children[1 - dir]->parent = position;
      }

      // Attach current root to new roots right tree and assume its parent
      new_root->parent = position->parent;
      new_root->children[1 - dir] = position;
      new_root->dir = 1 - dir;

      // Update current position's parent and replace with new root
      position->parent = new_root;
      position = new_root;
      // Clear weight factor for new current position
      position->weight = kNeither;
    }

    size_type current_size;   ///< The number of the used nodes.
    const size_type CAPACITY; ///< The maximum size of the set.
    Node* root_node;          ///< The node that acts as the multiset root.
    ETL_DECLARE_DEBUG_COUNT;
  };

  //***************************************************************************
  /// A templated base for all etl::multiset types.
  ///\ingroup set
  //***************************************************************************
  template <typename TKey, typename TCompare = ETL_OR_STD::less<TKey> >
  class imultiset : public etl::multiset_base
  {
  public:

    typedef TKey                key_type;
    typedef TKey                value_type;
    typedef TCompare            key_compare;
    typedef TCompare            value_compare;
    typedef value_type&         reference;
    typedef const value_type&   const_reference;
#if ETL_USING_CPP11
    typedef value_type&&        rvalue_reference;
#endif
    typedef value_type*         pointer;
    typedef const value_type*   const_pointer;
    typedef size_t              size_type;

  protected:

    //*************************************************************************
    /// The data node element in the multiset.
    //*************************************************************************
    struct Data_Node : public Node
    {
      explicit Data_Node(value_type value_)
        : value(value_)
      {
      }

      value_type value;
    };

    /// Defines the key value parameter type
    typedef const TKey& key_parameter_t;

    //*************************************************************************
    /// How to compare node elements.
    //*************************************************************************
    bool node_comp(const Data_Node& node1, const Data_Node& node2) const
    {
      return compare(node1.value, node2.value);
    }

    bool node_comp(const Data_Node& node, key_parameter_t key) const
    {
      return compare(node.value, key);
    }

    bool node_comp(key_parameter_t key, const Data_Node& node) const
    {
      return compare(key, node.value);
    }

#if ETL_USING_CPP11
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    bool node_comp(const Data_Node& node, const K& key) const
    {
      return compare(node.value, key);
    }

    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    bool node_comp(const K& key, const Data_Node& node) const
    {
      return compare(key, node.value);
    }
#endif

  private:

    /// The pool of data nodes used in the multiset.
    ipool* p_node_pool;

    key_compare compare;

    //*************************************************************************
    /// Downcast a Node* to a Data_Node*
    //*************************************************************************
    static Data_Node* data_cast(Node* p_node)
    {
      return static_cast<Data_Node*>(p_node);
    }

    //*************************************************************************
    /// Downcast a Node& to a Data_Node&
    //*************************************************************************
    static Data_Node& data_cast(Node& node)
    {
      return static_cast<Data_Node&>(node);
    }

    //*************************************************************************
    /// Downcast a const Node* to a const Data_Node*
    //*************************************************************************
    static const Data_Node* data_cast(const Node* p_node)
    {
      return static_cast<const Data_Node*>(p_node);
    }

    //*************************************************************************
    /// Downcast a const Node& to a const Data_Node&
    //*************************************************************************
    static const Data_Node& data_cast(const Node& node)
    {
      return static_cast<const Data_Node&>(node);
    }

  public:
    //*************************************************************************
    /// iterator.
    //*************************************************************************
    class iterator : public etl::iterator<ETL_OR_STD::bidirectional_iterator_tag, value_type>
    {
    public:

      friend class imultiset;
      friend class const_iterator;

      iterator()
        : p_multiset(ETL_NULLPTR)
        , p_node(ETL_NULLPTR)
      {
      }

      iterator(imultiset& multiset)
        : p_multiset(&multiset)
        , p_node(ETL_NULLPTR)
      {
      }

      iterator(imultiset& multiset, Node* node)
        : p_multiset(&multiset)
        , p_node(node)
      {
      }

      iterator(const iterator& other)
        : p_multiset(other.p_multiset)
        , p_node(other.p_node)
      {
      }

      ~iterator()
      {
      }

      iterator& operator ++()
      {
        p_multiset->next_node(p_node);
        return *this;
      }

      iterator operator ++(int)
      {
        iterator temp(*this);
        p_multiset->next_node(p_node);
        return temp;
      }

      iterator& operator --()
      {
        p_multiset->prev_node(p_node);
        return *this;
      }

      iterator operator --(int)
      {
        iterator temp(*this);
        p_multiset->prev_node(p_node);
        return temp;
      }

      iterator& operator =(const iterator& other)
      {
        p_multiset = other.p_multiset;
        p_node = other.p_node;
        return *this;
      }

      reference operator *() const
      {
        return imultiset::data_cast(p_node)->value;
      }

      pointer operator &() const
      {
        return &(imultiset::data_cast(p_node)->value);
      }

      pointer operator ->() const
      {
        return &(imultiset::data_cast(p_node)->value);
      }

      friend bool operator == (const iterator& lhs, const iterator& rhs)
      {
        return lhs.p_multiset == rhs.p_multiset && lhs.p_node == rhs.p_node;
      }

      friend bool operator != (const iterator& lhs, const iterator& rhs)
      {
        return !(lhs == rhs);
      }

    private:

      // Pointer to multiset associated with this iterator
      imultiset* p_multiset;

      // Pointer to the current node for this iterator
      Node* p_node;
    };

    friend class iterator;

    //*************************************************************************
    /// const_iterator
    //*************************************************************************
    class const_iterator : public etl::iterator<ETL_OR_STD::bidirectional_iterator_tag, const value_type>
    {
    public:

      friend class imultiset;

      const_iterator()
        : p_multiset(ETL_NULLPTR)
        , p_node(ETL_NULLPTR)
      {
      }

      const_iterator(const imultiset& multiset)
        : p_multiset(&multiset)
        , p_node(ETL_NULLPTR)
      {
      }

      const_iterator(const imultiset& multiset, const Node* node)
        : p_multiset(&multiset)
        , p_node(node)
      {
      }

      const_iterator(const typename imultiset::iterator& other)
        : p_multiset(other.p_multiset)
        , p_node(other.p_node)
      {
      }

      const_iterator(const const_iterator& other)
        : p_multiset(other.p_multiset)
        , p_node(other.p_node)
      {
      }

      ~const_iterator()
      {
      }

      const_iterator& operator ++()
      {
        p_multiset->next_node(p_node);
        return *this;
      }

      const_iterator operator ++(int)
      {
        const_iterator temp(*this);
        p_multiset->next_node(p_node);
        return temp;
      }

      const_iterator& operator --()
      {
        p_multiset->prev_node(p_node);
        return *this;
      }

      const_iterator operator --(int)
      {
        const_iterator temp(*this);
        p_multiset->prev_node(p_node);
        return temp;
      }

      const_iterator& operator =(const const_iterator& other)
      {
        p_multiset = other.p_multiset;
        p_node = other.p_node;
        return *this;
      }

      const_reference operator *() const
      {
        return imultiset::data_cast(p_node)->value;
      }

      const_pointer operator &() const
      {
        return imultiset::data_cast(p_node)->value;
      }

      const_pointer operator ->() const
      {
        return &(imultiset::data_cast(p_node)->value);
      }

      friend bool operator == (const const_iterator& lhs, const const_iterator& rhs)
      {
        return lhs.p_multiset == rhs.p_multiset && lhs.p_node == rhs.p_node;
      }

      friend bool operator != (const const_iterator& lhs, const const_iterator& rhs)
      {
        return !(lhs == rhs);
      }

    private:

      // Convert to an iterator.
      imultiset::iterator to_iterator() const
      {
        return imultiset::iterator(const_cast<imultiset&>(*p_multiset), const_cast<Node*>(p_node));
      }

      // Pointer to multiset associated with this iterator
      const imultiset* p_multiset;

      // Pointer to the current node for this iterator
      const Node* p_node;
    };

    friend class const_iterator;

    typedef typename etl::iterator_traits<iterator>::difference_type difference_type;

    typedef ETL_OR_STD::reverse_iterator<iterator>       reverse_iterator;
    typedef ETL_OR_STD::reverse_iterator<const_iterator> const_reverse_iterator;

    //*************************************************************************
    /// Gets the beginning of the multiset.
    //*************************************************************************
    iterator begin()
    {
      return iterator(*this, find_limit_node(root_node, kLeft));
    }

    //*************************************************************************
    /// Gets the beginning of the multiset.
    //*************************************************************************
    const_iterator begin() const
    {
      return const_iterator(*this, find_limit_node(root_node, kLeft));
    }

    //*************************************************************************
    /// Gets the end of the multiset.
    //*************************************************************************
    iterator end()
    {
      return iterator(*this);
    }

    //*************************************************************************
    /// Gets the end of the multiset.
    //*************************************************************************
    const_iterator end() const
    {
      return const_iterator(*this);
    }

    //*************************************************************************
    /// Gets the beginning of the multiset.
    //*************************************************************************
    const_iterator cbegin() const
    {
      return const_iterator(*this, find_limit_node(root_node, kLeft));
    }

    //*************************************************************************
    /// Gets the end of the multiset.
    //*************************************************************************
    const_iterator cend() const
    {
      return const_iterator(*this);
    }

    //*************************************************************************
    /// Gets the reverse beginning of the list.
    //*************************************************************************
    reverse_iterator rbegin()
    {
      return reverse_iterator(iterator(*this));
    }

    //*************************************************************************
    /// Gets the reverse beginning of the list.
    //*************************************************************************
    const_reverse_iterator rbegin() const
    {
      return const_reverse_iterator(const_iterator(*this));
    }

    //*************************************************************************
    /// Gets the reverse end of the list.
    //*************************************************************************
    reverse_iterator rend()
    {
      return reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
    }

    //*************************************************************************
    /// Gets the reverse end of the list.
    //*************************************************************************
    const_reverse_iterator rend() const
    {
      return const_reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
    }

    //*************************************************************************
    /// Gets the reverse beginning of the list.
    //*************************************************************************
    const_reverse_iterator crbegin() const
    {
      return const_reverse_iterator(const_iterator(*this));
    }

    //*************************************************************************
    /// Gets the reverse end of the list.
    //*************************************************************************
    const_reverse_iterator crend() const
    {
      return const_reverse_iterator(const_iterator(*this, find_limit_node(root_node, kLeft)));
    }

    //*********************************************************************
    /// Assigns values to the multiset.
    /// If asserts or exceptions are enabled, emits set_full if the multiset does not have enough free space.
    /// If asserts or exceptions are enabled, emits set_iterator if the iterators are reversed.
    ///\param first The iterator to the first element.
    ///\param last  The iterator to the last element + 1.
    //*********************************************************************
    template <typename TIterator>
    void assign(TIterator first, TIterator last)
    {
      initialise();
      insert(first, last);
    }

    //*************************************************************************
    /// Clears the multiset.
    //*************************************************************************
    void clear()
    {
      initialise();
    }

    //*********************************************************************
    /// Counts the number of elements that contain the key specified.
    ///\param key The key to search for.
    ///\return 1 if element was found, 0 otherwise.
    //*********************************************************************
    size_type count(key_parameter_t key) const
    {
      return count_nodes(key);
    } 
    
#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    size_type count(const K& key) const
    {
      return count_nodes(key);
    }
#endif

    //*************************************************************************
    /// Returns two iterators with bounding (lower bound, upper bound) the key
    /// provided
    //*************************************************************************
    ETL_OR_STD::pair<iterator, iterator> equal_range(key_parameter_t key)
    {
      return ETL_OR_STD::make_pair<iterator, iterator>(iterator(*this, find_lower_node(root_node, key)),
                                                       iterator(*this, find_upper_node(root_node, key)));
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    ETL_OR_STD::pair<iterator, iterator> equal_range(const K& key)
    {
      return ETL_OR_STD::make_pair<iterator, iterator>(iterator(*this, find_lower_node(root_node, key)),
                                                       iterator(*this, find_upper_node(root_node, key)));
    }
#endif

    //*************************************************************************
    /// Returns two const iterators with bounding (lower bound, upper bound)
    /// the key provided.
    //*************************************************************************
    ETL_OR_STD::pair<const_iterator, const_iterator> equal_range(key_parameter_t key) const
    {
      return ETL_OR_STD::make_pair<const_iterator, const_iterator>(const_iterator(*this, find_lower_node(root_node, key)),
                                                                   const_iterator(*this, find_upper_node(root_node, key)));
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    ETL_OR_STD::pair<const_iterator, const_iterator> equal_range(key_parameter_t key) const
    {
      return ETL_OR_STD::make_pair<const_iterator, const_iterator>(const_iterator(*this, find_lower_node(root_node, key)),
                                                                   const_iterator(*this, find_upper_node(root_node, key)));
    }
#endif

    //*************************************************************************
    /// Erases the value at the specified position.
    //*************************************************************************
    iterator erase(iterator position)
    {
      // Remove the node by its node specified in iterator position
      return erase(const_iterator(position));
    }

    //*************************************************************************
    /// Erases the value at the specified position.
    //*************************************************************************
    iterator erase(const_iterator position)
    {
      // Cast const away from node to be removed. This is necessary because the
      // STL definition of this method requires we provide the next node in the
      // sequence as an iterator.
      Node* node = const_cast<Node*>(position.p_node);
      iterator next(*this, node);
      ++next;

      // Remove the non-const node provided
      remove_node(node);

      return next;
    }

    //*************************************************************************
    // Erase the key specified.
    //*************************************************************************
    size_type erase(key_parameter_t key_value)
    {
      // Number of nodes removed
      size_type d = 0;
      const_iterator lower(*this, find_lower_node(root_node, key_value));
      const_iterator upper(*this, find_upper_node(root_node, key_value));
      while (lower != upper)
      {
        // Increment count for each node removed
        ++d;
        // Remove node using the other erase method
        lower = erase(lower);
      }

      // Return the total count erased
      return d;
    }

    //*************************************************************************
#if ETL_USING_CPP11
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    size_type erase(K&& key_value)
    {
      // Number of nodes removed
      size_type d = 0;
      const_iterator lower(*this, find_lower_node(root_node, etl::forward<K>(key_value)));
      const_iterator upper(*this, find_upper_node(root_node, etl::forward<K>(key_value)));
      while (lower != upper)
      {
        // Increment count for each node removed
        ++d;
        // Remove node using the other erase method
        lower = erase(lower);
      }

      // Return the total count erased
      return d;
    }
#endif

    //*************************************************************************
    /// Erases a range of elements.
    //*************************************************************************
    iterator erase(const_iterator first, const_iterator last)
    {
      iterator next;
      while (first != last)
      {
        first = erase(first);
      }

      return last.to_iterator();
    }

    //*********************************************************************
    /// Finds an element.
    ///\param key The key to search for.
    ///\return An iterator pointing to the element or end() if not found.
    //*********************************************************************
    iterator find(key_parameter_t key_value)
    {
      return iterator(*this, find_node(root_node, key_value));
    }

#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    iterator find(const K& k)
    {
      return iterator(*this, find_node(root_node, k));
    }
#endif

    //*********************************************************************
    /// Finds an element.
    ///\param key The key to search for.
    ///\return An iterator pointing to the element or end() if not found.
    //*********************************************************************
    const_iterator find(key_parameter_t key_value) const
    {
      return const_iterator(*this, find_node(root_node, key_value));
    }

#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    const_iterator find(const K& k) const
    {
      return const_iterator(*this, find_node(root_node, k));
    }
#endif

    //*********************************************************************
    /// Inserts a value to the multiset.
    /// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
    ///\param value    The value to insert.
    //*********************************************************************
    iterator insert(const_reference value)
    {
      // Default to no inserted node
      Node* inserted_node = ETL_NULLPTR;

      ETL_ASSERT(!full(), ETL_ERROR(multiset_full));

      // Get next available free node
      Data_Node& node = allocate_data_node(value);

      // Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate)
      inserted_node = insert_node(root_node, node);

      // Insert node into tree and return iterator to new node location in tree
      return iterator(*this, inserted_node);
    }

#if ETL_USING_CPP11
    //*********************************************************************
    /// Inserts a value to the multiset.
    /// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
    ///\param value    The value to insert.
    //*********************************************************************
    iterator insert(rvalue_reference value)
    {
      // Default to no inserted node
      Node* inserted_node = ETL_NULLPTR;

      ETL_ASSERT(!full(), ETL_ERROR(multiset_full));

      // Get next available free node
      Data_Node& node = allocate_data_node(etl::move(value));

      // Obtain the inserted node (might be ETL_NULLPTR if node was a duplicate)
      inserted_node = insert_node(root_node, node);

      // Insert node into tree and return iterator to new node location in tree
      return iterator(*this, inserted_node);
    }
#endif

    //*********************************************************************
    /// Inserts a value to the multiset starting at the position recommended.
    /// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
    ///\param position The position that would precede the value to insert.
    ///\param value    The value to insert.
    //*********************************************************************
    iterator insert(const_iterator /*position*/, const_reference value)
    {
      // Ignore position provided and just do a normal insert
      return insert(value);
    }

#if ETL_USING_CPP11
    //*********************************************************************
    /// Inserts a value to the multiset starting at the position recommended.
    /// If asserts or exceptions are enabled, emits set_full if the multiset is already full.
    ///\param position The position that would precede the value to insert.
    ///\param value    The value to insert.
    //*********************************************************************
    iterator insert(const_iterator /*position*/, rvalue_reference value)
    {
      // Ignore position provided and just do a normal insert
      return insert(etl::move(value));
    }
#endif

    //*********************************************************************
    /// Inserts a range of values to the multiset.
    /// If asserts or exceptions are enabled, emits set_full if the multiset does not have enough free space.
    ///\param position The position to insert at.
    ///\param first    The first element to add.
    ///\param last     The last + 1 element to add.
    //*********************************************************************
    template <class TIterator>
    void insert(TIterator first, TIterator last)
    {
      while (first != last)
      {
        insert(*first);
        ++first;
      }
    }

    //*********************************************************************
    /// Returns an iterator pointing to the first element in the container
    /// whose key is not considered to go before the key provided or end()
    /// if all keys are considered to go before the key provided.
    ///\return An iterator pointing to the element not before key or end()
    //*********************************************************************
    iterator lower_bound(key_parameter_t key)
    {
      return iterator(*this, find_lower_node(root_node, key));
    }

#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    iterator lower_bound(const K& key)
    {
      return iterator(*this, find_lower_node(root_node, key));
    }
#endif

    //*********************************************************************
    /// Returns a const_iterator pointing to the first element in the
    /// container whose key is not considered to go before the key provided
    /// or end() if all keys are considered to go before the key provided.
    ///\return An const_iterator pointing to the element not before key or end()
    //*********************************************************************
    const_iterator lower_bound(key_parameter_t key) const
    {
      return const_iterator(*this, find_lower_node(root_node, key));
    }

#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    const_iterator lower_bound(const K& key) const
    {
      return const_iterator(*this, find_lower_node(root_node, key));
    }
#endif

    //*********************************************************************
    /// Returns an iterator pointing to the first element in the container
    /// whose key is not considered to go after the key provided or end()
    /// if all keys are considered to go after the key provided.
    ///\return An iterator pointing to the element after key or end()
    //*********************************************************************
    iterator upper_bound(key_parameter_t key)
    {
      return iterator(*this, find_upper_node(root_node, key));
    }

#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    iterator upper_bound(const K& key)
    {
      return iterator(*this, find_upper_node(root_node, key));
    }
#endif

    //*********************************************************************
    /// Returns a const_iterator pointing to the first element in the
    /// container whose key is not considered to go after the key provided
    /// or end() if all keys are considered to go after the key provided.
    ///\return An const_iterator pointing to the element after key or end()
    //*********************************************************************
    const_iterator upper_bound(key_parameter_t key) const
    {
      return const_iterator(*this, find_upper_node(root_node, key));
    }

#if ETL_USING_CPP11
    //*********************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    const_iterator upper_bound(const K& key) const
    {
      return const_iterator(*this, find_upper_node(root_node, key));
    }
#endif

    //*************************************************************************
    /// Assignment operator.
    //*************************************************************************
    imultiset& operator = (const imultiset& rhs)
    {
      // Skip if doing self assignment
      if (this != &rhs)
      {
        assign(rhs.cbegin(), rhs.cend());
      }

      return *this;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    /// Move assignment operator.
    //*************************************************************************
    imultiset& operator = (imultiset&& rhs)
    {
      // Skip if doing self assignment
      if (this != &rhs)
      {
        clear();

        typename etl::imultiset<TKey, TCompare>::iterator from = rhs.begin();

        while (from != rhs.end())
        {
          typename etl::imultiset<TKey, TCompare>::iterator temp = from;
          ++temp;

          this->insert(etl::move(*from));
          from = temp;
        }
      }

      return *this;
    }
#endif

    //*************************************************************************
    /// How to compare two key elements.
    //*************************************************************************
    key_compare key_comp() const
    {
      return compare;
    };

    //*************************************************************************
    /// How to compare two value elements.
    //*************************************************************************
    value_compare value_comp() const
    {
      return compare;
    };

    //*************************************************************************
    /// Check if the set contains the key.
    //*************************************************************************
    bool contains(key_parameter_t key) const
    {
      return find(key) != end();
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    bool contains(const K& k) const
    {
      return find(k) != end();
    }
#endif

  protected:

    //*************************************************************************
    /// Constructor.
    //*************************************************************************
    imultiset(etl::ipool& node_pool, size_t max_size_)
      : etl::multiset_base(max_size_)
      , p_node_pool(&node_pool)
    {
    }

    //*************************************************************************
    /// Initialise the multiset.
    //*************************************************************************
    void initialise()
    {
      const_iterator item = begin();

      while (item != end())
      {
        item = erase(item);
      }
    }

  private:

    //*************************************************************************
    /// Allocate a Data_Node.
    //*************************************************************************
    Data_Node& allocate_data_node(const_reference value)
    {
      Data_Node* node = allocate_data_node();
      ::new ((void*)&node->value) value_type(value);
      ETL_INCREMENT_DEBUG_COUNT;
      return *node;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    /// Allocate a Data_Node.
    //*************************************************************************
    Data_Node& allocate_data_node(rvalue_reference value)
    {
      Data_Node* node = allocate_data_node();
      ::new ((void*)&node->value) value_type(etl::move(value));
      ETL_INCREMENT_DEBUG_COUNT;
      return *node;
    }
#endif

    //*************************************************************************
    /// Create a Data_Node.
    //*************************************************************************
    Data_Node* allocate_data_node()
    {
      Data_Node* (etl::ipool::*func)() = &etl::ipool::allocate<Data_Node>;
      return (p_node_pool->*func)();
    }

    //*************************************************************************
    /// Destroy a Data_Node.
    //*************************************************************************
    void destroy_data_node(Data_Node& node)
    {
      node.value.~value_type();
      p_node_pool->release(&node);
      ETL_DECREMENT_DEBUG_COUNT;
    }

    //*************************************************************************
    /// Count the nodes that match the key provided
    //*************************************************************************
    size_type count_nodes(key_parameter_t key) const
    {
      // Number of nodes that match the key provided result
      size_type result = 0;

      // Find lower and upper nodes for the key provided
      const Node* lower = find_lower_node(root_node, key);
      const Node* upper = find_upper_node(root_node, key);

      // Loop from lower node to upper node and find nodes that match
      while (lower != upper)
      {
        // Downcast found to Data_Node class for comparison and other operations
        const Data_Node& data_node = imultiset::data_cast(*lower);

        if (!node_comp(key, data_node) && !node_comp(data_node, key))
        {
          // This node matches the key provided
          ++result;
        }

        // Move on to the next node
        next_node(lower);
      }

      // Return the number of nodes that match
      return result;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    size_type count_nodes(const K& key) const
    {
      // Number of nodes that match the key provided result
      size_type result = 0;

      // Find lower and upper nodes for the key provided
      const Node* lower = find_lower_node(root_node, key);
      const Node* upper = find_upper_node(root_node, key);

      // Loop from lower node to upper node and find nodes that match
      while (lower != upper)
      {
        // Downcast found to Data_Node class for comparison and other operations
        const Data_Node& data_node = imultiset::data_cast(*lower);

        if (!node_comp(key, data_node) && !node_comp(data_node, key))
        {
          // This node matches the key provided
          ++result;
        }

        // Move on to the next node
        next_node(lower);
      }

      // Return the number of nodes that match
      return result;
    }
#endif

    //*************************************************************************
    /// Find the value matching the node provided
    //*************************************************************************
    Node* find_node(Node* position, key_parameter_t key)
    {
      Node* found = ETL_NULLPTR;
      while (position)
      {
        // Downcast found to Data_Node class for comparison and other operations
        Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the node value to the current position value
        if (node_comp(key, data_node))
        {
          // Keep searching for the node on the left
          position = position->children[kLeft];
        }
        else if (node_comp(data_node, key))
        {
          // Keep searching for the node on the right
          position = position->children[kRight];
        }
        else
        {
          // We found one, keep looking for more on the left
          found = position;
          position = position->children[kLeft];
        }
      }

      // Return the node found (might be ETL_NULLPTR)
      return found;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    Node* find_node(Node* position, const K& key)
    {
      Node* found = ETL_NULLPTR;
      while (position)
      {
        // Downcast found to Data_Node class for comparison and other operations
        Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the node value to the current position value
        if (node_comp(key, data_node))
        {
          // Keep searching for the node on the left
          position = position->children[kLeft];
        }
        else if (node_comp(data_node, key))
        {
          // Keep searching for the node on the right
          position = position->children[kRight];
        }
        else
        {
          // We found one, keep looking for more on the left
          found = position;
          position = position->children[kLeft];
        }
      }

      // Return the node found (might be ETL_NULLPTR)
      return found;
    }
#endif

    //*************************************************************************
    /// Find the value matching the node provided
    //*************************************************************************
    const Node* find_node(const Node* position, key_parameter_t key) const
    {
      const Node* found = ETL_NULLPTR;
      while (position)
      {
        // Downcast found to Data_Node class for comparison and other operations
        const Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the node value to the current position value
        if (node_comp(key, data_node))
        {
          // Keep searching for the node on the left
          position = position->children[kLeft];
        }
        else if (node_comp(data_node, key))
        {
          // Keep searching for the node on the right
          position = position->children[kRight];
        }
        else
        {
          // We found one, keep looking for more on the left
          found = position;
          position = position->children[kLeft];
        }
      }

      // Return the node found (might be ETL_NULLPTR)
      return found;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    const Node* find_node(const Node* position, const K& key) const
    {
      const Node* found = ETL_NULLPTR;
      while (position)
      {
        // Downcast found to Data_Node class for comparison and other operations
        const Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the node value to the current position value
        if (node_comp(key, data_node))
        {
          // Keep searching for the node on the left
          position = position->children[kLeft];
        }
        else if (node_comp(data_node, key))
        {
          // Keep searching for the node on the right
          position = position->children[kRight];
        }
        else
        {
          // We found one, keep looking for more on the left
          found = position;
          position = position->children[kLeft];
        }
      }

      // Return the node found (might be ETL_NULLPTR)
      return found;
    }
#endif

    //*************************************************************************
    /// Find the node whose key is not considered to go before the key provided
    //*************************************************************************
    Node* find_lower_node(Node* position, key_parameter_t key) const
    {
      // Something at this position? keep going
      Node* lower_node = ETL_NULLPTR;
      while (position)
      {
        // Downcast lower node to Data_Node reference for key comparisons
        Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the key value to the current lower node key value
        if (node_comp(key, data_node))
        {
          lower_node = position;
          if (position->children[kLeft])
          {
            position = position->children[kLeft];
          }
          else
          {
            // Found lowest node
            break;
          }
        }
        else if (node_comp(data_node, key))
        {
          position = position->children[kRight];
        }
        else
        {
          // Make note of current position, but keep looking to left for more
          lower_node = position;
          position = position->children[kLeft];
        }
      }

      // Return the lower_node position found
      return lower_node;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    Node* find_lower_node(Node* position, const K& key) const
    {
      // Something at this position? keep going
      Node* lower_node = ETL_NULLPTR;
      while (position)
      {
        // Downcast lower node to Data_Node reference for key comparisons
        Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the key value to the current lower node key value
        if (node_comp(key, data_node))
        {
          lower_node = position;
          if (position->children[kLeft])
          {
            position = position->children[kLeft];
          }
          else
          {
            // Found lowest node
            break;
          }
        }
        else if (node_comp(data_node, key))
        {
          position = position->children[kRight];
        }
        else
        {
          // Make note of current position, but keep looking to left for more
          lower_node = position;
          position = position->children[kLeft];
        }
      }

      // Return the lower_node position found
      return lower_node;
    }
#endif

    //*************************************************************************
    /// Find the node whose key is considered to go after the key provided
    //*************************************************************************
    Node* find_upper_node(Node* position, key_parameter_t key) const
    {
      // Keep track of parent of last upper node
      Node* upper_node = ETL_NULLPTR;
      // Has an equal node been found? start with no
      bool found = false;
      while (position)
      {
        // Downcast position to Data_Node reference for key comparisons
        Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the key value to the current upper node key value
        if (node_comp(data_node, key))
        {
          position = position->children[kRight];
        }
        else if (node_comp(key, data_node))
        {
          upper_node = position;
          // If a node equal to key hasn't been found go left
          if (!found && position->children[kLeft])
          {
            position = position->children[kLeft];
          }
          else
          {
            break;
          }
        }
        else
        {
          // We found an equal item, break on next bigger item
          found = true;
          next_node(position);
        }
      }

      // Return the upper node position found (might be ETL_NULLPTR)
      return upper_node;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    template <typename K, typename KC = TCompare, etl::enable_if_t<comparator_is_transparent<KC>::value, int> = 0>
    Node* find_upper_node(Node* position, const K& key) const
    {
      // Keep track of parent of last upper node
      Node* upper_node = ETL_NULLPTR;
      // Has an equal node been found? start with no
      bool found = false;
      while (position)
      {
        // Downcast position to Data_Node reference for key comparisons
        Data_Node& data_node = imultiset::data_cast(*position);
        // Compare the key value to the current upper node key value
        if (node_comp(data_node, key))
        {
          position = position->children[kRight];
        }
        else if (node_comp(key, data_node))
        {
          upper_node = position;
          // If a node equal to key hasn't been found go left
          if (!found && position->children[kLeft])
          {
            position = position->children[kLeft];
          }
          else
          {
            break;
          }
        }
        else
        {
          // We found an equal item, break on next bigger item
          found = true;
          next_node(position);
        }
      }

      // Return the upper node position found (might be ETL_NULLPTR)
      return upper_node;
    }
#endif

    //*************************************************************************
    /// Insert a node.
    //*************************************************************************
    Node* insert_node(Node*& position, Data_Node& node)
    {
      // Find the location where the node belongs
      Node* found = position;

      // Was position provided not empty? then find where the node belongs
      if (position)
      {
        // Find the critical parent node (default to ETL_NULLPTR)
        Node* critical_parent_node = ETL_NULLPTR;
        Node* critical_node = root_node;

        while (found)
        {
          // Search for critical weight node (all nodes whose weight factor
          // is set to kNeither (balanced)
          if (kNeither != found->weight)
          {
            critical_node = found;
          }

          // Downcast found to Data_Node class for comparison and other operations
          Data_Node& found_data_node = imultiset::data_cast(*found);

          // Is the node provided to the left of the current position?
          if (node_comp(node, found_data_node))
          {
            // Update direction taken to insert new node in parent node
            found->dir = kLeft;
          }
          // Is the node provided to the right of the current position?
          else if (node_comp(found_data_node, node))
          {
            // Update direction taken to insert new node in parent node
            found->dir = kRight;
          }
          else
          {
            // Update direction taken to insert new node in parent (and
            // duplicate) node to the right.
            found->dir = kRight;
          }

          // Is there a child of this parent node?
          if (found->children[found->dir])
          {
            // Will this node be the parent of the next critical node whose
            // weight factor is set to kNeither (balanced)?
            if (kNeither != found->children[found->dir]->weight)
            {
              critical_parent_node = found;
            }

            // Keep looking for empty spot to insert new node
            found = found->children[found->dir];
          }
          else
          {
            // Attach node as a child of the parent node found
            attach_node(found, found->children[found->dir], node);

            // Return newly added node
            found = found->children[found->dir];

            // Exit loop
            break;
          }
        }

        // Was a critical node found that should be checked for balance?
        if (critical_node)
        {
          if (critical_parent_node == ETL_NULLPTR && critical_node == root_node)
          {
            balance_node(root_node);
          }
          else if (critical_parent_node == ETL_NULLPTR && critical_node == position)
          {
            balance_node(position);
          }
          else
          {
            if (critical_parent_node != ETL_NULLPTR)
            {
              balance_node(critical_parent_node->children[critical_parent_node->dir]);
            }
          }
        }
      }
      else
      {
        // Attach node to current position (which is assumed to be root)
        attach_node(ETL_NULLPTR, position, node);

        // Return newly added node at current position
        found = position;
      }

      // Return the node found (might be ETL_NULLPTR)
      return found;
    }

    //*************************************************************************
    /// Remove the node specified from somewhere starting at the position
    /// provided
    //*************************************************************************
    void remove_node(Node* node)
    {
      // If valid found node was provided then proceed with steps 1 through 5
      if (node)
      {
        // Downcast found node provided to Data_Node class
        Data_Node& data_node = imultiset::data_cast(*node);

        // Keep track of node as found node
        Node* found = node;

        // Step 1: Mark path from node provided back to the root node using the
        // internal temporary dir member value and using the parent pointer. This
        // will allow us to avoid recursion in finding the node in a tree that
        //might contain duplicate keys to be found.
        while (node)
        {
          if (node->parent)
          {
            // Which direction does parent use to get to this node?
            node->parent->dir =
              node->parent->children[kLeft] == node ? kLeft : kRight;

            // Make this nodes parent the next node
            node = node->parent;
          }
          else
          {
            // Root node found - break loop
            break;
          }
        }

        // Step 2: Follow the path provided above until we reach the node
        // provided and look for the balance node to start rebalancing the tree
        // from (up to the replacement node that will be found in step 3)
        Node* balance = root_node;
        while (node)
        {
          // Did we reach the node provided originally (found) then go to step 3
          if (node == found)
          {
            // Update the direction towards a replacement node at the found node
            node->dir = node->children[kLeft] ? kLeft : kRight;

            // Exit loop and proceed with step 3
            break;
          }
          else
          {
            // If this nodes weight is kNeither or we are taking the shorter path
            // to the next node and our sibling (on longer path) is balanced then
            // we need to update the balance node to this node but all our
            // ancestors will not require rebalancing
            if ((node->weight == kNeither) ||
              (node->weight == (1 - node->dir) &&
                node->children[1 - node->dir]->weight == kNeither))
            {
              // Update balance node to this node
              balance = node;
            }

            // Keep searching for found in the direction provided in step 1
            node = node->children[node->dir];
          }
        }
        // The value for node should not be ETL_NULLPTR at this point otherwise
        // step 1 failed to provide the correct path to found. Step 5 will fail
        // (probably subtly) if node should be ETL_NULLPTR at this point

        // Step 3: Find the node (node should be equal to found at this point)
        // to replace found with (might end up equal to found) while also
        // continuing to update balance the same as in step 2 above.
        while (node)
        {
          // Replacement node found if its missing a child in the replace->dir
          // value set at the end of step 2 above
          if (node->children[node->dir] == ETL_NULLPTR)
          {
            // Exit loop once node to replace found is determined
            break;
          }

          // If this nodes weight is kNeither or we are taking the shorter path
          // to the next node and our sibling (on longer path) is balanced then
          // we need to update the balance node to this node but all our
          // ancestors will not require rebalancing
          if ((node->weight == kNeither) ||
            (node->weight == (1 - node->dir) &&
              node->children[1 - node->dir]->weight == kNeither))
          {
            // Update balance node to this node
            balance = node;
          }

          // Keep searching for replacement node in the direction specified above
          node = node->children[node->dir];

          // Downcast node to Data_Node class for comparison operations
          Data_Node& replace_data_node = imultiset::data_cast(*node);

          // Compare the key provided to the replace data node key
          if (node_comp(data_node, replace_data_node))
          {
            // Update the direction to the replace node
            node->dir = kLeft;
          }
          else if (node_comp(replace_data_node, data_node))
          {
            // Update the direction to the replace node
            node->dir = kRight;
          }
          else
          {
            // Update the direction to the replace node
            node->dir = node->children[kLeft] ? kLeft : kRight;
          }
        } // while(node)

          // Step 4: Update weights from balance to parent of node determined
          // in step 3 above rotating (2 or 3 node rotations) as needed.
        while (balance)
        {
          // Break when balance node reaches the parent of replacement node
          if (balance->children[balance->dir] == ETL_NULLPTR)
          {
            break;
          }

          // If balance node is balanced already (kNeither) then just imbalance
          // the node in the opposite direction of the node being removed
          if (balance->weight == kNeither)
          {
            balance->weight = 1 - balance->dir;
          }
          // If balance node is imbalanced in the opposite direction of the
          // node being removed then the node now becomes balanced
          else if (balance->weight == balance->dir)
          {
            balance->weight = kNeither;
          }
          // Otherwise a rotation is required at this node
          else
          {
            int weight = balance->children[1 - balance->dir]->weight;
            // Perform a 3 node rotation if weight is same as balance->dir
            if (weight == balance->dir)
            {
              // Is the root node being rebalanced (no parent)
              if (balance->parent == ETL_NULLPTR)
              {
                rotate_3node(root_node, 1 - balance->dir,
                  balance->children[1 - balance->dir]->children[balance->dir]->weight);
              }
              else
              {
                rotate_3node(balance->parent->children[balance->parent->dir], 1 - balance->dir,
                  balance->children[1 - balance->dir]->children[balance->dir]->weight);
              }
            }
            // Already balanced, rebalance and make it heavy in opposite
            // direction of the node being removed
            else if (weight == kNeither)
            {
              // Is the root node being rebalanced (no parent)
              if (balance->parent == ETL_NULLPTR)
              {
                rotate_2node(root_node, 1 - balance->dir);
                root_node->weight = balance->dir;
              }
              else
              {
                // Balance parent might change during rotate, keep local copy
                // to old parent so its weight can be updated after the 2 node
                // rotate is completed
                Node* old_parent = balance->parent;
                rotate_2node(balance->parent->children[balance->parent->dir], 1 - balance->dir);
                old_parent->children[old_parent->dir]->weight = balance->dir;
              }
              // Update balance node weight in opposite direction of node removed
              balance->weight = 1 - balance->dir;
            }
            // Rebalance and leave it balanced
            else
            {
              // Is the root node being rebalanced (no parent)
              if (balance->parent == ETL_NULLPTR)
              {
                rotate_2node(root_node, 1 - balance->dir);
              }
              else
              {
                rotate_2node(balance->parent->children[balance->parent->dir], 1 - balance->dir);
              }
            }
          }

          // Next balance node to consider
          balance = balance->children[balance->dir];
        } // while(balance)

          // Step 5: Swap found with node (replacement)
        if (found->parent)
        {
          // Handle traditional case
          detach_node(found->parent->children[found->parent->dir],
            node->parent->children[node->parent->dir]);
        }
        // Handle root node removal
        else
        {
          // Valid replacement node for root node being removed?
          if (node->parent)
          {
            detach_node(root_node, node->parent->children[node->parent->dir]);
          }
          else
          {
            // Found node and replacement node are both root node
            detach_node(root_node, root_node);
          }
        }

        // One less.
        --current_size;

        // Destroy the node detached above
        destroy_data_node(data_node);
      } // if(found)
    }

    // Disable copy construction.
    imultiset(const imultiset&);

    //*************************************************************************
    /// Destructor.
    //*************************************************************************
#if defined(ETL_POLYMORPHIC_MULTISET) || defined(ETL_POLYMORPHIC_CONTAINERS)
  public:
    virtual ~imultiset()
    {
    }
#else
  protected:
    ~imultiset()
    {
    }
#endif
  };

  //*************************************************************************
  /// A templated multiset implementation that uses a fixed size buffer.
  //*************************************************************************
  template <typename TKey, const size_t MAX_SIZE_, typename TCompare = ETL_OR_STD::less<TKey> >
  class multiset : public etl::imultiset<TKey, TCompare>
  {
  public:

    static ETL_CONSTANT size_t MAX_SIZE = MAX_SIZE_;

    //*************************************************************************
    /// Default constructor.
    //*************************************************************************
    multiset()
      : etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
    {
      this->initialise();
    }

    //*************************************************************************
    /// Copy constructor.
    //*************************************************************************
    multiset(const multiset& other)
      : etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
    {
      this->assign(other.cbegin(), other.cend());
    }

#if ETL_USING_CPP11
    //*************************************************************************
    /// Move constructor.
    //*************************************************************************
    multiset(multiset&& other)
      : etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
    {
      if (this != &other)
      {
        typename etl::imultiset<TKey, TCompare>::iterator from = other.begin();

        while (from != other.end())
        {
          typename etl::imultiset<TKey, TCompare>::iterator temp = from;
          ++temp;

          this->insert(etl::move(*from));
          from = temp;
        }
      }
    }
#endif

    //*************************************************************************
    /// Constructor, from an iterator range.
    ///\tparam TIterator The iterator type.
    ///\param first The iterator to the first element.
    ///\param last  The iterator to the last element + 1.
    //*************************************************************************
    template <typename TIterator>
    multiset(TIterator first, TIterator last)
      : etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
    {
      this->assign(first, last);
    }

#if ETL_HAS_INITIALIZER_LIST
    //*************************************************************************
    /// Constructor, from an initializer_list.
    //*************************************************************************
    multiset(std::initializer_list<typename etl::imultiset<TKey, TCompare>::value_type> init)
      : etl::imultiset<TKey, TCompare>(node_pool, MAX_SIZE)
    {
      this->assign(init.begin(), init.end());
    }
#endif

    //*************************************************************************
    /// Destructor.
    //*************************************************************************
    ~multiset()
    {
      this->initialise();
    }

    //*************************************************************************
    /// Assignment operator.
    //*************************************************************************
    multiset& operator = (const multiset& rhs)
    {
      // Skip if doing self assignment
      if (this != &rhs)
      {
        this->assign(rhs.cbegin(), rhs.cend());
      }

      return *this;
    }

#if ETL_USING_CPP11
    //*************************************************************************
    /// Move assignment operator.
    //*************************************************************************
    multiset& operator = (multiset&& rhs)
    {
      if (this != &rhs)
      {
        this->clear();

        typename etl::imultiset<TKey, TCompare>::iterator from = rhs.begin();

        while (from != rhs.end())
        {
          this->insert(etl::move(*from));
          ++from;
        }
      }

      return *this;
    }
#endif

  private:

    /// The pool of data nodes used for the multiset.
    etl::pool<typename etl::imultiset<TKey, TCompare>::Data_Node, MAX_SIZE> node_pool;
  };

  template <typename TKey, const size_t MAX_SIZE_, typename TCompare>
  ETL_CONSTANT size_t multiset<TKey, MAX_SIZE_, TCompare>::MAX_SIZE;

  //*************************************************************************
  /// Template deduction guides.
  //*************************************************************************
#if ETL_USING_CPP17 && ETL_HAS_INITIALIZER_LIST
  template <typename... T>
  multiset(T...) -> multiset<etl::nth_type_t<0, T...>, sizeof...(T)>;
#endif

  //*************************************************************************
  /// Make
  //*************************************************************************
#if ETL_USING_CPP11 && ETL_HAS_INITIALIZER_LIST
  template <typename TKey, typename TKeyCompare = etl::less<TKey>, typename... T>
  constexpr auto make_multiset(T&&... keys) -> etl::multiset<TKey, sizeof...(T), TKeyCompare>
  {
    return { etl::forward<T>(keys)... };
  }
#endif

  //***************************************************************************
  /// Equal operator.
  ///\param lhs Reference to the first lookup.
  ///\param rhs Reference to the second lookup.
  ///\return <b>true</b> if the arrays are equal, otherwise <b>false</b>
  ///\ingroup lookup
  //***************************************************************************
  template <typename TKey, typename TCompare>
  bool operator ==(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
  {
    return (lhs.size() == rhs.size()) && ETL_OR_STD::equal(lhs.begin(), lhs.end(), rhs.begin());
  }

  //***************************************************************************
  /// Not equal operator.
  ///\param lhs Reference to the first lookup.
  ///\param rhs Reference to the second lookup.
  ///\return <b>true</b> if the arrays are not equal, otherwise <b>false</b>
  ///\ingroup lookup
  //***************************************************************************
  template <typename TKey, typename TCompare>
  bool operator !=(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
  {
    return !(lhs == rhs);
  }

  //*************************************************************************
  /// Less than operator.
  ///\param lhs Reference to the first list.
  ///\param rhs Reference to the second list.
  ///\return <b>true</b> if the first list is lexicographically less than the
  /// second, otherwise <b>false</b>.
  //*************************************************************************
  template <typename TKey, typename TCompare>
  bool operator <(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
  {
    return ETL_OR_STD::lexicographical_compare(lhs.begin(),
      lhs.end(),
      rhs.begin(),
      rhs.end());
  }

  //*************************************************************************
  /// Greater than operator.
  ///\param lhs Reference to the first list.
  ///\param rhs Reference to the second list.
  ///\return <b>true</b> if the first list is lexicographically greater than the
  /// second, otherwise <b>false</b>.
  //*************************************************************************
  template <typename TKey, typename TCompare>
  bool operator >(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
  {
    return (rhs < lhs);
  }

  //*************************************************************************
  /// Less than or equal operator.
  ///\param lhs Reference to the first list.
  ///\param rhs Reference to the second list.
  ///\return <b>true</b> if the first list is lexicographically less than or equal
  /// to the second, otherwise <b>false</b>.
  //*************************************************************************
  template <typename TKey, typename TCompare>
  bool operator <=(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
  {
    return !(lhs > rhs);
  }

  //*************************************************************************
  /// Greater than or equal operator.
  ///\param lhs Reference to the first list.
  ///\param rhs Reference to the second list.
  ///\return <b>true</b> if the first list is lexicographically greater than or
  /// equal to the second, otherwise <b>false</b>.
  //*************************************************************************
  template <typename TKey, typename TCompare>
  bool operator >=(const etl::imultiset<TKey, TCompare>& lhs, const etl::imultiset<TKey, TCompare>& rhs)
  {
    return !(lhs < rhs);
  }
}

#include "private/minmax_pop.h"

#endif