1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
comment
Compute Bezier curves.
For a test try:
beziertest; bezier3dtest; nurbstest; beziersurftest; c1test;
Uses the following functions:
bezier, bezier3d, nurbs, beziersurface
endcomment
reset();
function bezier (p,t)
## Evaluate sum p_i B_{i,n}(t) the easy and direct way.
## p must be a k x n+1 matrix (n+1) points, dimension k.
n=cols(p)-1; i=nonzeros(t~=1);
if cols(i)>0; t[i]=0.9999*ones(size(i)); endif;
T=dup(t/(1-t),n)';
b=((1-t')^n)|(T*dup((n-(1:n)+1)/(1:n),cols(t)));
b=cumprod(b);
if (cols(i)>0); b[i]=zeros(1,n)|1; endif;
return p.b';
endfunction
function bezier2 (p,t)
## Evaluate sum p_i B_{i,n}(t) the complicated way.
## p_i is a k x n+1 matrix (n+1) points, dimension k.
n=cols(p)-1;
{T,N}=field(t,0:n);
b=bin(n,N)*T^N*(1-T)^(n-N);
return p.b;
endfunction
function gammatest (N=[10,20,50,100])
## Bezier curve approximating a circle
x=linspace(0,1,100);
linewidth(4); xplot(cos(2*pi*x),sin(2*pi*x)); linewidth(1);
loop 1 to cols(N);
n=N[#];
t=sqrt(linspace(0,1,n));
p=cos(2*pi*t)_sin(2*pi*t);
y=bezier(p,x);
hold on; plot(y[1],y[2]); hold off;
end;
return "";
endfunction
function gammatest1 (N=[10,20,50,100])
## Bezier curve approximating a circle
x=linspace(0,1,100);
linewidth(4); xplot(cos(2*pi*x),sin(2*pi*x)); linewidth(1);
loop 1 to cols(N);
n=N[#];
t=linspace(0,1,n);
p=cos(2*pi*t)_sin(2*pi*t);
y=bezier(p,x);
hold on; plot(y[1],y[2]); hold off;
end;
return "";
endfunction
function beziertest
## The user clicks some points, which form the Bezier polygon.
## The program draws the Bezier curve
setplot(-1,1,-1,1);
xplot(-1,1); hold on;
p=zeros(2,0);
title("Mark points (click here for end)");
repeat
m=mouse();
if (cols(p)>0) && (m[2]>1); break; endif;
p=p|m';
plot(p[1],p[2]);
end;
t=linspace(0,1,300);
s=bezier(p,t);
color(2); plot(s[1],s[2]);
hold off;
return "";
endfunction
function bezier3d (p)
## Shows a 3D Bezier curve and its polygon
t=linspace(0,1,300);
s=bezier(p,t);
f=getframe(p[1],p[2],p[3]);
h=holding(1); if !h; clg; endif;
co=color(2); frame1(f);
color(1); wire(p[1],p[2],p[3]);
color(3); wire(s[1],s[2],s[3]);
color(2); frame2(f);
color(co);
holding(h);
return "";
endfunction
function bezier3dtest (alpha=0.5,beta=0.5)
## Show a Beziercurve of dimension 3
p=[-1,-1,-1;0,-1,-1;1,0,0;1,1,0;0,1,1;-1,1,0]';
view(3,1.5,alpha,beta);
bezier3d(p);
return "";
endfunction
function nurbs (p,b,t)
## Cumpute a rational Bezier curve with control points p
## and weights b.
K=rows(p);
pp=(p*dup(b,K))_b;
s=bezier(pp,t);
return s[1:K]/(dup(s[K+1],K));
endfunction
function nurbstest
## Show some NURBS.
p=[-1,0;0,1;1,0]';
b=[1,1,1];
bb=2^(-5:5);
setplot(-1,1,0,2); clg; frame(); xplot();
hold on; linewidth(2); plot(p[1],p[2]); linewidth(1); hold off;
t=linspace(0,1,300);
loop 1 to cols(bb);
b[2]=bb[#];
s=nurbs(p,b,t);
hold on; plot(s[1],s[2]); hold off;
end;
return title("Quadratic NURBS");
endfunction
function beziersurface (x,y,z,n=20)
## Compute a Bezier surface. Return {bx,by,bz}.
t=linspace(0,0.99999,n);
n=rows(x)-1; i=nonzeros(t~=1);
T=dup(t/(1-t),n)';
b1=((1-t')^n)|(T*dup((n-(1:n)+1)/(1:n),cols(t)));
b1=cumprod(b1);
if (cols(i)>0); b1[i]=zeros(1,n)|1; endif;
n=cols(x)-1; i=nonzeros(t~=1);
T=dup(t/(1-t),n)';
b2=((1-t')^n)|(T*dup((n-(1:n)+1)/(1:n),cols(t)));
b2=cumprod(b2);
if (cols(i)>0); b2[i]=zeros(1,n)|1; endif;
return {b1.x.b2',b1.y.b2',b1.z.b2'};
endfunction
function beziersurftest
## Show a Bezier surface
{x,y}=field(-1:0.5:1,-1:0.5:1);
z=2*exp(-(0.5*x*x+y*y))-1;
view(2.5,1.5,0.5,0.5);
{xb,yb,zb}=beziersurface(x,y,z);
wi=wirecolor(1); linewidth(3);
wire(x[3:5,1:5],y[3:5,1:5],z[3:5,1:5]); hold on;
linewidth(1); wirecolor(wi);
solid(xb,yb,zb);
wi=wirecolor(1); linewidth(3);
wire(x[1:3,1:5],y[1:3,1:5],z[1:3,1:5]); hold on;
linewidth(1); wirecolor(wi);
hold off;
return title("A Bezier surface");
endfunction
function c1test
## Show how two bezier surfaces can be joined.
x1=dup(-0.5:0.25:0.5,5);
y1=dup([0,0,0,0,1],5);
z1=dup(1:0.25:2,5)';
{xb1,yb1,zb1}=beziersurface(x1,y1,z1,10);
x2=dup(-0.5:0.25:0.5,5);
y2=(-ones(4,5))_[0,0,0,0,0];
z2=dup(-1:0.25:0,5)';
{xb2,yb2,zb2}=beziersurface(x2,y2,z2,10);
x=zeros(5,5); y=x; z=x;
x[1]=x1[1]; x[2]=x[1]-(x1[2]-x1[1]);
x[5]=x2[5]; x[4]=x[5]+(x2[5]-x2[4]);
x[3]=(x[4]+x[2])/2;
y[1]=y1[1]; y[2]=y[1]-(y1[2]-y1[1]);
y[5]=y2[5]; y[4]=y[5]+(y2[5]-y2[4]);
y[3]=(y[4]+y[2])/2;
z[1]=z1[1]; z[2]=z[1]-(z1[2]-z1[1]);
z[5]=z2[5]; z[4]=z[5]+(z2[5]-z2[4]);
z[3]=(z[4]+z[2])/2;
{xb,yb,zb}=beziersurface(x,y,z,10);
view(4,2,0.5,0.5);
solid(xb1,yb1,zb1-1); hold on;
solid(xb,yb,zb-1); solid(xb2,yb2,zb2-1);
hold off;
title("C1 continuity of Bezier surfaces");
wait(180);
wi=wirecolor(1);
linewidth(1); wire(x,y,z-1); linewidth(3);
hold on; wire(x1,y1,z1-1); wire(x2,y2,z2-1); hold off;
wirecolor(wi); linewidth(1);
return title("C1 continuity of the Bezier grid");
endfunction
.. EOF
|