1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
|
comment
Utilities
endcomment
_view([7,2.5,0.4,0.4]);
Epsilon=epsilon();
ResetEpsilon=epsilon();
ResetView=_view();
Pi=pi();
I=1i;
vertical=0;
E=2.718281828459045235360287;
eulergamma=0.577215664901532860606512;
function reset
## reset() resets epsilon and some other graphics things,
## like the default view, the huecolor and the linewidth.
## Also it calls shortformat.
global ResetEpsilon,ResetView;
setepsilon(ResetEpsilon);
clip([0,0,1023,1023]);
style(""); hold off;
color(1);
shrinkwindow();
shortformat();
linewidth(1);
view(ResetView);
huecolor(1);
return 0;
endfunction
function resetepsilon
## reset the default epsilon and return the current epsilon.
global ResetEpsilon;
return setepsilon(ResetEpsilon);
endfunction
function wait (d=300)
## waits for a key (at most 5 min)
return _wait(d);
endfunction
function longformat
## longformat() sets a long format for numbers
## See: shortformat, longestformat
return goodformat([24 12]);
endfunction
function longestformat
## longformat() sets a long format for numbers
## See: shortformat, longformat
return goodformat([32 16]);
endfunction
function shortformat
## shortformat() sets a short format for numbers
## See: longformat, longestformat
return goodformat([14 5]);
endfunction;
function fracformat (n=20, eps=epsilon)
## Activates the fractional format
return _fracformat([n,eps]);
endfunction
function linspace (a,b,n)
## linspace(a,b,n) generates n+1 linear spaced points in [a,b].
if a~=b; return a; endif;
r=a:(b-a)/n:b;
r[n+1]=b;
return r;
endfunction
function equispace (a,b,n)
## equispace(a,b,n) generates n+1 euqidistribution (acos) spaced values
## in [a,b].
m=(1-cos(0:pi()/n:pi()))/2;
return a+(b-a)*m;
endfunction
function length (v)
## length(v) returns the length of a vector
return max(size(v));
endfunction
function polydif (p)
## polydif(p) returns the polynomial p'
n=cols(p);
if (n==1); return 0; endif;
return p[2:n]*(1:n-1);
endfunction
function isstring (x)
## Test, if x is a string.
return typeof(x)==8;
endfunction
function writeform (x)
if isreal(x); return printf("%25.16e",x); endif;
if iscomplex(x);
return printf("%25.16e",re(x))|printf("+%25.16ei",im(x));
endif;
if isstring(x); return x; endif;
error("Cannot print this!");
endfunction
function varwrite (x,s="")
## Write a variable to ouput in EULER syntax. Use s as the name.
## Output looks like s=...
if s==""; s=name(x); endif;
si=size(x);
if max(si)==1; s|" = "|writeform(x)|";", return 0; endif;
s|" = [ .."
for i=1 to si[1];
for j=1 to si[2]-1;
writeform(x[i,j])|",",
end;
if i==si[1]; writeform(x[i,si[2]])|"];",
else; writeform(x[i,si[2]])|";",
endif;
end;
return 0
endfunction
function expreval (expr,x)
## Evaluate the expression. Use global variables.
useglobal;
return evaluate(expr);
endfunction
.. ### plot things ###
logredraw=1;
subwindows=zeros([20,4]);
function figure(n)
## figure([nr,nc]) divides the graph window into nr rows x nc columns
## of subplots
## figure(n) sets the current drawing window to the nth subplot counting
## by rows.
global subwindows,logredraw;
if rows(n)==1 && cols(n)==2;
nr=n[1];nc=n[2];
w=window();
wd=textwidth();
ht=textheight();
hr=floor(1024/nr);wc=floor(1024/nc);
for r=1 to nr
for c=1 to nc
w=[8*wd+(c-1)*wc,1.5*ht+(r-1)*hr,c*wc-2*wd,r*hr-3*ht];
subwindows[(r-1)*nc+c]=w;
end;
end;
hold off;
logredraw=1;
return _window(subwindows[1]);
else
hold on;
logredraw=1;
return _window(subwindows[n]);
endif
endfunction
function toscreen2 (x,y)
## Convert the x-y-coordinates v[1],v[2] to screen coordinates,
## from 0..1024. Useful for Labels.
p=plot(); w=window();
return {w[1]+(x-p[1])/(p[2]-p[1])*(w[3]-w[1]), ..
w[2]-(y-p[4])/(p[4]-p[3])*(w[4]-w[2])};
endfunction
function toscreen ()
## Convert the x-y-coordinates v[1],v[2] to screen coordinates,
## from 0..1024. Useful for Labels.
if argn()==2; return toscreen2(arg1,arg2); endif;
if argn()<>1; error("Wrong arguments for toscreen"); endif;
v=arg1;
{c,r}=toscreen2(v[1],v[2]);
return [c,r]
endfunction
function fromscreen (c,r)
## Convert the screen coordinates v[1],v[2] to x-y-coordinates,
## Returns {x,y}
p=plot(); w=window();
return {p[1]+(c-w[1])/(w[3]-w[1])*(p[2]-p[1]), ..
p[3]+(w[4]-r)/(w[4]-w[2])*(p[4]-p[3])}
endfunction
function label (t,x,y,offset=0)
## Label the x-y-value with the text t.
## offset is in screen coordinates 0..1024.
c=toscreen([x,y]); c[1]=c[1]+textwidth()/4+offset; c[2]=c[2]+offset;
return text(t,c)
endfunction
function plotbar1 (x,y,w,h)
## Plots a single bar with x,y,w,h in plot coordinates.
## use barstyle and barcolor to modify the bar.
## The parameters may be vectors.
a=toscreen([x,y+h]);
b=toscreen([x+w,y]);
bar(a|(b-a));
return 0;
endfunction
function plotbar (x,y,w,h)
## Plots a bars with x,y,w,h in plot coordinates.
## use barstyle and barcolor to modify the bar.
## The parameters may be vectors.
if !holding(); clg; endif;
map("plotbar1",x,y,w,h);
return plot();
endfunction
function xplotbar (x,y,w,h,st="#O")
## Plots a bar with x,y,w,h in plot coordinates.
## Uses the plot coordinates from the last plot!
## Use setplot to set new plot coordinates.
## Draws coordinates below the bar.
## use barstyle and barcolor to modify the bar.
if !holding(); clg; endif;
frame; xplot();
stold=barstyle(st);
hold; plotbar(x,y,w,h); hold;
barstyle(stold);
return plot();
endfunction;
function scalematrix(A)
## Scales a matrix A, so that its value are in the range from 0 to 1.
e=extrema(A)'; mi=min(e[1]); ma=max(e[3]);
if ma~=mi; ma=mi+1; endif;
return (A-mi)/(ma-mi);
endfunction
function select
## Returns coordinates {x,y} of mouse clicks, until the user clicked
## above the plot window.
p=plot();
x=[];
repeat
m=mouse();
if m[2]>p[4]; break; endif;
h=holding(1); mark(m[1],m[2]); holding(h);
x=x_m;
end;
x=x'; return {x[1],x[2]}
endfunction
function title (text)
## title(text) plots a title to the grafik window.
ctext(text,[512 0]);
return text;
endfunction
function textheight
## textheight() returns the height of a letter.
h=textsize();
return h[2];
endfunction
function textwidth
## textwidth() returns the width of a letter.
h=textsize();
return h[1];
endfunction
function fullwindow
## fullwindow() takes the full size (besides a title) for the
## plots.
global logredraw;
h=textsize();
logredraw=1;
return _window([12,textheight()*1.5,1011,1011]);
endfunction
function shrinkwindow
## shrinkwindow() shrinks the window to allow labels.
global vertical,logredraw;
h=textheight(); b=textwidth();
logredraw=1;
if vertical; return _window([2*h,1.5*h,1023-2*b,1023-3*h]);
else; return _window([8*b,1.5*h,1023-2*b,1023-3*h]);
endif;
endfunction
function setplot
## setplot([xmin xmax ymin ymax]) sets the plot coordinates and holds
## the plot. Also setplot(xmin,xmax,ymin,ymax).
## setplot() resets it.
if argn()==4; return _setplot([arg1,arg2,arg3,arg4]);
else;
if argn()==0; scaling(1);
else; _setplot(arg1);
endif;
endif;
return plot();
endfunction
function ticks (aa=0,bb=0)
## returns the proper ticks to be used for intervals [a,b] and
## the factor f of the ticks.
if argn==2; a=aa; b=bb;
elseif argn==1; a=min(aa); b=max(aa);
else error("Wrong arguments for ticks");
endif;
if (b>1e30); b=1e30; endif;
if (a<-1e30); a=-1e30; endif;
if (a>=b); b=a+1; endif;
tick=10^floor(log(b-a)/log(10)-0.4);
if b-a>10*tick; tick1=tick*2; else; tick1=tick; endif;
if (tick>0.000001) && (tick<10000); tick=1; endif;
return {(floor(a/tick1)+1:ceil(b/tick1)-1)*tick1,tick}
endfunction
function xplot (x=0,y=0,grid=1,ticks=1)
## xplot(x,y) or xplot(y) works like plot, but shows axis ticks.
## xplot() shows only axis ticks and the grid.
if argn()>0;
if argn()==1;
if iscomplex(x); y=im(x); xh=re(x);
else y=x; xh=1:cols(y);
endif;
else; xh=x;
endif;
p=plotarea(xh,y);
if !holding(); clg; frame(); endif;
else
p=plot();
endif;
lw=linewidth(1);
{t,f}=ticks(p[1],p[2]);
xgrid(t,f,grid,ticks);
{t,f}=ticks(p[3],p[4]);
ygrid(t,f,grid,ticks);
linewidth(lw);
if argn()>0;
ho=holding(1);plot(xh,y);holding(ho);
endif;
return p;
endfunction
function xmark (x=0,y=0,grid=1,ticks=1)
## xmark(x,y) or xmark(y) works like plot, but shows axis ticks.
## xmark() shows only axis ticks and the grid.
if !holding(); clg; frame(); endif;
if argn()==1;
if iscomplex(x); y=im(x); xh=re(x);
else; y=x; xh=1:cols(y);
endif;
else; xh=x;
endif;
p=plotarea(xh,y);
{t,f}=ticks(p[1],p[2]);
xgrid(t,f,grid,ticks);
{t,f}=ticks(p[3],p[4]);
ygrid(t,f,grid,ticks);
ho=holding(1); p=mark(xh,y); holding(ho);
return p;
endfunction
function setplotm
## The user may choose the plotting coordinates with the mouse.
## Returns the plot coordinates.
h=holding(1);
k1=mouse(); mark(k1[1],k1[2]);
k2=mouse(); mark(k2[1],k2[2]);
kl=min(k1,k2); ku=max(k1,k2);
c=color(2);
plot([kl[1],kl[1],ku[1],ku[1],kl[1]],[kl[2],ku[2],ku[2],kl[2],kl[2]]);
color(c);
setplot(kl[1],ku[1],kl[2],ku[2]);
holding(h);
return plot();
endfunction
function fplot (ffunction,a=0,b=0,c=0,d=0,n=200)
## fplot("f",a,b,c,d,n;...) plots the function f(x,...) in [a,b].
## fplot("f") or fplot("f",,,,n;...) plots f in the old interval.
## If c<d, setplot(a,b,c,d) is called.
## fplot uses map for the evaluation of the function "f".
## ffunction may be an expression in x.
if a~=b; s=plot(); a=s[1]; b=s[2]; endif;
t=linspace(a,b,n);
if isfunction(ffunction); s=map(ffunction,t;args());
else s=expreval(ffunction,t);
endif;
if c<d; setplot(a,b,c,d); endif;
if holding; return plot(t,s);
else return xplot(t,s);
endif;
endfunction
function f3dplot (ffunction,xmin=-1,xmax=1,ymin=-1,ymax=1,nx=20,ny=20)
## f3dplot("f") plots a function f(x,y,...) in a square.
## Also f3dplot("f",xmin,xmax,ymin,ymax,nx,ny;...).
## "f" may be an expression in x and y.
lx=linspace(xmin,xmax,nx-1);
ly=linspace(ymin,ymax,ny-1);
{x,y}=field(lx,ly);
if isfunction(ffunction); z=ffunction(x,y,args());
else z=expreval(ffunction,x,y=y);
endif;
return framedsolid(x,y,z,2);
endfunction
function printscale (x)
if (abs(x)>10000) || (abs(x)<0.00001);
return printf("%12.5e",x);
else
return printf("%10.5f",x);
endif;
endfunction
function niceform (x)
## Return a string, containing a nice print of x.
y=round(x,10);
return printf("%g",y);
endfunction
function xgrid(xx,f=1,grid=1,ticks=1,color=3,xt="default")
## xgrid([x0,x1,...]) draws vertical grid lines on the plot window at
## x0,x1,...
## xgrid([x0,x1,...],f) additionally writes x0/f to the axis.
c=plot(); n=cols(xx); s=scaling(0); h=holding(1);
w=window();
st=linestyle("."); wi=linewidth(1); color(color);
ht=textheight();
if isstring(xt); xt=xx; endif;
str="";
loop 1 to n;
x=xx[#];
if (x<=c[2])&&(x>=c[1]);
if grid; _plot([x,x],[c[3],c[4]]); endif;
if ticks;
col=w[1]+(x-c[1])/(c[2]-c[1])*(w[3]-w[1]);
stra=niceform(xt[#]/f);
if !(stra==str && #<n);
_ctext(stra,[col,w[4]+0.2*ht]);
str=stra;
endif;
endif;
endif;
end;
if ticks && !(f~=1);
.. _ctext("* "|printscale(f),[(w[1]+w[3])/2,w[4]+1.5*ht]);
_rtext("* "|printscale(f),[w[3],w[4]+1.5*ht]);
endif;
linestyle(st); linewidth(wi); color(1); holding(h); scaling(s);
return 0;
endfunction
function ygrid(yy,f=1,grid=1,ticks=1,color=3,yt="default")
## ygrid([x0,x1,...]) draws horizontal grid lines on the plot window at
## x0,x1,...
## ygrid([x0,x1,...],f) additionally writes x0/f to the axis.
global vertical
c=plot(); n=cols(yy); s=scaling(0); h=holding(1);
st=linestyle("."); wi=linewidth(1); color(color);
w=window(); wd=textwidth(); ht=textheight();
if isstring(yt); yt=yy; endif;
loop 1 to n;
y=yy[#];
if (y>=c[3])&&(y<=c[4]);
if ticks;
row=w[4]-(y-c[3])/(c[4]-c[3])*(w[4]-w[2]);
if vertical;
_vcutext(niceform(y,f),[w[1]-0.2*ht,row]);
else
_rtext(niceform(yt[#]/f),[w[1]-wd/2,row-ht/2]);
endif;
endif;
if grid; _plot([c[1],c[2]],[y,y]); endif;
endif;
end;
if ticks && !(f~=1);
_text("* "|printscale(f),[w[1]-6*wd,0]);
endif;
linestyle(st); linewidth(wi); color(1); holding(h); scaling(s);
return 0;
endfunction
function xrange()
## Writes the range of x below the x axis.
c=plot(); s=scaling(0); h=holding(1);
w=window();
ht=textheight();
text(niceform(c[1]),[w[1],w[4]+0.2*ht]);
rtext(niceform(c[2]),[w[3],w[4]+0.2*ht]);
holding(h); scaling(s);
return 0;
endfunction
function xlabel(text,l=1)
## Puts the label text at the x-axis at point l in [0,1].
w=window();
ht=textheight();
.. ctext(text,[w[1]+l*(w[3]-w[1]),w[4]+0.2*ht]);
_ctext(text,[(w[1]+w[3])/2,w[4]+1.5*ht]);
return 0;
endfunction
function yrange()
## Writes the range of y besides the y axis.
c=plot(); s=scaling(0); h=holding(1);
w=window();
wd=textwidth();
ht=textheight();
rtext(niceform(c[4]),[w[1]-wd/2,w[2]]);
rtext(niceform(c[3]),[w[1]-wd/2,w[4]-ht]);
holding(h); scaling(s);
return 0;
endfunction
function ylabel(text,l=1)
## Puts the label text at the x-axis at point l in [0,1].
w=window();
wd=textwidth();
ht=textheight();
.. rtext(text,[w[1]-wd/2,w[2]+l*(w[4]-w[2])-ht/2]);
_vcutext(text,[w[1]-8*wd+5,(w[2]+w[4])/2]);
return 0;
endfunction
function plot (x=0,y=0)
## plot(x,y) plots the values (x(i),y(i)) with the current style.
## If x is a matrix, y must be a matrix of the same size.
## The plot is then drawn for all rows of x and y.
## The plot is scaled automatically, unless hold is on.
## plot(x,y) and plot() return [x1,x2,y1,y2], where [x1,x2] is the range
## of the x-values and [y1,y2] of the y-values.
## plot(x) is the same as plot(1:cols(x),x).
if !holding() && argn()>0; clg; endif;
if argn()==1;
if iscomplex(x);
oldclip = clip(window());
res = _plot(re(x),im(x));
clip(oldclip);
return res;
else
oldclip = clip(window());
res = _plot(1:cols(x),x);
clip(oldclip);
return res;
endif;
else if argn()==2;
oldclip=clip(window());
res = _plot(x,y);
clip(oldclip);
return res;
else return _plot();
endif;
endfunction
function mark (x=0,y=0)
## mark(x,y) plots markers at (x(i),y(i)) according the the actual style.
## Works like plot.
if !holding() && argn()>0; clg; endif;
if argn()==1;
if iscomplex(x);
oldclip = clip(window());
res = _mark(re(x),im(x));
clip(oldclip);
return res;
else
oldclip = clip(window());
res = _mark(1:cols(x),x);
clip(oldclip);
return res;
endif;
else if argn()==2;
oldclip = clip(window());
res = _mark(x,y);
clip(oldclip);
return res;
else return _plot();
endif;
endfunction
function cplot (z)
## cplot(z) plots a grid of complex numbers.
plot(re(z),im(z)); s=scaling(0); h=holding(1);
w=z'; plot(re(w),im(w)); holding(h); scaling(s);
return plot();
endfunction
function plotwindow
## plotwindow() sets the plot window to the screen coordinates.
w=window();
setplot(w[1],w[3],w[2],w[4]);
return plot()
endfunction
function density (x,f=1)
## density(x,1) makes density plot of the values in the matrix x
## scaled to fit into [0,f].
if f==0;
_density(x);
return x;
else;
ma=max(max(x)'); mi=min(min(x)'); h=ma-mi;
if h~=0; h=1; endif;
xx=(x-mi)/h*f*0.99;
_density(xx);
return xx;
endif;
endfunction
function solidhue (x,y,z,h,f=1)
## solidhue(x,y,z,h) makes a shaded solid 3D-plot of x,y,z.
## h is the shading and should run between 0 and 1.
## f determines, if h is scaled to fit in between 0 and f.
if argn()==1; return _solidhue(x,y,z,h); endif;
ma=max(max(h)'); mi=min(min(h)'); delta=ma-mi;
if delta~=0; delta=1; endif;
hh=(h-mi)/delta*f*0.9999;
return _solidhue(x,y,z,hh);
endfunction
function fillcolor (c1=0,c2=0)
## Set the fillcolor for the fore- and background of 3D plots.
## fillcolor(c1,c2) or fillcolor() returns the colors [c1,c2].
if argn()==0; return _fillcolor();
else if argn==1; return _fillcolor(c1); endif;
endif;
return _fillcolor([c1,c2]);
endfunction
function mark3 (x,y,z)
## Plots points in three dimensions.
## x,y,z must be 1xn vectors.
{c0,r0}=project(x,y,z);
{x0,y0}=fromscreen(c0,r0);
return mark(x0,y0);
endfunction
function stereo (fff)
## Calls the function fff, which must be the name of
## a 3D plot command, and does it twice in two different
## windows. Many people are able to view a 3D picture.
## Example: stereo("f3dplot","x*y^2");
hold on;
clg;
s=300; m=510;
win=window();
v=view();
window(m-s,m-s/2,m,m+s/2);
w=v; w[3]=v[3]-0.05;
view(w);
fff(args(2));
window(m,m-s/2,m+s,m+s/2);
w=v; w[3]=v[3]+0.05;
view(w);
fff(args(2));
window(win);
hold off;
return ""
endfunction
function rotate (fff,d=0.01,n=120)
## Shows a rotating animation of the plot fff,
## which must be a 3D plot command.
## Example: rotate("f3dplot";"x*y^2");
clg;
title("Creating Animation");
beginpages();
t=linspace(0,2*pi,n);
v=view();
loop 1 to cols(t);
v[3]=t[#]; view(v);
fff(args());
end;
endpages();
animate(d);
return pages();
endfunction
function animate (d=0.01)
## Animate the pages with delay d.
repeat
playpages(d);
if testkey(); return pages(); endif;
end;
return pages();
endfunction
.. ### log plots ###
function xticks (aa=0,bb=0)
if argn==2; a=aa; b=bb;
elseif argn==1; a=min(aa); b=max(aa);
else error("Wrong arguments for ticks");
endif;
if (b>1e30); b=1e30; endif;
if (a<-1e30); a=-1e30; endif;
if (a>=b); b=a+1; endif;
tick=10^floor(log(b-a)/log(10)-0.4);
if b-a>10*tick; tick1=tick*2; else; tick1=tick; endif;
if (tick>0.001) && (tick<1000); tick=1; endif;
return (floor(a/tick1))*tick1:tick1:(ceil(b/tick1))*tick1;
endfunction;
function xlogticks(expi,expf,base)
x=[ ];
for k = floor(expi) to floor(expf);
x = x | logbase(1:base,base) + k;
end;
return x;
endfunction;
function xloggrid()
endfunction
function xlogplot(x=1,y=0,xbase=10)
## xlogplot draws y(x) in a semilog paper with base xbase
global logredraw;
if argn()==0;
p=plot();
else
if !holding();clg;endif;
if iscomplex(x); xe=abs(x); else xe=x; endif;
if iscomplex(y); ye=abs(y); else ye=y; endif;
xl=logbase(xe,xbase);
if holding() && !logredraw
hd=holding();
p=plot();
else
expi=floor(logbase(min(xe),xbase));
expf=ceil(logbase(max(xe),xbase));
xt=xlogticks(expi,expf,xbase);
if rows(ye)==1
yt=xticks(min(ye),max(ye));
elseif rows(ye)>1
yt=xticks(min(min(ye)'),max(max(ye)'));
endif;
p=setplot([expi,expf,min(yt),max(yt)]);
h=textheight();w=textwidth();
hd=holding(1);
ls=linestyle(".");
lw=linewidth(1);
c=color(1);
for i=1 to length(yt);
plot([expi,expf],[yt[i],yt[i]]);
d=toscreen([expi,yt[i]]);
rtext(printf("%g",yt[i]),[d[1]-w,d[2]-h/2]);
end;
for i=1 to length(xt)-xbase;
plot([xt[i],xt[i]],[p[3],p[4]]);
end;
for i=expi to expf;
d=toscreen([i,p[3]]);
.. ctext(printf("%g",xbase)|"^"|printf("%g",i),[d[1],d[2]+h/2]);
rtext(printf("%g",xbase),[d[1]+w,d[2]+0.75*h]);
text(printf("%g",i),[d[1]+w,d[2]+h/4]);
end;
color(c);
linewidth(lw);
linestyle(ls);
frame();
endif;
plot(xl,ye);
holding(hd);
logredraw=0;
endif;
return p;
endfunction;
function ylogplot(x=0,y=1,ybase=10)
## xlogplot draws y(x) in a semilog paper with base ybase
global logredraw;
if argn()==0;
p=plot();
else
if !holding();clg;endif;
if iscomplex(x); xe=abs(x); else xe=x; endif;
if iscomplex(y); ye=abs(y); else ye=y; endif;
yl=logbase(ye,ybase);
if holding && !logredraw
hd=holding;
p=plot();
else
expi=floor(logbase(min(ye),ybase));
expf=ceil(logbase(max(ye),ybase));
xt=xticks(min(xe),max(xe));
yt=xlogticks(expi,expf,ybase);
p=setplot([min(xt),max(xt),expi,expf]);
h=textheight();w=textwidth();
hd=holding(1);
ls=linestyle(".");
lw=linewidth(1);
c=color(1);
for i=1 to length(yt)-ybase;
plot([p[1],p[2]],[yt[i],yt[i]]);
end;
for i=expi to expf;
d=toscreen([p[1],i]);
.. rtext(printf("%g",ybase)|"^"|printf("%g",i),[d[1]-w/2,d[2]-h/2]);
rtext(printf("%g",ybase),[d[1]-40,d[2]-h/2]);
text(printf("%g",i),[d[1]-40,d[2]-h]);
end;
for i=1 to length(xt);
plot([xt[i],xt[i]],[p[3],p[4]]);
d=toscreen([xt[i],p[3]]);
ctext(printf("%g",xt[i]),[d[1],d[2]+h/2]);
end;
color(c);
linewidth(lw);
linestyle(ls);
frame();
endif
plot(xe,yl);
holding(hd);
logredraw=0;
endif;
return p;
endfunction;
function xylogplot(x=1,y=1,xbase=10,ybase=10)
## xylogplot draws y(x) in a loglog paper with base xbase and ybase
global logredraw;
if argn()==0;
p=plot();
else
if !holding();clg;endif;
if iscomplex(x); xe=abs(x); else xe=x; endif;
if iscomplex(y); ye=abs(y); else ye=y; endif;
xl=logbase(xe,xbase);
yl=logbase(ye,ybase);
if holding() && !logredraw
hd=holding();
p=plot();
else
expix=floor(logbase(min(xe),xbase));
expfx=ceil(logbase(max(xe),xbase));
expiy=floor(logbase(min(ye),ybase));
expfy=ceil(logbase(max(ye),ybase));
xt=xlogticks(expix,expfx,xbase);
yt=xlogticks(expiy,expfy,ybase);
p=setplot([expix,expfx,expiy,expfy]);
h=textheight();w=textwidth();
hd=holding(1);
ls=linestyle(".");
lw=linewidth(1);
c=color(1);
for i=1 to length(xt)-xbase;
plot([xt[i],xt[i]],[p[3],p[4]]);
end;
for i=expix to expfx;
d=toscreen([i,p[3]]);
.. ctext(printf("%g",xbase)|"^"|printf("%g",i),[d[1],d[2]+h/2]);
rtext(printf("%g",xbase),[d[1]+w,d[2]+0.75*h]);
text(printf("%g",i),[d[1]+w,d[2]+h/4]);
end;
for i=1 to length(yt)-ybase;
plot([p[1],p[2]],[yt[i],yt[i]]);
end;
for i=expiy to expfy;
d=toscreen([p[1],i]);
.. rtext(printf("%g",ybase)|"^"|printf("%g",i),[d[1]-w/2,d[2]-h/2]);
rtext(printf("%g",ybase),[d[1]-40,d[2]-h/2]);
text(printf("%g",i),[d[1]-40,d[2]-h]);
end;
color(c);
linewidth(lw);
linestyle(ls);
frame();
endif;
plot(xl,yl);
holding(hd);
logredraw=0;
endif;
return p;
endfunction;
function xlogmark(x=1,y=0,xbase=10)
## xlogmark draws marks at the specified points in a semilog paper with base xbase
global logredraw;
if argn()==0;
p=plot();
else
if !holding();clg;endif;
if iscomplex(x); xe=abs(x); else xe=x; endif;
if iscomplex(y); ye=abs(y); else ye=y; endif;
xl=logbase(xe,xbase);
if holding() && !logredraw
hd=holding();
p=plot();
else
expi=floor(logbase(min(xe),xbase));
expf=ceil(logbase(max(xe),xbase));
xt=xlogticks(expi,expf,xbase);
if rows(ye)==1
yt=xticks(min(ye),max(ye));
elseif rows(ye)>1
yt=xticks(min(min(ye)'),max(max(ye)'));
endif;
p=setplot([expi,expf,min(yt),max(yt)]);
h=textheight();w=textwidth();
hd=holding(1);
ls=linestyle(".");
lw=linewidth(1);
c=color(1);
for i=1 to length(yt);
plot([expi,expf],[yt[i],yt[i]]);
d=toscreen([expi,yt[i]]);
rtext(printf("%g",yt[i]),[d[1]-w,d[2]-h/2]);
end;
for i=1 to length(xt)-xbase;
plot([xt[i],xt[i]],[p[3],p[4]]);
end;
for i=expi to expf;
d=toscreen([i,p[3]]);
.. ctext(printf("%g",xbase)|"^"|printf("%g",i),[d[1],d[2]+h/2]);
rtext(printf("%g",xbase),[d[1]+w,d[2]+0.75*h]);
text(printf("%g",i),[d[1]+w,d[2]+h/4]);
end;
color(c);
linewidth(lw);
linestyle(ls);
frame();
endif;
mark(xl,ye);
holding(hd);
logredraw=0;
endif;
return p;
endfunction;
function ylogmark(x=0,y=1,ybase=10)
## xlogmark draws y(x) in a semilog paper with base ybase
global logredraw;
if argn()==0;
p=plot();
else
if !holding();clg;endif;
if iscomplex(x); xe=abs(x); else xe=x; endif;
if iscomplex(y); ye=abs(y); else ye=y; endif;
yl=logbase(ye,ybase);
if holding && !logredraw
hd=holding;
p=plot();
else
expi=floor(logbase(min(ye),ybase));
expf=ceil(logbase(max(ye),ybase));
xt=xticks(min(xe),max(xe));
yt=xlogticks(expi,expf,ybase);
p=setplot([min(xt),max(xt),expi,expf]);
h=textheight();w=textwidth();
hd=holding(1);
ls=linestyle(".");
lw=linewidth(1);
c=color(1);
for i=1 to length(yt)-ybase;
plot([p[1],p[2]],[yt[i],yt[i]]);
end;
for i=expi to expf;
d=toscreen([p[1],i]);
.. rtext(printf("%g",ybase)|"^"|printf("%g",i),[d[1]-w/2,d[2]-h/2]);
rtext(printf("%g",ybase),[d[1]-40,d[2]-h/2]);
text(printf("%g",i),[d[1]-40,d[2]-h]);
end;
for i=1 to length(xt);
plot([xt[i],xt[i]],[p[3],p[4]]);
d=toscreen([xt[i],p[3]]);
ctext(printf("%g",xt[i]),[d[1],d[2]+h/2]);
end;
color(c);
linewidth(lw);
linestyle(ls);
frame();
endif
mark(xe,yl);
holding(hd);
logredraw=0;
endif;
return p;
endfunction;
function xylogmark(x=1,y=1,xbase=10,ybase=10)
## xylogmark draws y(x) points in a loglog paper with base xbase and ybase
global logredraw;
if argn()==0;
p=plot();
else
if !holding();clg;endif;
if iscomplex(x); xe=abs(x); else xe=x; endif;
if iscomplex(y); ye=abs(y); else ye=y; endif;
xl=logbase(xe,xbase);
yl=logbase(ye,ybase);
if holding() && !logredraw
hd=holding();
p=plot();
else
expix=floor(logbase(min(xe),xbase));
expfx=ceil(logbase(max(xe),xbase));
expiy=floor(logbase(min(ye),ybase));
expfy=ceil(logbase(max(ye),ybase));
xt=xlogticks(expix,expfx,xbase);
yt=xlogticks(expiy,expfy,ybase);
p=setplot([expix,expfx,expiy,expfy]);
h=textheight();w=textwidth();
hd=holding(1);
ls=linestyle(".");
lw=linewidth(1);
c=color(1);
for i=1 to length(xt)-xbase;
plot([xt[i],xt[i]],[p[3],p[4]]);
end;
for i=expix to expfx;
d=toscreen([i,p[3]]);
.. ctext(printf("%g",xbase)|"^"|printf("%g",i),[d[1],d[2]+h/2]);
rtext(printf("%g",xbase),[d[1]+w,d[2]+0.75*h]);
text(printf("%g",i),[d[1]+w,d[2]+h/4]);
end;
for i=1 to length(yt)-ybase;
plot([p[1],p[2]],[yt[i],yt[i]]);
end;
for i=expiy to expfy;
d=toscreen([p[1],i]);
.. rtext(printf("%g",ybase)|"^"|printf("%g",i),[d[1]-w/2,d[2]-h/2]);
rtext(printf("%g",ybase),[d[1]-40,d[2]-h/2]);
text(printf("%g",i),[d[1]-40,d[2]-h]);
end;
color(c);
linewidth(lw);
linestyle(ls);
frame();
endif;
mark(xl,yl);
holding(hd);
logredraw=0;
endif;
return p;
endfunction;
function logspace(a,b,n=50,base=10)
## logspace(a,b,n) generates n log spaced points in [a,b].
## base specifies the based log used.
if a>b
tmp=a;
a=b;
b=tmp;
endif;
return base^(linspace(logbase(a,base),logbase(b,base),n-1));
endfunction
.. ### linear algebra things ###
function id (n)
## id(n) creates a nxn identity matrix.
return diag([n n],0,1);
endfunction
function inv (a)
## inv(a) produces the inverse of a matrix.
return a\id(cols(a));
endfunction
function fit (a,b)
## fit(a,b) computes x such that ||a.x-b||_2 is minimal.
## a is a nxm matrix, and b is a mx1 vector.
## For badly conditioned a, you should use svdsolve instead.
A=conj(a');
return symmult(A,a)\(A.b)
endfunction
function norm (A)
## Compute the maximal row sum of A
return max(sum(abs(A))');
endfunction
function kernel (A)
## kernel(a) computes the kernel of the quadratic matrix a.
## You might add eps=..., if a is almost regular.
if isvar("eps"); localepsilon(eps); endif;
a=A/norm(A);
{aa,r,c,d}=lu(a);
n=size(a); nr=size(r);
if nr[2]==n[2]; return zeros([1,n[2]])'; endif;
if nr[2]==0; return id(n[2]); endif;
c1=nonzeros(c); c2=nonzeros(!c);
b=lusolve(aa[r,c1],a[r,c2]);
m=size(b);
x=zeros([n[2] m[2]]);
x[c1,:]=-b;
x[c2,:]=id(cols(c2));
return x
endfunction
function image (A)
## image(a) computes the image of the quadratic matrix a.
if isvar("eps"); localepsilon(eps); endif;
a=A/norm(A);
{aa,r,c,d}=lu(a);
return a[:,nonzeros(c));
endfunction
function det (a)
## det(A) returns the determinant of A
if isvar("eps"); localepsilon(eps); endif;
r=norm(a);
{aa,rows,c,d}=lu(a/r);
return d*r^cols(a);
endfunction
function eigenremove(l)
## helping function.
return l(nonzeros(!(l[1]~=l)))
endfunction
function eigenvalues (a)
## eigenvalues(A) returns the eigenvalues of A.
return polysolve(charpoly(a));
endfunction
function eigenspace (a,l)
## eigenspace(A,l) returns the eigenspace of A to the eigenvaue l.
k=kernel(a-l*id(cols(a)));
if k==0; error("No eigenvalue found!"); endif;
si=size(k);
loop 1 to si[2];
x=k[:,index()];
k[:,index()]=x/sqrt(x'.x);
end;
return k;
endfunction
function eigen (A)
## eigen(A) returns the eigenvectors and a basis of eigenvectors of A.
## {l,x,ll}=eigen(A), where l is a vector of eigenvalues,
## x is a basis of eigenvectors,
## and ll is a vector of distinct eigenvalues.
l=eigenvalues(A);
s=eigenspace(A,l[1]);
si=size(s); v=dup(l[1],si[2])'; vv=l[1];
l=eigenremove(l,si[2]);
repeat;
if min(size(l))==0; break; endif;
ll=l[1]; sp=eigenspace(A,ll);
si=size(sp); l=eigenremove(l,si[2]);
s=s|sp; v=v|dup(ll,si[2])'; vv=vv|ll;
end;
return {v,s,vv}
endfunction
hilbertfactor=3*3*3*5*5*7*11*13*17*19*23*29;
function hilbert (n,f=hilbertfactor)
## hilbert(n) produces the nxn-Hilbert matrix.
## It is accurate up to the 30x30 Hilbert matrix.
{i,j}=field(1:n,1:n);
return f/(i+j-1);
endfunction
function hilb (n,f=hilbertfactor)
return hilbert(n,f);
endfunction
.. ### polynomial fit ##
function polyfit (xx,yy,n)
## fit(x,y,degree) fits a polynomial in L_2-norm to (x,y).
A=ones(size(xx))_dup(xx,n); A=cumprod(A');
return fit(A,yy')';
endfunction
.. ### Some Functions ###
function field (x,y)
## field(x,y) returns {X,Y} such that the X+i*Y is a rectangular
## grid in C containing the points x(n)+i*y(m). x and y must be
## 1xN and 1xM vectors.
return {dup(x,cols(y)),dup(y',cols(x))};
endfunction
function totalsum (A)
## totalsum(a) computes the sum of all elements of a
return sum(sum(A)');
endfunction
function totalmin (A)
## Returns the total minimum of the elements of a
return min(min(A)')'
endfunction
function totalmax (A)
## Returns the total maximum of the elements of a
return max(max(A)')'
endfunction
function sinh
## sinh(x) = (exp(x)-exp(-x))/2
h=exp(arg1);
return (h-1/h)/2;
endfunction
function cosh
## cosh(x) = (exp(x)+exp(-x))/2
h=exp(arg1);
return (h+1/h)/2;
endfunction
function arsinh
## arsinh(z) = log(z+sqrt(z^2+1))
return log(arg1+sqrt(arg1*arg1+1))
endfunction
function arcosh
## arcosh(z) = log(z+(z^2-1))
return log(arg1+sqrt(arg1*arg1-1))
endfunction
function logbase (x,a)
## returns the logarithm to base a
return log(x)/log(a);
endfunction
function log10 (x)
## returns the logarithm to base 10
return log(x)/log(10)
endfunction
function beta (a,b)
## returns the beta function
return gamma(a)*gamma(b)/gamma(a+b);
endfunction
function betai (x,a,b)
## returns the incomplete beta function.
return map("betai1",x,a,b);
endfunction
.. ### Differential equations ###
function heun (ffunction,t,y0)
## y=heun("f",x,y0;...) solves the differential equation y'=f(x,y).
## f(x,y;...) must be a function.
## y0 is the starting value.
## ffunction may be an expression in x and y.
n=cols(t);
y=dup(y0,n);
if isfunction(ffunction)
loop 1 to n-1;
h=t[#+1]-t[#];
yh=y[#]; xh=t[#];
k1=ffunction(xh,yh,args());
k2=ffunction(xh+h/2,yh+h/2*k1,args());
k3=ffunction(xh+h,yh+2*h*k2-h*k1,args());
y[#+1]=yh+h/6*(k1+4*k2+k3);
end;
else
loop 1 to n-1;
h=t[#+1]-t[#];
yh=y[#]; xh=t[#];
k1=expreval(ffunction,xh,y=yh);
k2=expreval(ffunction,xh+h/2,y=yh+h/2*k1);
k3=expreval(ffunction,xh+h,y=yh+2*h*k2-h*k1);
y[#+1]=yh+h/6*(k1+4*k2+k3);
end;
endif;
return y';
endfunction
function fdgleval (x,y,expr)
return evaluate(expr);
endfunction
function runge (ffunction,t,y0,steps=1)
## y=runge("f",x,y0;...) solves the differential equation y'=f(x,y).
## f(x,y;...) must be a function.
## y0 is the starting value.
## ffunction may be an expression in x and y.
## steps are intermediate steps between the t[i].
## It is fastest to use a 1x2 vector t and many steps,
## but will not yield the intermediate values.
## Returns the values y(t).
y=dup(y0,cols(t));
if isfunction(ffunction);
loop 2 to cols(t);
y[#]=runge1(ffunction,t[#-1],t[#],steps,y[#-1],args());
end;
else
loop 2 to cols(t);
y[#]=runge1("fdgleval",t[#-1],t[#],steps,y[#-1],ffunction);
end;
endif;
return y';
endfunction
function adaptiverunge (ffunction,t,y0,eps=epsilon(),step=0.1)
## y=adaptiverunge("f",x,y0;...) solves the differential
## equation y'=f(x,y) with adaptive step size.
## f(x,y;...) must be a function.
## y0 is the starting value.
## ffunction may be an expression in x and y.
## steps are intermediate steps between the t[i].
## It is fastest to use a 1x2 vector t and many steps,
## but will not yield the intermediate values.
## Returns the values y(t).
y=dup(y0,cols(t));
if isfunction(ffunction);
loop 2 to cols(t);
{y[#],step}=runge2(ffunction,t[#-1],t[#],y[#-1],eps,step,args());
end;
else
loop 2 to cols(t);
{y[#],step}=runge2("fdgleval",t[#-1],t[#],y[#-1],eps,step,ffunction);
end;
endif;
return y';
endfunction
function adaptintf (x,y,fff)
return fff(x;args());
endfunction
function adaptiveint (ffunction,a,b,eps=epsilon(),steps=10)
## I=adaptiveint("f",a,b;...) returns the integral from a to b.
## f may be an expression in x, which must not contain y.
if isfunction(ffunction);
return runge2("adaptintf",a,b,0,eps,(b-a)/steps;ffunction,args());
else
return runge2("fdgleval",a,b,0,eps,(b-a)/steps;ffunction);
endif;
endfunction
function bisect (ffunction,a,b)
## bisect("f",a,b;...) uses the bisection method to find a root of
## f(x,...) in [a,b]. ffunction may be an expression in x.
## You can specify an epsilon eps with eps=... as last parameter.
if (isvar("eps")); localepsilon(eps); endif;
if isfunction(ffunction);
## function
if ffunction(b,args())<0;
b1=a; a1=b;
if ffunction(a,args())<0 error("No zero in interval"); endif;
else;
a1=a; b1=b;
if ffunction(a,args())>0 error("No zero in interval"); endif;
endif;
repeat
m=(a1+b1)/2;
if a1~=b1; break; endif;
if ffunction(m,args())>0; b1=m; else a1=m; endif;
end;
else
## expression
if expreval(ffunction,b,args())<0;
b1=a; a1=b;
if expreval(ffunction,a)<0 error("No zero in interval"); endif;
else;
a1=a; b1=b;
if expreval(ffunction,a)>0 error("No zero in interval"); endif;
endif;
repeat
m=(a1+b1)/2;
if a1~=b1; break, endif;
if expreval(ffunction,m)>0; b1=m; else a1=m; endif;
end;
endif;
return m;
endfunction
function secant (ffunction,a,b)
## secant("f",a,b;...) uses the secant method to find
## a root of f(x,...) in [a,b]
## ffunction may be an expression in x.
## You can specify an epsilon eps with eps=... as last parameter.
if (isvar("eps")); localepsilon(eps); endif;
if isfunction(ffunction)
## function
x0=a; x1=b;
y0=ffunction(x0,args()); y1=ffunction(x1,args());
repeat
x2=x1-y1*(x1-x0)/(y1-y0);
if x2~=x1; break; endif;
x0=x1; y0=y1; x1=x2; y1=ffunction(x2,args());
end;
else
## expression
x0=a; x1=b;
y0=expreval(ffunction,x0); y1=expreval(ffunction,x1);
repeat
x2=x1-y1*(x1-x0)/(y1-y0);
if x2~=x1; break; endif;
x0=x1; y0=y1; x1=x2; y1=expreval(ffunction,x2);
end;
endif;
return x2
endfunction
function simpson (ffunction,a,b,n=50)
## simpson("f",a,b) or simpson("f",a,b,n;...) integrates
## f(x,...) in [a,b] using the Simpson method.
## f must be able to evaluate a vector.
## ffunction may be an expression in x.
t=linspace(a,b,2*n);
if isfunction(ffunction);
s=ffunction(t,args());
else
s=expreval(ffunction,t);
endif;
ff=4-mod(1:2*n+1,2)*2; ff[1]=1; ff[2*n+1]=1;
return sum(ff*s)/3*(t[2]-t[1]);
endfunction
function romberg(ffunction,a,b,m=10)
## romberg(f,a,b) computes the Romberg integral of f(x,...) in [a,b].
## romberg(f,a,b,m;...) specifies h=(b-a)/m/2^k for k=1,...
## ffunction may be an expression in x.
## You can specify an epsilon eps with eps=... as last parameter.
if (isvar("eps")); localepsilon(eps); endif;
if isfunction(ffunction)
y=ffunction(linspace(a,b,m),args()); h=(b-a)/m;
else
y=expreval(ffunction,linspace(a,b,m)); h=(b-a)/m;
endif
y[1]=y[1]/2; y[m+1]=y[m+1]/2; I=sum(y);
S=I*h; H=h^2; Intalt=S;
repeat;
if isfunction(ffunction)
I=I+sum(ffunction(a+h/2:h:b,args())); h=h/2;
else
I=I+sum(expreval(ffunction,a+h/2:h:b)); h=h/2;
endif;
S=S|I*h;
H=H|h^2;
Int=interpval(H,interp(H,S),0);
if Int~=Intalt; break; endif;
Intalt=Int;
end;
return Intalt
endfunction
function iterate (ffunction,x0)
## iterate("f",x0;...) iterates the function f(x,...), starting from
## x0.
## The iteration stops at a fixed point.
## Returns the fixed point.
## ffunction may be an expression in x.
## You can specify an epsilon eps with eps=... as last parameter.
if (isvar("eps")); localepsilon(eps); endif;
x=x0;
if isinterval(x);
repeat
if isfunction(ffunction); x=ffunction(x,args());
else; x=expreval(ffunction,x);
endif;
if left(x)~=right(x); return x; endif;
end;
else;
repeat
if isfunction(ffunction); xn=ffunction(x,args());
else; xn=expreval(ffunction,x);
endif;
if (x~=xn); return xn; endif;
x=xn;
end;
endif;
endfunction
function niterate (ffunction,x0,n)
## iterate("f"x0,n;...) Iterate the function f(x,...) n times,
## starting with the point x0.
## Returns the vector of iterants.
## ffunction may be an expression in x.
x=x0; y=zeros(n,cols(x));
loop 1 to n
if isfunction(ffunction); x=ffunction(x,args());
else x=expreval(ffunction,x);
endif;
y[#,:]=x;
end;
return y;
endfunction
function newton (ffunc,fder,x)
## newton("f","df",x;...) seeks a zero of f(x,...).
## Starts the Newton iteration from x.
## df is the derivative of f.
## Additional parameters are passed to ffunc and fder.
## ffunc and fder may be expressions in x.
## You can specify an epsilon eps with eps=... as last parameter.
if (isvar("eps")); localepsilon(eps); endif;
repeat
if isfunction(ffunc); a=ffunc(x,args());
else a=expreval(ffunc,x);
endif;
if isfunction(fder); b=fder(x,args());
else b=expreval(fder,x);
endif;
xnew=x-a/b;
if (xnew~=x) return xnew; endif;
x=xnew;
end;
endfunction
function newton2 (fff,fff1,x)
## newton2("f","Df",x;...)
## Newton method for several parameter.
## fff is the function, fff1 computes the Jacobian.
## Additional parameters are passed to fff and fff1.
## You can specify an epsilon eps with eps=... as last parameter.
if (isvar("eps")); localepsilon(eps); endif;
repeat
d=(fff1(x,args())\fff(x,args())')';
xn=x-d;
if xn~=x; return xn; endif;
x=xn;
end
endfunction
function evalfff (fff)
useglobal;
return evaluate(fff);
endfunction
function root (fff, x)
## Find the root of an expression fff (of string type)
## by changing the variable x. Other variables may be
## set globally. Note that the actual name of the variable
## x may be different from "x".
if (isvar("eps")); localepsilon(eps); endif;
if (x==0) x1=0.00001;
else x1=1.00001*x;
endif;
x0=x;
a=evalfff(fff);
repeat
x=x1; b=evalfff(fff);
xn=(x0*b-x1*a)/(b-a);
if xn~=x; break; endif;
x0=x1; x1=xn; a=b;
end;
return x;
endfunction
function setupdif (n)
A=zeros([n,2*n+1]);
loop 1 to n;
b=zeros([2*#+1,1]); b[#+1]=fak(#);
a=((-#:#)^(0:2*#)')\b;
A[#,1:2*#+1]=a';
end;
return A;
endfunction
DifMatrix=setupdif(5);
function dif (fff, x, n=1, e=epsilon()^(1/2))
## Compute the n-th derivative of fff in the points x.
## fff may be an expression in x or a function.
## For n>=2, x must be a 1xn vector.
global DifMatrix;
eps=e^(1/(n+1));
if n==0;
if isfunction(fff); fff(x;args()); else return expreval(fff,x); endif;
elseif (n==1)
if isfunction(fff);
return (fff(x+eps,args())-fff(x-eps,args()))/(2*eps);
else
return (expreval(fff,x+eps)-expreval(fff,x-eps))/(2*eps);
endif;
elseif n<=5;
h=(-n:n)*eps; xh=h'+x; a=DifMatrix[n,0:2*n+1];
if isfunction(fff); return (a.fff(xh,args()))/eps^n;
else return (a.expreval(fff,xh))/eps^n;
endif;
else
error("Too high a derivative!");
endif;
endfunction
.. ### use zeros,... the usual way ###
function ctext
## ctext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Also ctext(s,c,r).
if argn()==3; return _ctext(arg1,[arg2,arg3]);
else return _ctext(arg1,arg2);
endif;
endfunction
function text
## text(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Also ctext(s,c,r).
if argn()==3; return _text(arg1,[arg2,arg3]);
else return _text(arg1,arg2);
endif;
endfunction
function vctext
## vtext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Text will be drawn downwards, centered.
if argn()==3; return _vctext(arg1,[arg2,arg3]);
else return _vctext(arg1,arg2);
endif;
endfunction
function vrtext
## vtext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Text will be drawn downwards, right justified.
if argn()==3; return _vrtext(arg1,[arg2,arg3]);
else return _vrtext(arg1,arg2);
endif;
endfunction
function vtext
## vtext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Text will be drawn downwards, left justified.
## Also vctext(s,c,r).
if argn()==3; return _vtext(arg1,[arg2,arg3]);
else return _vtext(arg1,arg2);
endif;
endfunction
function vutext
## vutext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Text will be drawn upwards.
## Also vcutext(s,c,r).
if argn()==3; return _vutext(arg1,[arg2,arg3]);
else return _vutext(arg1,arg2);
endif;
endfunction
function vcutext
## vutext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Text will be drawn upwards, centered.
## Also vcutext(s,c,r).
if argn()==3; return _vcutext(arg1,[arg2,arg3]);
else return _vcutext(arg1,arg2);
endif;
endfunction
function vrutext
## vutext(s,[c,r]) plots the centered string s at the coordinates (c,r).
## Text will be drawn upwards, right justified.
## Also vcutext(s,c,r).
if argn()==3; return _vrutext(arg1,[arg2,arg3]);
else return _vrutext(arg1,arg2);
endif;
endfunction
function diag
## diag([n,m],k,v) returns a nxm matrix A, containing v on its k-th
## diagonal. v may be a vector or a real number. Also diag(n,m,k,v);
## diag(A,k) returns the k-th diagonal of A.
if argn()==4; return _diag([arg1,arg2],arg3,arg4);
elseif argn()==3; return _diag(arg1,arg2,arg3);
else return _diag(arg1,arg2);
endif;
endfunction
function format
## format(n,m) sets the number output format to m digits and a total
## width of n.
if argn()==2; return _format([arg1,arg2]);
else return _format(arg1);
endif;
endfunction
function goodformat
## goodformat(n,m) sets the number output format to m digits and a
## total width of n. Prints less than m digits, when not necessary.
if argn()==2; return _goodformat([arg1,arg2]);
else return _goodformat(arg1);
endif;
endfunction
function expformat
## expformat(n,m) sets the number output format to m digits and a
## total width of n. Always uses exponential format
if argn()==2; return _expformat([arg1,arg2]);
else return _expformat(arg1);
endif;
endfunction
function fixedformat
## expformat(n,m) sets the number output format to m digits and a
## total width of n. Always uses fixed point format
if argn()==2; return _fixedformat([arg1,arg2]);
else return _fixedformat(arg1);
endif;
endfunction
function redim
## redim(A,[n,m]) returns a matrix with the numbers in A but different
## dimension filling with 0 if necessary. Also redim(A,n,m).
if argn()==3; return _redim(arg1,[arg2,arg3]);
else return _redim(arg1,arg2);
endif;
endfunction
function normal
## normal([n,m]) returns a nxm matrix of unit normal distributed random
## values. Also normal(n,m).
if argn()==2; return _normal([arg1,arg2]);
else return _normal(arg1);
endif;
endfunction
function random
## random([n,m]) returns a nxm matrix of uniformly distributed random
## values in [0,1]. Also random(n,m).
if argn()==2; return _random([arg1,arg2]);
else return _random(arg1);
endif;
endfunction
function ones
## ones([n,m]) returns a nxm matrix with all elements set to 1.
## Also ones(n,m).
if argn()==2; return _ones([arg1,arg2]);
else return _ones(arg1);
endif;
endfunction
function zeros
## zeros([n,m]) returns a nxm matrix with all elements set to 0.
## Also zeros(n,m).
if argn()==2; return _zeros([arg1,arg2]);
else return _zeros(arg1);
endif;
endfunction
function matrix
## matrix([n,m],x) returns a nxm matrix with all elements set to x.
## Also matrix(n,m,x).
if argn()==3; return _matrix([arg1,arg2],arg3);
else return _matrix(arg1,arg2);
endif;
endfunction
function view
## view([distance, tele, angle1, angle2]) sets the perspective for
## solid and view. distance is the eye distance, tele a zooming factor.
## angle1 is the angle from the negativ y-axis to the positive x-axis.
## angle2 is the angle to the positive z-axis (the height of the eye).
## Also view(d,t,a1,a2).
## view() returns the values of view.
if argn()==4; return _view([arg1,arg2,arg3,arg4]);
else if argn()==1; return _view(arg1);
else return _view();
endif;
endfunction
function window
## window([c1,r1,c2,r2]) sets a plotting window. The coordinates must
## be screen coordinates. Also window(c1,r1,c2,r2).
## window() returns the active window coordinates.
global logredraw;
if argn()==4; logredraw=1; return _window([arg1,arg2,arg3,arg4]);
else if argn()==1; logredraw=1; return _window(arg1);
else return _window();
endif;
endfunction
function unclip
## Clips to the complete graphics screen
return _clip([0,0,1023,1023]);
endfunction
function clip
## clip([c1,r1,c2,r2]) sets the clipping window. The coordinates must
## be screen coordinates. Also clip(c1,r1,c2,r2).
## clip() returns the active clipping window coordinates.
if argn()==4; return _clip([arg1,arg2,arg3,arg4]);
else if argn()==1; return _clip(arg1);
else return _clip();
endif;
endfunction
function menu ()
## menu(string1,string2,...) displays a menu and returns the
## number of the chosen item.
loop 1 to argn();
char(#+ascii("a")-1)|" : "|args(#),
end;
""
"Please, press any of these keys!"
k=key();k
n=ascii("a");
if k-n>=0 && k-n<=argn(); return k-n+1; endif;
if k==13; return -1; endif;
return 0;
endfunction
function drawbutton (text,x,y,w)
## draw a button with the text at x,y with
## w character width. x centered and y top
## of the label. return the button rectangle.
st=barstyle("#O");
bc=barcolor(0);
tw=textwidth(); th=textheight();
b=[x-tw*w/2,y-th/3,tw*w,th*5/3];
bar(b);
ctext(text,[x,y]);
barstyle(st);
barcolor(bc);
return b
endfunction
function inbutton (b,s)
## test if the screen coordinates s are with in
## the button rectangle b. get s e.g. with
## toscreen(mouse())
return s[1]>b[1] && s[1]<b[1]+b[3] && s[2]>b[2] && s[2]<b[2]+b[4];
endfunction
function printformat (x,f="%g",sep1=", ",sep2="; ")
## Print the vector x formatted with format f.
## See: printf
## The format is applied to real and imaginary part,
## or lower and upper part of the elements of x.
s=size(x);
loop 1 to s[1];
i=#;
loop 1 to s[2]
if iscomplex(x);
write(printf(f|sep1,re(x[i,#])));
write(printf(f|sep2,im(x[i,#])));
elseif isinterval(x);
write(printf(f|sep1,left(x[i,#])));
write(printf(f|sep2,right(x[i,#])));
else write(printf(f|sep2,x[i,#]));
endif;
end;
putchar(10);
end;
return "";
endfunction
function getmatrix (n,m,filename="")
## Read a real nxm Matrix from the file.
## If the filename is "", the file must be opened before.
## Else the file will open and close for read.
## Matrix values must be decimal fix point numbers with
## a dot (not a comma). They must be stored row after row.
if filename<>""; open(filename,"r"); endif;
{v,N}=getvector(n*m);
if filename<>""; close(); endif;
if (N<n*m); error("Incorrect values in file"); endif;
v=v[1:n*m];
return redim(v,n,m);
endfunction
function writematrix (v,filename="",format="%0.16f")
## Write a real nxm Matrix to the file row after row.
## If the filename is not "", the file will be created (beware!).
if typeof(v)<>2; error("Can write only real matrices"); endif;
if filename<>""; open(filename,"w"); endif;
f=format|" ";
for i=1 to rows(v);
for j=1 to cols(v);
write(printf(f,v[i,j]));
end;
putchar(10);
end;
if filename<>""; close(); endif;
return "";
endfunction
function triangles
## Obsolete Function.
return 1
endfunction
function upperwindow (title="")
## select the upper window for plot
window(150,860,75,500);
title(title);
return title
endfunction
function lowerwindow (title="")
## select the upper window for plot
window(150,860,575,1010);
ctext(title,512,510);
return title
endfunction
function caseone (b,x,y)
if b return x; else return y; endif
endfunction
function case (b,x,y)
## case(condition,x,y)
## returns x, if condition!=null, else y.
return map("caseone",b,x,y);
endfunction
function rad ()
## rad(x) transfers degree x to radians
## rad(x,s) for degrees and minutes
## rad(x,s,m) for degrees, minutes and seconds
## x works too.
if argn==1; return arg1/180*pi; endif;
if argn==2; return (arg1+arg2/60)/180*pi; endif;
if argn==3; return (arg1+arg2/60+arg3/3600)/180*pi; endif;
error("Wrong argument for rad");
endfunction
function deg (x)
## deg(x) transfers radians x to degrees
return x/pi*180;
endfunction
function degprint (x)
## Print radians x in degrees
y=round(deg(x),10);
h=abs(y);
vz=""; if (y<0); vz="-"; endif;
g=floor(h);
if g~=h; return vz|printf("%g",g); endif;
m=floor((h-g)*60); s=(h-g-m/60)*3600;
return vz|printf("%g",g)|printf("%g'",m)|printf("%2.2lf''",s);
endfunction
|